614 research outputs found

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    Design Space Exploration for MPSoC Architectures

    Get PDF
    Multiprocessor system-on-chip (MPSoC) designs utilize the available technology and communication architectures to meet the requirements of the upcoming applications. In MPSoC, the communication platform is both the key enabler, as well as the key differentiator for realizing efficient MPSoCs. It provides product differentiation to meet a diverse, multi-dimensional set of design constraints, including performance, power, energy, reconfigurability, scalability, cost, reliability and time-to-market. The communication resources of a single interconnection platform cannot be fully utilized by all kind of applications, such as the availability of higher communication bandwidth for computation but not data intensive applications is often unfeasible in the practical implementation. This thesis aims to perform the architecture-level design space exploration towards efficient and scalable resource utilization for MPSoC communication architecture. In order to meet the performance requirements within the design constraints, careful selection of MPSoC communication platform, resource aware partitioning and mapping of the application play important role. To enhance the utilization of communication resources, variety of techniques such as resource sharing, multicast to avoid re-transmission of identical data, and adaptive routing can be used. For implementation, these techniques should be customized according to the platform architecture. To address the resource utilization of MPSoC communication platforms, variety of architectures with different design parameters and performance levels, namely Segmented bus (SegBus), Network-on-Chip (NoC) and Three-Dimensional NoC (3D-NoC), are selected. Average packet latency and power consumption are the evaluation parameters for the proposed techniques. In conventional computing architectures, fault on a component makes the connected fault-free components inoperative. Resource sharing approach can utilize the fault-free components to retain the system performance by reducing the impact of faults. Design space exploration also guides to narrow down the selection of MPSoC architecture, which can meet the performance requirements with design constraints.Siirretty Doriast

    Evolution of Publications, Subjects, and Co-authorships in Network-On-Chip Research From a Complex Network Perspective

    Get PDF
    The academia and industry have been pursuing network-on-chip (NoC) related research since two decades ago when there was an urgency to respond to the scaling and technological challenges imposed on intra-chip communication in SoC designs. Like any other research topic, NoC inevitably goes through its life cycle: A. it started up (2000-2007) and quickly gained traction in its own right; B. it then entered the phase of growth and shakeout (2008-2013) with the research outcomes peaked in 2010 and remained high for another four/five years; C. NoC research was considered mature and stable (2014-2020), with signs showing a steady slowdown. Although from time to time, excellent survey articles on different subjects/aspects of NoC appeared in the open literature, yet there is no general consensus on where we are in this NoC roadmap and where we are heading, largely due to lack of an overarching methodology and tool to assess and quantify the research outcomes and evolution. In this paper, we address this issue from the perspective of three specific complex networks, namely the citation network, the subject citation network, and the co-authorship network. The network structure parameters (e.g., modularity, diameter, etc.) and graph dynamics of the three networks are extracted and analyzed, which helps reveal and explain the reasons and the driving forces behind all the changes observed in NoC research over 20 years. Additional analyses are performed in this study to link interesting phenomena surrounding the NoC area. They include: (1) relationships between communities in citation networks and NoC subjects, (2) measure and visualization of a subject\u27s influence score and its evolution, (3) knowledge flow among the six most popular NoC subjects and their relationships, (4) evolution of various subjects in terms of number of publications, (5) collaboration patterns and cross-community collaboration among the authors in NoC research, (6) interesting observation of career lifetime and productivity among NoC researchers, and finally (7) investigation of whether or not new authors are chasing hot subjects in NoC. All these analyses have led to a prediction of publications, subjects, and co-authorship in NoC research in the near future, which is also presented in the paper
    • …
    corecore