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COOPERATIVE REINFORCEMENT LEARNING USING AN EXPERT-
MEASURING WEIGHTED STRATEGY WITH WOLF

Kevin Cousin and Gilbert L. Peterson
Air Force Institute of Technology
2950 Hobson Way
Wright-Patterson AFB, OH, 45431, USA
kevin.cousin,gilbert.peterson@afit.edu

ABSTRACT

Gradient descent learning algorithms have proven
effective in solving mixed strategy games. The golhill
climbing (PHC) variants of WoLF (Win or Learn Fast)
and PDWoLF (Policy Dynamics based WoLF) have both
shown rapid convergence to equilibrium solutions by
increasing the accuracy of their gradient pararaeteer
standard Q-learning. Likewise, cooperative learning
techniques using weighted strategy sharing (WS$) an
expertness measurements improve agent performance
when multiple agents are solving a common goal. By
combining these cooperative techniques with faztigint
descent learning, an agent's performance conveames
solution at an even faster rate. This statementigied

in a stochastic grid world environment using a fedi
visibility hunter-prey model with random and intgént
prey. Among five different expertness measurements,
cooperative learning using each PHC algorithm coyee
faster than independent learning when agentsigthézrn
from better performing agents.

KEY WORDS
Multiagent, cooperative reinforcement learning, ginéd
strategies.

1. Introduction

Multiagent research has seen an increase in gctivier

the past decade with applications in a varietyields.
Some recent research has focused on the convergénce
policy gradient ascent techniques for use in rafion
algorithms beneficial to multiple agent coordinatio
Likewise, techniques for exploiting cooperativerieag

[1] using weighted strategy sharing [2, 3] have rbee
developed and shown to increase the learning rate o
agents under some conditions by measuring the
effectiveness of an agent while performing a task o
meeting an objective. It seems natural to comtiese
ideas to increase a multiagent group’s learning iat
domains that require generalization and function
approximation. At a minimum, learning should impeo
through sharing information on explored spaces.

By combining the ideas of variable rate learning
algorithms using policy hill climbing with expertse
weighted strategy sharing, performance of groups of
agents is generally increased. The WoLF and PDWoLF
learning algorithms are implemented with policy ritg
measured by five expertness metrics: normal, abesolu
positive, negative and gradient. The convergence
properties of the learning algorithms are preserved
however, experiments in a stochastic environmerit (g
world modeled with hunter-prey) demonstrates that
applying these techniques by incorporating theediffit
experiences of better performing agents into “lg5in
agents under proper measurement results in aregemef
the overall performance of a group through indigidu
enhancement.

In the following section, three variations on pglic
hill climbing algorithms are discussed, specifigaflHC
(Q-Learning), WoLF-PHC, and PDWoLF-PHC. This is
followed by a discussion of expert measures anit the
applicability to WSS. Section 3 outlines the expemnt
design that implements the combined implementatibn
PHC and WSS in the hunter-prey domain. The follgwin
section highlights the results of the experimemtse last
section concludes with some final thoughts and réutu
issues to examine.

2. Background

2.1. Palicy Hill Climbing (PHC) Algorithms

Three PHC variants are examined: standard PHC, WoLF
PHC and PDWoLF-PHC. These algorithms have been
shown to convergence in increasing rates [4] asvslio

fig. 1. The particular implementation of the aldoms
relies on two tables. One tabl®, holds the expected
reward over time using a typical temporal-differenc
formula to iteratively update the table’s rewaradtion
approximation [5]. The second table, holds the policy,
the probabilities used to select an action from esatate.

In general, the table initializations use the fofiog
values:
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Figure 1. Comparison of PHC, WoLF-PHC and
PDWoL F-PHC convergence vsan intelligent prey.

where the table® andrz are functions over a statg,and
action,a, pair for the set of action&. The learning rate

is a step-size parameter used to partially cortrelrate
of gradient descent. The values ®fs, andd,, are each
learning rates applied to each of the policy hilinbing
approaches. The tablg3,andz, are updated according to
the following rules for each algorithm.

