
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Giulia Denevi 1 2 Carlo Ciliberto 3 4 Riccardo Grazzi 1 4 Massimiliano Pontil 1 4

Abstract
We study the problem of learning-to-learn: infer-
ring a learning algorithm that works well on a fam-
ily of tasks sampled from an unknown distribution.
As class of algorithms we consider Stochastic Gra-
dient Descent (SGD) on the true risk regularized
by the square euclidean distance from a bias vec-
tor. We present an average excess risk bound for
such a learning algorithm that quantifies the po-
tential benefit of using a bias vector with respect
to the unbiased case. We then propose a novel
meta-algorithm to estimate the bias term online
from a sequence of observed tasks. The small
memory footprint and low time complexity of our
approach makes it appealing in practice while our
theoretical analysis provides guarantees on the
generalization properties of the meta-algorithm
on new tasks. A key feature of our results is that,
when the number of tasks grows and their vari-
ance is relatively small, our learning-to-learn ap-
proach has a significant advantage over learning
each task in isolation by standard SGD without
a bias term. Numerical experiments demonstrate
the effectiveness of our approach in practice.

1. Introduction
The problem of learning-to-learn (LTL) (Baxter, 2000;
Thrun & Pratt, 1998) is receiving increasing attention in
recent years, due to its practical importance (Finn et al.,
2017; Franceschi et al., 2018; Ravi & Larochelle, 2017)
and the theoretical challenge of statistically principled and
efficient solutions (Alquier et al., 2017; Balcan et al., 2015;
Maurer et al., 2016; Pentina & Lampert, 2014; Denevi et al.,
2018a;b; Gupta & Roughgarden, 2017). The principal aim
of LTL is to design a meta-learning algorithm to select a
supervised learning algorithm that is well suited to learn

1Istituto Italiano di Tecnologia, Genoa, Italy 2University of
Genoa, Genoa, Italy 3Imperial College of London, London, United
Kingdom 4University College London, London, United Kingdom.
Correspondence to: Giulia Denevi <giulia.denevi@iit.it>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

tasks from a prescribed family. To highlight the difference
between the meta-learning algorithm and the learning algo-
rithm, throughout the paper we will refer to the latter as the
inner or within-task algorithm.

The meta-algorithm is trained from a sequence of datasets,
associated with different learning tasks sampled from a meta-
distribution (also called environment in the literature). The
performance of the selected inner algorithm is measured by
the transfer risk (Baxter, 2000; Maurer, 2005), that is, the
average risk of the algorithm, trained on a random dataset
from the same environment. A key insight is that, when the
learning tasks share specific similarities, the LTL framework
provides a means to leverage such similarities and select an
inner algorithm of low transfer risk.

In this work, we consider environments of linear regres-
sion or binary classification tasks and we assume that the
associated weight vectors are all close to a common vec-
tor. Because of the increasing interest in low computational
complexity procedures, we focus on the family of within-
task algorithms given by Stochastic Gradient Descent (SGD)
working on the regularized true risk. Specifically, motivated
by the above assumption on the environment, we consider
as regularizer the square distance of the weight vector to a
bias vector, playing the role of a common mean among the
tasks. Knowledge of this common mean can substantially
facilitate the inner algorithm and the main goal of this paper
is to design a meta-algorithm to learn a good bias that is
supported by both computational and statistical guarantees.

Contributions. The first contribution of this work is to
show that, when the variance of the weight tasks’ vectors
sampled from the environment is small, SGD regularized
with the “right” bias yields a model with smaller error than
its unbiased counterpart. The latter approach does not ex-
ploit the relatedness among the tasks, and it corresponds to
learning the tasks in isolation – also known as independent
task learning (ITL). The second and principal contribution
of this work is to propose a meta-algorithm that estimates
the bias term, so that the transfer risk of the corresponding
SGD algorithm is as small as possible. We consider the
setting in which we receive in input a sequence of datasets
and we propose an online meta-algorithm which efficiently
updates the bias term used by the inner SGD algorithm. Our
meta-algorithm consists in applying a (meta) SGD algo-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/227336004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

rithm to a proxy of the transfer risk, given by the expected
minimum regularized empirical risk of a task. We provide
a bound on the statistical performance of the biased inner
SGD algorithm found by our procedure. It establishes that,
when the number of observed tasks grows and the variance
of the tasks’ weight vectors is significantly smaller than
their second moment, then, running the inner SGD algo-
rithm with the estimated bias brings an improvement in
comparison to learning the tasks in isolation with no bias.
The bound is coherent with the state-of-the-art LTL analysis
for other families of algorithms, but it applies for the first
time to a fully online meta-algorithm. Our results holds for
Lipschitz loss functions both in the regression and binary
classification setting.

Our proof techniques combines ideas from online learning,
stochastic and convex optimization, with tools from LTL.
A key insight in our approach is to exploit the inner SGD
algorithm to compute an approximate subgradient of the
surrogate objective, in a such way that the degree of approx-
imation can be controlled, without affecting the overall per-
formance or the computational cost of the meta-algorithm.

Paper Organization. We start by recalling in Sec. 2 the
basic concepts of LTL. In Sec. 3 we cast the problem of
choosing a right bias term in SGD on the regularized ob-
jective in the LTL framework. Thanks to this formulation,
in Sec. 4 we characterize the situations in which SGD with
the right bias term is beneficial in comparison to SGD with
no bias. In Sec. 5 we propose an online meta-algorithm to
estimate the bias vector from a sequence of datasets and we
analyze its statistical properties. In Sec. 6 we report on the
empirical performance of the proposed approach while in
Sec. 7 we discuss future research directions.

