86,135 research outputs found

    Cooperative Reinforcement Learning Using an Expert-Measuring Weighted Strategy with WoLF

    Get PDF
    Gradient descent learning algorithms have proven effective in solving mixed strategy games. The policy hill climbing (PHC) variants of WoLF (Win or Learn Fast) and PDWoLF (Policy Dynamics based WoLF) have both shown rapid convergence to equilibrium solutions by increasing the accuracy of their gradient parameters over standard Q-learning. Likewise, cooperative learning techniques using weighted strategy sharing (WSS) and expertness measurements improve agent performance when multiple agents are solving a common goal. By combining these cooperative techniques with fast gradient descent learning, an agent’s performance converges to a solution at an even faster rate. This statement is verified in a stochastic grid world environment using a limited visibility hunter-prey model with random and intelligent prey. Among five different expertness measurements, cooperative learning using each PHC algorithm converges faster than independent learning when agents strictly learn from better performing agents

    Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

    Get PDF
    We study the problem of learning-to-learn: inferring a learning algorithm that works well on tasks sampled from an unknown distribution. As class of algorithms we consider Stochastic Gradient Descent on the true risk regularized by the square euclidean distance to a bias vector. We present an average excess risk bound for such a learning algorithm. This result quantifies the potential benefit of using a bias vector with respect to the unbiased case. We then address the problem of estimating the bias from a sequence of tasks. We propose a meta-algorithm which incrementally updates the bias, as new tasks are observed. The low space and time complexity of this approach makes it appealing in practice. We provide guarantees on the learning ability of the meta-algorithm. A key feature of our results is that, when the number of tasks grows and their variance is relatively small, our learning-to-learn approach has a significant advantage over learning each task in isolation by Stochastic Gradient Descent without a bias term. We report on numerical experiments which demonstrate the effectiveness of our approach.Comment: 37 pages, 8 figure

    Trajectory-Based Off-Policy Deep Reinforcement Learning

    Full text link
    Policy gradient methods are powerful reinforcement learning algorithms and have been demonstrated to solve many complex tasks. However, these methods are also data-inefficient, afflicted with high variance gradient estimates, and frequently get stuck in local optima. This work addresses these weaknesses by combining recent improvements in the reuse of off-policy data and exploration in parameter space with deterministic behavioral policies. The resulting objective is amenable to standard neural network optimization strategies like stochastic gradient descent or stochastic gradient Hamiltonian Monte Carlo. Incorporation of previous rollouts via importance sampling greatly improves data-efficiency, whilst stochastic optimization schemes facilitate the escape from local optima. We evaluate the proposed approach on a series of continuous control benchmark tasks. The results show that the proposed algorithm is able to successfully and reliably learn solutions using fewer system interactions than standard policy gradient methods.Comment: Includes appendix. Accepted for ICML 201
    • …
    corecore