179 research outputs found

    Information Theoretic Structure Learning with Confidence

    Full text link
    Information theoretic measures (e.g. the Kullback Liebler divergence and Shannon mutual information) have been used for exploring possibly nonlinear multivariate dependencies in high dimension. If these dependencies are assumed to follow a Markov factor graph model, this exploration process is called structure discovery. For discrete-valued samples, estimates of the information divergence over the parametric class of multinomial models lead to structure discovery methods whose mean squared error achieves parametric convergence rates as the sample size grows. However, a naive application of this method to continuous nonparametric multivariate models converges much more slowly. In this paper we introduce a new method for nonparametric structure discovery that uses weighted ensemble divergence estimators that achieve parametric convergence rates and obey an asymptotic central limit theorem that facilitates hypothesis testing and other types of statistical validation.Comment: 10 pages, 3 figure

    Does William Shakespeare REALLY Write Hamlet? Knowledge Representation Learning with Confidence

    Full text link
    Knowledge graphs (KGs), which could provide essential relational information between entities, have been widely utilized in various knowledge-driven applications. Since the overall human knowledge is innumerable that still grows explosively and changes frequently, knowledge construction and update inevitably involve automatic mechanisms with less human supervision, which usually bring in plenty of noises and conflicts to KGs. However, most conventional knowledge representation learning methods assume that all triple facts in existing KGs share the same significance without any noises. To address this problem, we propose a novel confidence-aware knowledge representation learning framework (CKRL), which detects possible noises in KGs while learning knowledge representations with confidence simultaneously. Specifically, we introduce the triple confidence to conventional translation-based methods for knowledge representation learning. To make triple confidence more flexible and universal, we only utilize the internal structural information in KGs, and propose three kinds of triple confidences considering both local and global structural information. In experiments, We evaluate our models on knowledge graph noise detection, knowledge graph completion and triple classification. Experimental results demonstrate that our confidence-aware models achieve significant and consistent improvements on all tasks, which confirms the capability of CKRL modeling confidence with structural information in both KG noise detection and knowledge representation learning.Comment: 8 page

    ConMatch: Semi-Supervised Learning with Confidence-Guided Consistency Regularization

    Full text link
    We present a novel semi-supervised learning framework that intelligently leverages the consistency regularization between the model's predictions from two strongly-augmented views of an image, weighted by a confidence of pseudo-label, dubbed ConMatch. While the latest semi-supervised learning methods use weakly- and strongly-augmented views of an image to define a directional consistency loss, how to define such direction for the consistency regularization between two strongly-augmented views remains unexplored. To account for this, we present novel confidence measures for pseudo-labels from strongly-augmented views by means of weakly-augmented view as an anchor in non-parametric and parametric approaches. Especially, in parametric approach, we present, for the first time, to learn the confidence of pseudo-label within the networks, which is learned with backbone model in an end-to-end manner. In addition, we also present a stage-wise training to boost the convergence of training. When incorporated in existing semi-supervised learners, ConMatch consistently boosts the performance. We conduct experiments to demonstrate the effectiveness of our ConMatch over the latest methods and provide extensive ablation studies. Code has been made publicly available at https://github.com/JiwonCocoder/ConMatch.Comment: Accepted at ECCV 202

    Adaptive Ensemble Learning with Confidence Bounds

    Get PDF
    Extracting actionable intelligence from distributed, heterogeneous, correlated, and high-dimensional data sources requires run-time processing and learning both locally and globally. In the last decade, a large number of meta-learning techniques have been proposed in which local learners make online predictions based on their locally collected data instances, and feed these predictions to an ensemble learner, which fuses them and issues a global prediction. However, most of these works do not provide performance guarantees or, when they do, these guarantees are asymptotic. None of these existing works provide confidence estimates about the issued predictions or rate of learning guarantees for the ensemble learner. In this paper, we provide a systematic ensemble learning method called Hedged Bandits, which comes with both long-run (asymptotic) and short-run (rate of learning) performance guarantees. Moreover, our approach yields performance guarantees with respect to the optimal local prediction strategy, and is also able to adapt its predictions in a data-driven manner. We illustrate the performance of Hedged Bandits in the context of medical informatics and show that it outperforms numerous online and offline ensemble learning methods. © 2016 IEEE

    Adaptive ensemble learning with confidence bounds for personalized diagnosis

    Get PDF
    With the advances in the field of medical informatics, automated clinical decision support systems are becoming the de facto standard in personalized diagnosis. In order to establish high accuracy and confidence in personalized diagnosis, massive amounts of distributed, heterogeneous, correlated and high-dimensional patient data from different sources such as wearable sensors, mobile applications, Electronic Health Record (EHR) databases etc. need to be processed. This requires learning both locally and globally due to privacy constraints and/or distributed nature of the multimodal medical data. In the last decade, a large number of meta-learning techniques have been proposed in which local learners make online predictions based on their locally-collected data instances, and feed these predictions to an ensemble learner, which fuses them and issues a global prediction. However, most of these works do not provide performance guarantees or, when they do, these guarantees are asymptotic. None of these existing works provide confidence estimates about the issued predictions or rate of learning guarantees for the ensemble learner. In this paper, we provide a systematic ensemble learning method called Hedged Bandits, which comes with both long run (asymptotic) and short run (rate of learning) performance guarantees. Moreover, we show that our proposed method outperforms all existing ensemble learning techniques, even in the presence of concept drift

    Improving Student Achievement with Social-Emotional Learning

    Get PDF
    Research shows that social emotional learning can positively improve student success both emotionally and academically. Social emotional programs, skills, and overall learning within school systems benefit staff, students, and stakeholders. When there is a lack of a clear and organized social emotional curriculum, students suffer and lack necessary skills to have long-term success both academically and personally. Using various research findings, a school improvement plan was created to construct a school-wide social-emotional system that includes both a research-based program and a variety of social emotional skills. This plan also ensures ongoing professional development for staff to implement with fidelity. The goal of this plan is to increase student success rates in elementary school and future endeavors academically, emotionally, and socially and to construct professional development that allows staff to implement social-emotional learning with confidence and fidelity

    Scalable Hash-Based Estimation of Divergence Measures

    Full text link
    We propose a scalable divergence estimation method based on hashing. Consider two continuous random variables XX and YY whose densities have bounded support. We consider a particular locality sensitive random hashing, and consider the ratio of samples in each hash bin having non-zero numbers of Y samples. We prove that the weighted average of these ratios over all of the hash bins converges to f-divergences between the two samples sets. We show that the proposed estimator is optimal in terms of both MSE rate and computational complexity. We derive the MSE rates for two families of smooth functions; the H\"{o}lder smoothness class and differentiable functions. In particular, it is proved that if the density functions have bounded derivatives up to the order d/2d/2, where dd is the dimension of samples, the optimal parametric MSE rate of O(1/N)O(1/N) can be achieved. The computational complexity is shown to be O(N)O(N), which is optimal. To the best of our knowledge, this is the first empirical divergence estimator that has optimal computational complexity and achieves the optimal parametric MSE estimation rate.Comment: 11 pages, Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS) 2018, Lanzarote, Spai
    corecore