Previous Work. Online LTL (Alquier et al., 2017; Denevi
et al., 2018a;b; Pentina & Urner, 2016) has received lim-
ited attention and is less developed than standard LTL ap-
proaches, in which the data are processed in one batch as
opposed to incrementally, see for instance (Baxter, 2000;
Maurer, 2009; Maurer et al., 2013; 2016; Pentina & Lam-
pert, 2014). The idea of introducing a bias in the learn-
ing algorithm is not new, see e.g. (Denevi et al., 2018b;
Kuzborskij & Orabona, 2017; Pentina & Lampert, 2014)
and Sec. 3. In this work, we consider the family of inner
SGD algorithms with biased regularization and we develop
a theoretically grounded meta-learning algorithm to find the
bias. Differently from others online methods (Alquier et al.,
2017; Denevi et al., 2018a), our approach does not need to
keep previous training points in memory and it runs online
both across and within the tasks. As a result, both the low
space and time complexity are the strengths of our method.
We finally point out the recent related work by Khodak
et al. (2019) and Finn et al. (2019), that was brought to our
attention after completion of the present work.

2. Preliminaries
In this section, we recall the standard supervised (i.e. single-
task) learning setting and the learning-to-learn setting.

We first introduce some notation used throughout this work.
Let Z = X × Y be the data space, where X ⊂ Rd and
Y ⊆ R (regression) or Y = {−1,+1} (binary classifi-
cation). We consider linear supervised learning tasks µ,
namely distributions over Z , parametrized by a weight vec-
tor w ∈ Rd. We measure the performance by a loss function
` : Y × Y → R+ such that, for any y ∈ Y , `(·, y) is con-
vex and closed. Finally, for any positive k ∈ N, we let
[k] = {1, . . . , k} and, we denote by 〈·, ·〉 and ‖ · ‖ the stan-
dard inner product and euclidean norm. In the rest of this
work, when specified, we make the following assumptions.

Assumption 1 (Bounded Inputs). Let X ⊆ B(0, R), where
B(0, R) =

{
x ∈ Rd : ‖x‖ ≤ R

}
, for some radius R ≥ 0.

Assumption 2 (Lipschitz Loss). Let `(·, y) be L-Lipschitz
for any y ∈ Y .

For example, for any y, ŷ ∈ Y , the absolute loss `(ŷ, y) =∣∣ŷ − y∣∣ and the hinge loss `(ŷ, y) = max
{

0, 1 − yŷ
}

are
both 1-Lipschitz. We now briefly recall the main notion of
single-task learning.

2.1. Single-Task Learning

In standard linear supervised learning, the goal is to learn
a linear functional relation fw : X → Y , fw(·) = 〈·, w〉
between the input space X and the output space Y . This
target can be reformulated as that of finding a weight vector
wµ minimizing the expected risk (or true risk)

Rµ(w) = E(x,y)∼µ `
(
〈x,w〉, y

)
(1)

over the entire space Rd. The expected risk measures the pre-
diction error that the weight vector w incurs on average with
respect to points sampled from the distribution µ. In prac-
tice, the task µ is unknown and only partially observed by a
corresponding dataset of n i.i.d. points Zn = (zi)

n
i=1 ∼ µn,

where, for every i ∈ [n], zi = (xi, yi) ∈ Z . In the sequel,
we often use the more compact notation Zn = (Xn, yn),
where Xn ∈ Rn×d is the matrix containing the input vec-
tors xi as rows and yn ∈ Rn is the vector with entries
given by the labels yi. A learning algorithm is a function
A : ∪n∈NZn → Rd that, given such a training dataset
Zn ∈ Zn, returns a “good” estimator, that is, in our case, a
weight vector A(Zn) ∈ Rd, whose expected risk is small
and tends to the minimum of Eq. (1) as n increases.

2.2. Learning-to-Learn (LTL)

In the LTL framework, we assume that each learning task
µ we observe is sampled from an environment ρ, that is a
(meta-)distribution on the set of probability distributions on

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Z . The goal is to select a learning algorithm (hence the name
learning-to-learn) that is well suited to the environment.

Specifically, we consider the following setting. We receive
a stream of tasks µ1, . . . , µT , which are independently sam-
pled from the ρ and only partially observed by correspond-
ing i.i.d. datasets Z(1)

n , . . . , Z
(T)
n , . . . each formed by n

datapoints. Starting from these datasets, we wish to learn an
algorithm A, such that, when we apply it on a new dataset
(composed by n points) sampled from a new task µ ∼ ρ, the
corresponding true risk is low. We reformulate this target
into requiring that algorithm A trained with n points1 over
the environment ρ, has small transfer risk

En(A) = Eµ∼ρ EZn∼µn Rµ(A(Zn)). (2)

The transfer risk measures the expected true risk that the
inner algorithm A, trained on the dataset Zn, incurs on aver-
age with respect to the distribution of tasks µ sampled from
ρ. Therefore, the process of learning a learning algorithm
is a meta-learning one, in that the inner learning algorithm
is applied to tasks from the environment and then chosen
from a sequence of training tasks (datasets) in attempt to
minimize the transfer risk.

3. SGD on the Biased Regularized Risk
In this section, we introduce the LTL framework for the
family of within-task algorithms we analyze in this work.