Qs.a) ~ (-@)Q(sa) +alr +ymaxQ(s,a))
n(s,a) — msa)+ A,
-0, if az mﬁxQ(s, a')
Ba = > 0, otherwise

where o = min{n(s, a),

)

The expected rewards tabl®, requires a reward
and a discount rate for updating. The policyz, only
requires an update fromsmvalue based on the selection
of dx from a comparison of the existing policy value and
a ¢ learning rate parameter chosen through additional
criteria.

Generally, PHC only requires a constankearning
rate to wupdate the policy tables. No additional
initialization or methodical testing is requiredowever,
WoOLF-PHC and PDWoLF-PHC both make use of a
dynamic learning rate resulting in a faster coneaog
over general PHC. Because of this, both WoLF-PHE& an
PDWoLF-PHC wuse stronger selection criteria for
choosing).

2.2.Win or Learn Fast (WoLF)

WoLF [6, 7] uses additional tables to estimateaberage
policy value in its calculation of the learning @afThe
initialization of that table is

C(s) « O

n(sa) -
W

representing a counting function and an estimavedsae
policy value. These functions are updated by
C(s) « C(9)+1

Oa'0A m(s,a') — m(s,a’) + (s, ag:( ;z(sa).

The delta selection criteria used by WoLF for
determining the learning rate uses this rule:

5,1t Y. msa)Qls.a) > ¥ (s a)Q(s.a)

- alA alA
6, otherwise

which is used in the calculation af, of the PHC update
rules.

2.3. Policy Dynamics Win or Learn Fast
(PDWoOLF)

Likewise, PDWoLF [4] uses additional estimation|ézb
initialized by

A(s,a) < 0

N(sa) - 0
whereA andA? represent changing rates within the policy

and are estimates of the slopes of the decisioresjiach
of these are updated with

N (s,a) « A
A(s,a) « A

-A(s,a) _

The delta selection is then

_ |98, if A(s,a)A(s,2) <0
o, otherwise

WoOLF-PHC and PDWoLF-PHC each make use of
known information in the decision space to appr@tama
good ¢ for improving the policy. The fundamental
difference lies in the criteria used to sel@ctVoLF relies
on an average policy estimation while the PDWoLEsus
the rate of change in the space to better apprainte



change. Each algorithm, though, is based on thee sam
core set of policy table update functions. Likeayif-
Learning, WoLF and PDWoLF maintain expected value
tables.

2.4. Expertness M easures and Weighted
Strategy Sharing (WSS)

A variety of expertness measures can be applied to
cooperative agents using WSS [2, 3, 8]. Of these, w
consider the following five:

1) Normal: the sum of all reinforcement values.

.
eV =>"r (t).
t=1

2) Absolute: the sum of absolute values.

e = I (o)

3) Positive: the sum of all positive-only reinfoneents.

& =3 W (1) = {0’ 1t)=0

r.(t), otherwise

4) Negative: the sum of all negative-only reinforsmnts.

e =Y M. ()= {0'” ©>0

r.(t),otherwise

5) Gradient: the sum of reinforcements from a derta

point in time.
.

e® =>r(t)

t=c

Each expertness measuremers$ the summation of
the rewards an agent receives over time. All, extep
gradient, sum over the entire time period of al.tffde
gradient measure sums over smaller intervals béynd
user defined constant c.

During WSS, each agent calculates its expertness
measure, and then chooses to incorporate policy
information from agents that are performing bebased
upon the weighting functionWj;) and updates using the
policy update rule:

1-p,if i =]

e-e
W =10 ——if g >¢

De -8
k=1

0, otherwise

- Q=p)mtp YW,
DExpert(i)

where Expert(i) = {j‘ej > q}.

for agenti and agenj with an expertness measiedor
each of them. An impressibility factpris used to further
control how much an expert agent’s policy influeneay
other agent.

