4 research outputs found

    LLM3D: a log-linear modeling-based method to predict functional gene regulatory interactions from genome-wide expression data

    Get PDF
    All cellular processes are regulated by condition-specific and time-dependent interactions between transcription factors and their target genes. While in simple organisms, e.g. bacteria and yeast, a large amount of experimental data is available to support functional transcription regulatory interactions, in mammalian systems reconstruction of gene regulatory networks still heavily depends on the accurate prediction of transcription factor binding sites. Here, we present a new method, log-linear modeling of 3D contingency tables (LLM3D), to predict functional transcription factor binding sites. LLM3D combines gene expression data, gene ontology annotation and computationally predicted transcription factor binding sites in a single statistical analysis, and offers a methodological improvement over existing enrichment-based methods. We show that LLM3D successfully identifies novel transcriptional regulators of the yeast metabolic cycle, and correctly predicts key regulators of mouse embryonic stem cell self-renewal more accurately than existing enrichment-based methods. Moreover, in a clinically relevant in vivo injury model of mammalian neurons, LLM3D identified peroxisome proliferator-activated receptor Ī³ (PPARĪ³) as a neuron-intrinsic transcriptional regulator of regenerative axon growth. In conclusion, LLM3D provides a significant improvement over existing methods in predicting functional transcription regulatory interactions in the absence of experimental transcription factor binding data

    Flexible model-based joint probabilistic clustering of binary and continuous inputs and its application to genetic regulation and cancer

    Get PDF
    Clustering is used widely in ā€˜omicsā€™ studies and is often tackled with standard methods such as hierarchical clustering or k-means which are limited to a single data type. In addition, these methods are further limited by having to select a cut-off point at specific level of dendrogram- a tree diagram or needing a pre-defined number of clusters respectively. The increasing need for integration of multiple data sets leads to a requirement for clustering methods applicable to mixed data types, where the straightforward application of standard methods is not necessarily the best approach. A particularly common problem involves clustering entities characterized by a mixture of binary data, for example, presence or absence of mutations, binding, motifs, and/or epigenetic marks and continuous data, for example, gene expression, protein abundance and/or metabolite levels. In this work, we presented a generic method based on a probabilistic model for clustering this mixture of data types, and illustrate its application to genetic regulation and the clustering of cancer samples. It uses penalized maximum likelihood (ML) estimation of mixture model parameters using information criteria (model selection objective function) and meta-heuristic searches for optimum clusters. Compatibility of several information criteria with our model-based joint clustering was tested, including the well-known Akaike Information Criterion (AIC) and its empirically determined derivatives (AICĪ»), Bayesian Information Criterion (BIC) and its derivative (CAIC), and Hannan-Quinn Criterion (HQC). We have experimentally shown with simulated data that AIC and AIC (Ī»=2.5) worked well with our method. We show that the resulting clusters lead to useful hypotheses: in the case of genetic regulation these concern regulation of groups of genes by specific sets of transcription factors and in the case of cancer samples combinations of gene mutations are related to patterns of gene expression. The clusters have potential mechanistic significance and in the latter case are significantly linked to survival
    corecore