We consider a family of learning algorithms Ah
parametrized by a bias vector h ∈ Rd. The idea of in-
troducing a bias in a specific family of learning algorithms
is not new in the LTL literature, see e.g. (Denevi et al.,
2018b; Kuzborskij & Orabona, 2017; Pentina & Lampert,
2014) and references therein. A natural choice is given by
regularized empirical risk minimization, in which we intro-
duce a bias vector in the square norm regularizer – which
we simply refer to as ERM throughout – namely

AERM
h (Zn) ≡ wh(Zn) = argmin

w∈Rd
RZn,h(w), (3)

where, for any w, h ∈ Rd, λ > 0, we have defined the
empirical error and its biased regularized version as

RZn(w) =
1

n

n∑
k=1

`k
(
〈xk, w〉

)
RZn,h(w) = RZn(w) +

λ

2
‖w − h‖2.

(4)

Intuitively, if the weight vectors wµ of the tasks sampled
from ρ are close to each other, then running ERM with

1In order to simplify the presentation, we assume that all
datasets are composed by the same number of points n. The gen-
eral setting can be addressed by introducing the slightly different
notion of transfer risk E(A) = E(n,µ)∼ρ EZn∼µn Rµ(A(Zn)).

Algorithm 1 Within-Task Algorithm: SGD on the Biased
Regularized True Risk

Input λ > 0 regularization parameter, h bias, µ task

Initialization wh
(1) = h

For k = 1 to n
Receive (xk, yk) ∼ µ

Build `k,h(·) = `k(〈xk, ·〉) +
λ

2
‖ · −h‖2

Define γk = 1/(kλ)

Compute u′k ∈ ∂`k(〈xk, wh(k)〉)

Define sk = xku
′
k+λ(wh

(k)−h) ∈ ∂`k,h(wh
(k))

Update wh
(k+1) = wh

(k) − γksk

Return (wh
(k))n+1

k=1 , w̄h =
1

n

n∑
i=1

wh
(i)

h = m ≡ Eµ∼ρwµ should have a smaller transfer risk
than running ERM with, for instance, h = 0. We make
this statement precise in Sec. 4. Recently, a number of
papers have considered how to learn a good bias h in a
LTL setting, see e.g. (Pentina & Lampert, 2014; Denevi
et al., 2018b). However, one drawback of these works is
that they assume the ERM solution to be known exactly,
without leveraging the interplay between the optimization
and the generalization error. Furthermore, in LTL settings,
data naturally arise in an online manner, both between and
within tasks. Hence, an ideal LTL approach should focus
on inner algorithms processing one single data point at the
time.

Motivated by the above reasoning, in this work, we propose
to analyze an online learning algorithm that is computation-
ally and memory efficient while retaining (on average with
respect to the sampling of the data) the same statistical guar-
antees of the more expensive ERM estimator. Specifically,
for a training dataset Zn ∼ µn, a regularization parameter
λ > 0 and a bias vector h ∈ Rd, we consider the learning
algorithm defined as

ASGD
h (Zn) ≡ w̄h(Zn), (5)

where, w̄h(Zn) is the average of the first n iterations of
Alg. 1, in which, for any k ∈ [n], we have introduced the
notation `k(·) = `(·, yk).

Alg. 1 coincides with online subgradient algorithm applied
to the strongly convex functionRZn,h. Moreover, thanks to
the assumption that Zn ∼ µn, Alg. 1 is equivalent to SGD
applied to the regularized true risk

Rµ,h(w) = Rµ(w) +
λ

2
‖w − h‖2. (6)

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Relying on a standard online-to-batch analysis, see e.g.
(Cesa-Bianchi et al., 2004; Hazan, 2016) and references
therein, it is easy to link the true error of such an algorithm
with the minimum of the regularized empirical risk, that is,
RZn,h(wh(Zn)). This fact is reported in the proposition
below and it will be often used in our subsequent statistical
analysis. We give a proof in App. F for completeness.

Proposition 1. Let Asm. 1 and Asm. 2 hold and let w̄h be
the output of Alg. 1. Then, we have that

EZn∼µn
[
Rµ
(
w̄h(Zn)

)
−RZn,h(wh(Zn))

]
≤ cn,λ

cn,λ =
2R2L2

(
log(n) + 1

)
λn

.

(7)

We remark that at this level of the analysis, one may avoid
the logarithmic factor in the above bound, see e.g. (Shamir
& Zhang, 2013; Rakhlin et al., 2012; Lacoste-Julien et al.,
2012). However, in order to not complicate our presentation
and proofs, we avoid this refinement of the analysis.

In the next section we study the impact on the bias vector
on the statistical performance of the inner algorithm. Specif-
ically, we investigate circumstances under which there is an
advantage in perturbing the regularization in the objective
used by the algorithm with an appropriate ideal bias term
h, as opposed to fix h = 0. Throughout the paper, we refer
to the choice h = 0 as independent task learning (ITL), al-
though strictly speaking, when h is fixed in advanced, then,
SGD is applied on each task independently regardless of
the value of h. Then, in Sec. 5 we address the question of
estimating this appropriate bias from the data.

4. The Advantage of the Right Bias Term
In this section, we study the statistical performance of the
model w̄h returned by Alg. 1, on average with respect to
the tasks sampled from the environment ρ, for different
choices of the bias vector h. To present our observations,
we require, for any µ ∼ ρ, that the corresponding true risk
admits minimizers and we denote by wµ the minimum norm
minimizer2. With these ingredients, we introduce the oracle

Eρ = Eµ∼ρ Rµ(wµ),

representing the averaged minimum error over the environ-
ment of tasks, and, for a candidate bias h, we give a bound
on the quantity E(w̄h) − Eρ. This gap coincides with the
averaged excess risk of algorithm Alg. 1 with bias h over
the environment of tasks, that is

En(w̄h)−Eρ = Eµ∼ρ EZn∼µn
[
Rµ
(
w̄h(Zn)

)
−Rµ(wµ)

]
.