Previous results using Q-learning agents [8] showed
that when learning from better performing agentse t
absolute, positive and negative measurements iredrov
the performance of the group for random and irgetit
moving prey. The goal is to apply the same
methodologies to PHC algorithms in a stochastic
environment and measure any performance changes.

3. Implementation

The combination of PHC algorithms and expertness
measuring WSS [8] has each cooperating agent ctenple
a trial by collecting its rewards and updating its
expertness measure. At certain iterations, thentage
collectively communicate their weights among theugr
and each selects the agent(s) from which theyusdl the
expected reward value from to improve their behavio
The combination of WSS with the WoLF versions of
PHC follows similarly with exception that agentspirave
behavior based on their policy tables and only ecaie
with agents who have a better performance.

Verification testing combines each version of PHC
with each expert measure for WSS by creating gradps
three or more agents which compete in the classiten-
prey grid world model [9, 10]. Although convergertoe
an optimum solution is not guaranteed, faster cayerece
is expected using multiagent cooperation rather tigng
a single agent solution. To increase the complexitthe
search space, a series of tests are separatefgaimst 1)

a randomly moving prey and 2) an intelligently nmayi
prey using potential fields with limited visibility The
agent will also have less visibility than the prey.

(0.9 @ 9.9)

©0 ©0)

Figure 2. Sample hunter-prey grid world.



Table 1.
Algorithm for PHC Gradient Descent WSS-Cooper atively L earning Agents.

Select expertness measurententnitialize Q, = and letgy = 0.1.

For each agent A, repeat {
maxsr(s),q < d,

Chooseactionafromstateshya = .
random(s),q > q,

Observe distancd, to prey.

To
d>v | 1<d<v |0<d<l1|d=0
Observe rewarg = £ d>v -1 1k 1k K
£ |1<dsv | -1k -1 1k 1k
0<d<1]| -1k -1k -1 1k
d=0 -1k -1k -1k -1
Update  Q(s3) — (1-a)Q(s.a) +al; +ymaxQ(s,a))
-0, if a# m&xQ(s‘,a’) 5
A = Z%- otherwise ,wWhere d, = mln(n(s, a),AHJ
Update a'zalA

7(s,a) — 7n(s,a)+Ag
Update expertness — e +€°,E ={Nrm, Abs,P,N,G} .
If (i =0 mod R) then cooperate by

1-p,if i =
e —e

i n
Zek -€
k=1

0, otherwise

W, =<p0 ,ifej>ei.

- @-p)T +p YW, where Expert() ={ile; >}
DExpert(i)

}until d=0.

The hunter-prey model used for testing is a 10 x 10
discrete grid with three cooperating agents, one-no
cooperating agent (for control), and one prey asvshin
fig 2. The three cooperative agents use the same
expertness metric, and all four agents use the i@
algorithm to select actions leading to a capturthefprey
according to its policy table. For each trial,fallr agents
start at the same randomly chosen location. The pre
starts in a different randomly chosen location. The
starting location of each trial changes after gérats have
captured the prey. Once an agent captures the pney,
longer continues to take action that can influetheeprey
nor does it cooperate with any other agents. Oaé it
complete when all agents have captured the prey.

The state representation is a Cartesian coordarate
tiled location of the prey. The location was decosgd
to a direction, one of nine values (eight 45 degregles

and collocated), coupled with one of four distamakies
(on, one away, visible, not visible). Only 18 ratd
pairings of direction and distance are considered part
of the state. Logically, the agent can choose dneire
actions, directly related to the directions of &yprOnly
legal actions can be chosen, e.g., an agent ideutaigo
left if it is on the left side of the area. Henca,
completely filled policy consists of 16,200 statian
values. For this specific implementation, a spansgrix
is used to store only visited states to reduce mgmo
overhead and involve more agents simultaneously.

