1,786 research outputs found

    IoT Security Vulnerabilities and Predictive Signal Jamming Attack Analysis in LoRaWAN

    Get PDF
    Internet of Things (IoT) gains popularity in recent times due to its flexibility, usability, diverse applicability and ease of deployment. However, the issues related to security is less explored. The IoT devices are light weight in nature and have low computation power, low battery life and low memory. As incorporating security features are resource expensive, IoT devices are often found to be less protected and in recent times, more IoT devices have been routinely attacked due to high profile security flaws. This paper aims to explore the security vulnerabilities of IoT devices particularly that use Low Power Wide Area Networks (LPWANs). In this work, LoRaWAN based IoT security vulnerabilities are scrutinised and loopholes are identified. An attack was designed and simulated with the use of a predictive model of the device data generation. The paper demonstrated that by predicting the data generation model, jamming attack can be carried out to block devices from sending data successfully. This research will aid in the continual development of any necessary countermeasures and mitigations for LoRaWAN and LPWAN functionality of IoT networks in general

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Intelligent Lower-Layer Denial-of-Service Attacks Against Cellular Vehicle-to-Everything

    Get PDF
    Vehicle-to-everything (V2X) communication promises a wide range of benefits for society. Within future V2X-enabled intelligent transportation systems, vehicle-to-vehicle (V2V) communication will allow vehicles to directly exchange messages, improving their situational awareness and allowing drivers or (semi-)autonomous vehicles to avoid collisions, particularly in non-line-of-sight scenarios. Thus, V2V has the potential to reduce annual vehicular crashes and fatalities by hundreds of thousands. Cellular Vehicle-to-Everything (C-V2X) is rapidly supplanting older V2V protocols and will play a critical role in achieving these outcomes. As extremely low latency is required to facilitate split-second collision avoidance maneuvers, ensuring the availability of C-V2X is imperative for safe and secure intelligent transportation systems. However, little work has analyzed the physical- (PHY) and MAC-layer resilience of C-V2X against intelligent, protocol-aware denial-of-service (DoS) attacks by stealthy adversaries. In this thesis, we expose fundamental security vulnerabilities in the PHY- and MAC-layer designs of C-V2X and demonstrate how they can be exploited to devastating effect by devising two novel, intelligent DoS attacks against C-V2X: targeted sidelink jamming and sidelink resource exhaustion. Our attacks demonstrate different ways an intelligent adversary can dramatically degrade the availability of C-V2X for one or many vehicles, increasing the likelihood of fatal vehicle collisions. Through hardware experiments with software-defined radios (SDRs) and state-of-the-art C-V2X devices in combination with extensive MATLAB simulation, we demonstrate the viability and effectiveness of our attacks. We show that targeted sidelink jamming can reduce a targeted vehicle\u27s packet delivery ratio by 90% in a matter of seconds, while sidelink resource exhaustion can reduce C-V2X channel throughput by up to 50% in similarly short order. We further provide and validate detection techniques for each attack based on cluster and regression analysis techniques and propose promising, preliminary approaches to mitigate the underlying vulnerabilities that we expose in the PHY/MAC layers of C-V2X
    • …
    corecore