2This choice is made in order to simplify our presentation.
However, our analysis holds for different choices of a minimizer
wµ, which may potentially improve our bounds.

Hence, this quantity is an indicator of the performance of
the bias h with respect to our environment. In the rest of
this section, we study the above gap for a bias h which is
fixed and does not depend on the data. For this purpose, we
introduce the notation

Var2
h =

1

2
Eµ∼ρ ‖wµ − h

∥∥2
(8)

and we observe that

m ≡ Eµ∼ρwµ = argmin
h∈Rd

Var2
h. (9)

Theorem 2 (Excess Transfer Risk Bound for a Fixed Bias
h). Let Asm. 1 and Asm. 2 hold and let w̄h be the output of
Alg. 1 with regularization parameter

λ =
RL

Varh

√
2
(
log(n) + 1

)
n

. (10)

Then, the following bound holds

En(w̄h)− Eρ ≤ Varh 2RL

√
2
(
log(n) + 1

)
n

. (11)

Proof. For µ ∼ ρ, consider the following decomposition

EZn∼µn
[
Rµ(w̄h(Zn))−Rµ(wµ)

]
≤ A + B, (12)

where A and B are respectively defined by

A = EZn∼µn
[
Rµ(w̄h(Zn))−RZn,h(wh(Zn))

]
B = EZn∼µn

[
RZn,h(wh(Zn))−Rµ(wµ)

]
.

(13)

In order to bound the term A, we use Prop. 1. Regarding
the term B, we exploit the definition of the ERM algorithm
and the fact that, since wµ does not depend on Zn, then
Rµ,h(wµ) = EZn∼µn RZn,h(wµ). Consequently, we can
upper bound the term B as

EZn∼µn
[
RZn,h(wh(Zn))−Rµ,h(wµ)

]
+
λ

2

∥∥wµ−h∥∥2

= EZn∼µn
[
RZn,h(wh(Zn))−RZn,h(wµ)

]
+
λ

2

∥∥wµ−h∥∥2

≤ λ

2

∥∥wµ−h∥∥2
.

(14)

The desired statement follows by combining the above
bounds on the two terms, taking the average with respect to
µ ∼ ρ and optimizing over λ.

Thm. 2 shows that the strength of the regularization that one
should use in the within-task algorithm Alg. 1 is inversely

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

proportional to both the variance of the bias h and the num-
ber of points in the datasets. This is exactly in line with the
LTL aim: when solving each task is difficult, knowing a
priori a good bias can bring a substantial benefit over learn-
ing with no bias. To further investigate this point, in the
following corollary, we specialize Thm. 2 to two particular
choices of the bias h. The first choice we make is h = 0,
which coincides, as remarked earlier, with learning each
task independently, while the second choice considers an
ideal bias, namely, assuming that the transfer risk admits
minimizer, we set h = hn ∈ argminh∈Rd En(w̄h).

Corollary 3 (Excess Transfer Risk Bound for ITL and the
Oracle). Let Asm. 1 and Asm. 2 hold.

1. Independent Task Learning. Let w̄0 be the output of
Alg. 1 with bias h = 0 and regularization parameter
as in Eq. (10) with h = 0. Then,

En(w̄0)− Eρ ≤ Var0 2RL

√
2
(
log(n) + 1

)
n

.

2. The Oracle. Let w̄hn be the output of Alg. 1 with bias
h = hn and regularization parameter as in Eq. (10)
with h = m. Then,

En(w̄hn)− Eρ ≤ Varm 2RL

√
2
(
log(n) + 1

)
n

.

Proof. The proof of the first statement follows directly from
the application of Thm. 2 with h = 0. The second statement
is a direct consequence of the definition of hn implying
En(w̄hn)−Eρ ≤ En(w̄m)−Eρ and the application of Thm. 2
with h = m on the second term.

From the previous bounds we can observe that, using the
bias h = hn in the regularizer brings a substantial benefit
with respect to the unbiased case when the number of points
n in each dataset in not very large (hence learning each
task is quite difficult) and the variance of the weight tasks’
vectors sampled from the environment is much smaller than
their second moment, i.e. when

Var2
m =

1

2
Eµ∼ρ ‖wµ −m‖2 � 1

2
Eµ∼ρ ‖wµ‖2 = Var2

0.

Driven by this observation, when the environment of tasks
satisfies the above characteristics, we would like to take
advantage of this tasks’ similarity. But, since in practice we
are not able to explicitly compute hn, in the following we
propose an efficient online LTL approach to estimate the
bias directly from the observed sequence of datasets.

5. Estimating the Bias
In this section, we study the problem of designing an es-
timator for the bias vector that is computed incrementally
from a set of observed T tasks.

5.1. The Meta-Objective

Since direct optimization of the transfer risk is not feasible, a
standard strategy used in LTL consists in introducing a proxy
objective that is easier to handle, see e.g. (Maurer, 2005;
2009; Maurer et al., 2013; 2016; Denevi et al., 2018a;b). In
this paper, motivated by Prop. 1, according to which

EZn∼µn
[
Rµ
(
w̄h(Zn)

)]
≤

EZn∼µn
[
RZn,h(wh(Zn))

]
+

2R2L2
(
log(n) + 1

)
λn

,

we substitute in the definition of the transfer risk the true
risk of the algorithm Rµ

(
w̄h(Zn)

)
with the minimum of

the regularized empirical risk

LZn(h) = min
w∈Rd

RZn,h(w) = RZn,h(wh(Zn)). (15)

This leads us to the following proxy for the transfer risk

Ên(h) = Eµ∼ρ EZn∼µn LZn(h). (16)

Some remarks about this choice are in order. First, convexity
is usually a rare property in LTL. In our case, as described in
the following proposition, the definition of the function LZn
as the partial minimum of a jointly convex function, ensures
convexity and other nice properties, such as differentiability
and a closed expression of its gradient.