An agent’s actions are chosen based upon its policy
table ), however, if the agent is unable to “see” theypre
it uses a default state, denoting non-visibility,nhake a
selection. The intelligent prey makes use of a ke
field to steer it away from the hunters. For thegds, the
hunter agents have visibility of 2 units and theypias 3.
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Figure 3c. Average PDWoL F-PHC results.

Reinforcement reward values are based on how an
action moves an agent to the prey. If the actioneddhe
agent from not visible to visible or visible to oaway, a
small, positive value based on the width of the gvorld
was given. In particular, such a move was rewandita
1/k for ak x k grid. Moving to a more distant level was
rewarded with-1/k. Moves that did not change the
distance level were awardetfk’. Capturing the prey has
a larger reward df®.

During the simulation, only the weighting of the
policy tables £) will be subject to WSS. The expected
rewards Q) and other support tables will remain
unaltered during trial runs. Likewise, only the ipglwill
be normalized to a standard distribution.

A complete experiment consisted of averaging 10
runs ofn trials on each of the five expertness measures for
each of the PHC algorithms. The results are fatstmfn
= 2,000. For each PHC algorithma,= 0.3,6 = 0.5,4,, =
0.25, 4, = 0.75, andy = 0.8. p; was set to 0.75.
Cooperation occurred every 15 steps. An algoritiom f
the experiment is listed in table 1.

4. Results

The test results show that under most measurenibats,
is a speedup in learning. As shown in fig. 3, eatthe
three PHC algorithms retained its convergence ptgpe
for each expertness measurement. The data repsahent
average number of steps for an individual learmet @n
average of three cooperative learners averaged tWer
runs of 2,000 trials typical for any of the experetrics.
Each tick on the vertical axis measures 10 stepgdch
figure.

As shown in fig. 4 and fig. 5, the percentage of
improvement in the number of steps required to wapt
the prey as an average of the three cooperativatage
over the individual learner. These experiments vedse
averaged over 10 runs of 2,000 iterations. Select
experiments with up to 5,000 iterations produceilaim
results.

These results indicate some level of improvement
over the results of the Q-learning experiment &t thone
of the five chosen expertness measurements coryplete
fails to provide an improvement in group learnifigne
data suggests that in either case of an intelligent
randomly moving prey, some amount of improvement is
achieved.

However, as expected, no single expertness metric
proved best in all situations. Clearly, the datggests
that using a positive metric, the only functiompteduce a
negative value, generally fares the worst for group
improvement. The negative result of using positive
measuremente{) with PHC is fairly insignificant being
less than 1%. In the case of the randomly moviry,p
the difference in performance of the measuremerds a
less distinct and statistically similar for abselupositive
and negative measures across each of the PHC
algorithms.
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Figure 4. Improvement of cooperative group learning
matched against an intelligent prey.
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Figure5. Improvement of cooperative group learning
matched against a random moving prey.

5. Conclusions

Clearly, using weighted strategy sharing in a ragkint
setting accelerates the learning of fast PHC algms,
such as WoLF and PDWoLF. These experimental results
suggest as much as a 36% increase in performanee wh
using cooperative expertness to affect policy learn
This is largely due to allowing multiple agents doare
their experiences at intervals while retaining thaivn
identity. This allows the cooperative group to @ler
outperform a collection of independent agents.

However, multi-objective or competitive agents have
not been addressed using this technique. Further
examination should reveal more of whether applying
these expertness metrics provide improved learning.
Likewise, this test was simple, using some readily
identifiable expertness metrics. Could there bewptless
identifiable, metrics that radically improve the
performance of this model? A slight change in afiy o
these parameters can easily reorder the convergence
ranking of the PHC algorithms. Expertness measuring
adds a second dimension to optimizing performaAce.
expertness measuring and PHC tuning related? By
studying these questions within a stronger mathiealat
framework, promising new techniques could be reackal
in multiagent cooperation.
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