Proposition 4 (Properties of LZn). The function LZn in Eq.
(15) is convex and λ-smooth over Rd. Moreover, for any
h ∈ Rd, its gradient is given by the formula

∇LZn(h) = −λ
(
wh(Zn)− h

)
, (17)

where wh(Zn) is the ERM algorithm in Eq. (3). Finally,
when Asm. 1 and Asm. 2 hold, LZn is LR-Lipschitz.

The above statement is a known result in the optimization
community, see e.g. (Bauschke & Combettes, 2011, Prop.
12.29) and App. C for more details. In order to minimize
the proxy objective in Eq. (16), one standard choice done in
stochastic optimization, and also adopted in this work, is to
use first-order methods, requiring the computation of an
unbiased estimate of the gradient of the stochastic objective.
In our case, according to the above proposition, this step
would require computing the minimizer of the regularized
empirical problem in Eq. (15) exactly. A key observation
of our work is to show below that we can easily design
a “satisfactory” approximation (see the last paragraph

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

in Sec. 5) of its gradient, just substituting the minimizer
wh(Zn) in the expression of the gradient in Eq. (17) with
the last iterate wh

(n+1)(Zn) of Alg. 1. An important
aspect to stress here is the fact that this strategy does not
require any additional computational effort. Formally, this
reasoning is linked to the concept of ε-subgradient of a
function. We recall that, for a given convex, proper and
closed function f and for a given point ĥ ∈ Dom(f) in
its domain, u is an ε-subgradient of f at ĥ, if, for any h,
f(h) ≥ f(ĥ) + 〈u, h− ĥ〉 − ε.

Proposition 5 (An ε-Subgradient for LZn). Let
wh

(n+1)(Zn) be the last iterate of Alg. 1. Then, un-
der Asm. 1 and Asm. 2, the vector

∇̂LZn(h) = −λ
(
wh

(n+1)(Zn)− h
)

(18)

is an ε-subgradient of LZn at point h, where ε is such that

EZn∼µn
[
ε
]
≤

2R2L2
(
log(n) + 1

)
λn

. (19)

Moreover, introducing ∆Zn(h) = ∇LZn(h)− ∇̂LZn(h),

EZn∼µn
∥∥∆Zn(h)

∥∥2 ≤
4R2L2

(
log(n) + 1

)
n

. (20)

The above result is a key tool in our analysis. The proof
requires some preliminaries on the ε-subdifferential of a
function (see App. A) and introducing the dual formulation
of both the within-task learning problem and Alg. 1 (see
App. B and App. E, respectively). With these two ingredi-
ents, the proof of the statement is deduced in App. E.3 by
the application of a more general result reported in App. D,
describing how an ε-minimizer of the dual of the within-
task learning problem can be exploited in order to build an
ε-subgradient of the meta-objective function LZn . We stress
that this result could be applied to more general class of
algorithms, going beyond Alg. 1 considered here.

5.2. The Meta-Algorithm to Estimate the Bias h

In order to estimate the bias h from the data, we apply SGD
to the stochastic function Ên introduced in Eq. (16). More
precisely, in our setting, the sampling of a “meta-point”
corresponds to the incremental sampling of a dataset from
the environment3. We refer to Alg. 2 for more details. In
particular, we propose to take the estimator h̄T obtained by
averaging the iterations returned by Alg. 2. An important
feature to stress here is the fact that the meta-algorithm uses
ε-subgradients of the function LZn which are computed as
described above. Specifically, for any t ∈ [T], we define

∇̂L
Z

(t)
n

(h(t)) = −λ
(
w

(n+1)

h(t) (Z(t)
n)− h(t)

)
, (21)

3More precisely we first sample a distribution µ from ρ and
then a dataset Zn ∼ µn.

Algorithm 2 Meta-Algorithm, SGD on Ê with ε-
Subgradients

Input γ > 0 step size, λ > 0 inner regularization param-
eter, ρ meta-distribution

Initialization h(1) = 0 ∈ Rd

For t = 1 to T
Receive µt ∼ ρ, Z(t)

n ∼ µnt
Run the inner algorithm Alg. 1 and approximate
the gradient ∇̂(t) ≈ ∇(t) by Eq. (21)

Update h(t+1) = h(t) − γ∇̂(t)

Return (h(t))T+1
t=1 and h̄T =

1

T

T∑
t=1

h(t)

where w(n+1)

h(t) is the last iterate of Alg. 1 applied with the

current bias h(t) and the datasetZ(t)
n . To simplify the presen-

tation, throughout this work, we use the short-hand notation

Lt(·) = L
Z

(t)
n

(·), ∇(t) = ∇Lt(h(t)), ∇̂(t) = ∇̂Lt(h(t)).

Some technical observations follows. First, we stress that
Alg. 2 processes one single instance at the time, without the
need to store previously encountered data points, neither
across the tasks nor within them. Second, the implementa-
tion of Alg. 2 does not require computing the meta-objective
LZn , which would increase the computational effort of the
entire scheme. The rest of this section is devoted to the
statistical analysis of Alg. 2.

5.3. Statistical Analysis of the Meta-Algorithm

In the following theorem we study the statistical perfor-
mance of the bias h̄T returned by Alg. 2. More precisely we
bound the excess transfer risk of the inner SGD algorithm
run with this biased term learned by the meta-algorithm.

Theorem 6 (Excess Transfer Risk Bound for the Bias h̄T
Estimated by Alg. 2). Let Asm. 1 and Asm. 2 hold and let
h̄T be the output of Alg. 2 with step size

γ =

√
2‖m‖
LR

√(
T
(

1 +
4
(
log(n) + 1

)
n

))−1

. (22)

Let w̄h̄T be the output of Alg. 1 with bias h = h̄T and
regularization parameter

λ =
2RL

Varm

√
log(n) + 1

n
. (23)

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Then, the following bound holds

E
[
En(w̄h̄T)

]
− Eρ ≤ Varm 4RL

√
log(n) + 1

n

+ ‖m‖RL

√
2
(

1 +
4
(
log(n) + 1

)
n

) 1

T

where the expectation above is with respect to the sampling
of the datasets Z(1)

n , . . . , Z
(T)
n from the environment ρ.

Proof. We consider the following decomposition

E
[
En(w̄h̄T)

]
− Eρ ≤ A + B + C, (24)

where

A = En(w̄h̄T)− Ên(h̄T)

B = E Ên(h̄T)− Ên(m)

C = Ên(m)− Eρ.

(25)

Now, in order to bound the term A, noting that

A = Eµ∼ρ EZn∼µn
[
Rµ
(
w̄h̄T (Zn)

)
−RZn,h̄T (wh̄T (Zn))

]
,

we use Prop. 1 with h = h̄T and, then, we take the average
on µ ∼ ρ. As regards the term C, we apply the inequality
given in Eq. (14) with h = m and we again average with
respect to µ ∼ ρ. Finally, the term B is the convergence rate
of Alg. 2 and its study requires analyzing the error that we
introduce in the meta-gradients by Prop. 5. The bound we
use for this term described in Prop. 22 (see App. G) with
ĥ = m. The result now follows by combining the bounds
on the three terms and optimizing over λ.

The bound stated in Thm. 6 with respect to the mean m
holds also for a generic bias vector h ∈ Rd. In particular,
the choice of h = 0 and the corresponding step-size γ
describe the setting in which the meta-algorithm returns the
ITL estimator h = 0. In such a case, we recover the rate in
Cor. 3 for ITL (up to a contant 2).

In addition, the above bound is coherent with the state-of-
the-art LTL bounds given in other papers studying other
variants of Ivanov or Tikhonov regularized empirical risk
minimization algorithms, see e.g. (Maurer, 2005; 2009;
Maurer et al., 2013; 2016). Specifically, in our case, the
bound has the form

O
(Varm√

n

)
+O

(1√
T

)
, (26)

where Varm reflects the advantage in exploiting the relat-
edness among the tasks sampled from the environment ρ.
More precisely, in Sec. 4 we noticed that, if the variance

of the weight vectors of the tasks sampled from our envi-
ronment is significantly smaller than their second moment,
running Alg. 1 with the ideal bias h = hn on a future task
brings a significant improvement in comparison to the unbi-
ased case. One natural question arising at this point of the
presentation is whether, under the same conditions on the
environment, the same improvement is obtained by running
Alg. 1 with the bias vector h = h̄T returned by our online
meta-algorithm in Alg. 2. Looking at the bound in Thm. 6,
we can say that, when the number of training tasks T used to
estimate the bias h̄T is sufficiently large, the above question
has a positive answer and our LTL approach is effective.

In order to have also a more precise benchmark for the
biased setting considered in this work, in App. H we have
repeated the statistical study described in the paper also for
the more expensive ERM algorithm described in Eq. (3). In
this case, we assume to have an oracle providing us with
this exact estimator, ignoring any computational costs. As
before, we have performed the analysis both for a fixed
bias and the one estimated from the data via Alg. 2 (in this
case, Alg. 2 is assumed to run with exact meta-gradients).
Looking at the results reported in App. H, we immediately
see that, up to constants and logarithmic factors, the LTL
bounds we have stated in the paper for the low-complexity
SGD family are equivalent to those in App. H for the more
expensive ERM family.

All the above facts justify the informal statement given
before Prop. 5 according to which the trick used to compute
the approximation of the meta-gradient by using the last
iterate of the inner algorithm, not only, does not require
additional effort, but it is also accurate enough from the
statistical view point, matching a state-of-the-art bound for
more expensive within-task algorithms based on ERM.

6. Experiments
In this section, we test the effectiveness of the LTL approach
proposed in this paper on synthetic and real data4. In all
experiments, the regularization parameter λ and the step-
size γ were tuned by validation, see App. I for more details.

Synthetic Data. We considered two different settings, re-
gression with the absolute loss and binary classification with
the hinge loss. In both cases, we generated an environment
of tasks in which SGD with the right bias is expected to
bring a substantial benefit in comparison to the unbiased
case. Motivated by our observations in Sec. 4, we generated
linear tasks with weight vectors characterized by a variance
which is significantly smaller than their second moment.
Specifically, for each task µ, we created a weight vector
wµ from a Gaussian distribution with mean m given by the

4Code available at
https://github.com/prolearner/onlineLTL

https://github.com/prolearner/onlineLTL

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Figure 1. Synthetic Data. Test performance of different bias with
respect to an increasing number of tasks. (Top) Regression with
absolute loss. (Bottom) Classification with hinge loss. The results
are averaged over 10 independent runs (datasets generations).

vector in Rd with all components equal to 4 and standard
deviation Varm = 1. Each task corresponds to a dataset
(xi, yi)

n
i=1, xi ∈ Rd with n = 10 and d = 30. In the regres-

sion case, the inputs were uniformly sampled on the unit
sphere and the labels were generated as y = 〈x,wµ〉 + ε,
with ε sampled from a zero-mean Gaussian distribution,
with standard deviation chosen to have signal-to-noise ra-
tio equal to 10 for each task. In the classification case,
the inputs were uniformly sampled on the unit sphere, ex-
cluding those points with margin |〈x,wµ〉| smaller than 0.5
and the binary labels were generated as a logistic model,
P(y = 1) =

(
1 + 10 exp(−〈x,wµ〉)

)−1
. In Fig. 1 we re-

port the performance of Alg. 1 with different choices of the
bias: h = h̄T (our LTL estimator resulting from Alg. 2),
h = 0 (ITL) and h = m, a reasonable approximation of
the oracle minimizing the transfer risk. The plots confirm
our theoretical findings: estimating the bias with our LTL
approach leads to a substantial benefits with respect to the
unbiased case, as the number of the observed training tasks
increases.

Real Data. We run experiments on the computer survey
data from (Lenk et al., 1996), in which 180 people (tasks)
rated the likelihood of purchasing one of 20 different per-
sonal computers (n = 8). The input represents 13 different
computer characteristics (price, CPU, RAM, etc.) while the
output is an integer rating from 0 to 10. Similarly to the
synthetic data experiments, we consider a regression setting
with the absolute loss and a classification setting. In the lat-
ter case each task is to predict whether the rating is above 5.
We compare the LTL bias with ITL. The results are reported
in Fig. 2. The figures above are in line with the results
obtained on synthetic experiments, indicating that the bias

Figure 2. Real Data. Test performance of different bias with re-
spect to an increasing number of tasks. (Top) Lenk Dataset Re-
gression. (Bottom) Lenk Dataset Classification. The results are
averaged over 30 independent runs (datasets generations).

LTL framework proposed in this work is effective for this
dataset. Moreover, the results for regression are also in line
with what observed in the multitask setting with variance
regularization (McDonald et al., 2016). The classification
setting has not been used before and has been created ad-hoc
for our purpose. In this case we have an increased variance
probably due to the datasets being highly unbalanced. In
order to investigate the impact of passing through the data
only once in the different steps in our method, we conducted
additional experiments. The results, presented in App. J,
indicate that the single pass strategy is competitive with
respect to the more expensive ERM.

7. Conclusion and Future Work
We have studied the performance of Stochastic Gradient
Descent on the true risk regularized by the square euclidean
distance to a bias vector, over a class of tasks. Drawing
upon a learning-to-learn framework, we have shown that,
when the variance of the tasks is relatively small, the intro-
duction of an appropriate bias vector may bring a substantial
benefit in comparison to the standard unbiased version, cor-
responding to learning the tasks independently. Then, we
have proposed an efficient online meta-learning algorithm
to estimate this bias and we have theoretically shown that
the bias returned by our method can bring a comparable
benefit. In the future, it would be interesting to investigate
other kinds of relatedness among the tasks and to extend
our analysis to other classes of loss functions, as well as to
a Hilbert space setting. Finally, another valuable research
direction is to derive fully dependent bounds, in which the
hyperparameters are self-tuned during the learning process,
see e.g. (Zhuang et al., 2019).

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

References
Alquier, P., Mai, T. T., and Pontil, M. Regret bounds for life-

long learning. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, vol-
ume 54 of Proceedings of Machine Learning Research,
pp. 261–269, 2017.

Balcan, M.-F., Blum, A., and Vempala, S. Efficient rep-
resentations for lifelong learning and autoencoding. In
Conference on Learning Theory, pp. 191–210, 2015.

Bauschke, H. H. and Combettes, P. L. Convex Analysis and
Monotone Operator theory in Hilbert Spaces, volume
408. Springer, 2011.

Baxter, J. A model of inductive bias learning. J. Artif. Intell.
Res., 12(149–198):3, 2000.

Beck, A. and Teboulle, M. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
journal on imaging sciences, 2(1):183–202, 2009.

Borwein, J. and Zhu, Q. Techniques of variational analysis,
ser, 2005.

Bousquet, O. and Elisseeff, A. Stability and generalization.
Journal of machine learning research, 2(Mar):499–526,
2002.

Cesa-Bianchi, N., Conconi, A., and Gentile, C. On the gen-
eralization ability of on-line learning algorithms. IEEE
Transactions on Information Theory, 50(9):2050–2057,
2004.

Denevi, G., Ciliberto, C., Stamos, D., and Pontil, M. Incre-
mental learning-to-learn with statistical guarantees. In
Proc. 34th Conference on Uncertainty in Artificial Intelli-
gence (UAI), 2018a.

Denevi, G., Ciliberto, C., Stamos, D., and Pontil, M. Learn-
ing to learn around a common mean. In Advances in Neu-
ral Information Processing Systems, pp. 10190–10200,
2018b.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 1126–1135. PMLR, 2017.

Finn, C., Rajeswaran, A., Kakade, S., and Levine, S. Online
meta-learning. arXiv preprint arXiv:1902.08438, 2019.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil,
M. Bilevel programming for hyperparameter optimiza-
tion and meta-learning. In International Conference on
Machine Learning, PMLR 80, pp. 568–1577, 2018.

Gupta, R. and Roughgarden, T. A pac approach to
application-specific algorithm selection. SIAM Journal
on Computing, 46(3):992–1017, 2017.

Hazan, E. Introduction to online convex optimization. Foun-
dations and Trends in Optimization, 2016.

Jean-Baptiste, H.-U. Convex analysis and minimiza-
tion algorithms: advanced theory and bundle methods.
SPRINGER, 2010.

Khodak, M., Balcan, M.-F., and Talwalkar, A. Provable guar-
antees for gradient-based meta-learning. arXiv preprint
arXiv:1902.10644, 2019.

Kuzborskij, I. and Orabona, F. Fast rates by transferring
from auxiliary hypotheses. Machine Learning, 106(2):
171–195, 2017.

Lacoste-Julien, S., Schmidt, M., and Bach, F. A simpler
approach to obtaining an o (1/t) convergence rate for the
projected stochastic subgradient method. arXiv preprint
arXiv:1212.2002, 2012.

Lenk, P. J., DeSarbo, W. S., Green, P. E., and Young, M. R.
Hierarchical bayes conjoint analysis: Recovery of part-
worth heterogeneity from reduced experimental designs.
Marketing Science, 15(2):173–191, 1996.

Maurer, A. Algorithmic stability and meta-learning. Journal
of Machine Learning Research, 6:967–994, 2005.

Maurer, A. Transfer bounds for linear feature learning.
Machine Learning, 75(3):327–350, 2009.

Maurer, A., Pontil, M., and Romera-Paredes, B. Sparse cod-
ing for multitask and transfer learning. In International
Conference on Machine Learning, 2013.

Maurer, A., Pontil, M., and Romera-Paredes, B. The ben-
efit of multitask representation learning. The Journal of
Machine Learning Research, 17(1):2853–2884, 2016.

McDonald, A. M., Pontil, M., and Stamos, D. New perspec-
tives on k-support and cluster norms. Journal of Machine
Learning Research, 17(155):1–38, 2016.

Pentina, A. and Lampert, C. A PAC-Bayesian bound for life-
long learning. In International Conference on Machine
Learning, pp. 991–999, 2014.

Pentina, A. and Urner, R. Lifelong learning with weighted
majority votes. In Advances in Neural Information Pro-
cessing Systems, pp. 3612–3620, 2016.

Rakhlin, A., Shamir, O., Sridharan, K., et al. Making gradi-
ent descent optimal for strongly convex stochastic opti-
mization. In ICML, volume 12, pp. 1571–1578. Citeseer,
2012.

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Ravi, S. and Larochelle, H. Optimization as a model for
few-shot learning. In I5th International Conference on
Learning Representations, 2017.

Shalev-Shwartz, S. and Ben-David, S. Understanding Ma-
chine Learning: From Theory to Algorithms. Cambridge
University Press, 2014.

Shalev-Shwartz, S. and Kakade, S. M. Mind the duality gap:
Logarithmic regret algorithms for online optimization. In
Advances in Neural Information Processing Systems, pp.
1457–1464, 2009.

Shamir, O. and Zhang, T. Stochastic gradient descent for
non-smooth optimization: Convergence results and opti-
mal averaging schemes. In International Conference on
Machine Learning, pp. 71–79, 2013.

Thrun, S. and Pratt, L. Learning to Learn. Springer, 1998.

Zhuang, Z., Cutkosky, A., and Orabona, F. Surrogate losses
for online learning of stepsizes in stochastic non-convex
optimization. arXiv preprint arXiv:1901.09068, 2019.

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Appendix
The appendix is organized as follows. In App. A we report some basic facts regarding the ε-subdifferential of a function
which are used in the subsequent analysis. In App. B we give the primal-dual formulation of the biased regularized empirical
risk minimization problem for each single task and, in App. C, we recall some well-known properties of our meta-objective
function. In App. D, we show how an ε-minimizer of the dual problem can be exploited in order to build an ε-subgradient
of our meta-objective function. As described in App. E, interpreting our within-task algorithm as a coordinate descent
algorithm on the dual problem, we can adapt this result to our setting and prove, in this way, Prop. 5. In App. F, we report
the proof of Prop. 1 and, in App. G, we give the convergence rate of Alg. 2 which is used in the paper, during the proof of
Thm. 6. In App. H, we repeat the statistical study described in the paper also for the family of ERM algorithms introduced
in Eq. (3) and, in App. I, we describe how to perform the validation procedure in our LTL setting. Finally, in App. J we
report additional experiments comparing our method to ERM variants.

A. Basic Facts on ε-Subgradients
In this section, we report some basic concepts about the ε-subdifferential which are then used in the subsequent analysis.
This material is based on (Jean-Baptiste, 2010, Chap. XI). Throughout this section we consider a convex closed and proper
function f : Rd → R ∪ {+∞} with domain Dom(f) and we always let ε ≥ 0.

Definition 7 (ε-Subgradient, (Jean-Baptiste, 2010, Chap. XI, Def. 1.1.1)). Given ĥ ∈ Dom(f), the vector u ∈ Rd is called
ε-subgradient of f at ĥ when the following property holds for any h ∈ Rd

f(h) ≥ f(ĥ) + 〈u, h− ĥ〉 − ε. (27)

The set of all ε-subgradients of f at ĥ is the ε-subdifferential of f at ĥ, denoted by ∂εf(ĥ).

The standard subifferential ∂f(ĥ) is retrieved with ε = 0. The following lemma, which is a direct consequence of Def. 7,
points out the link between ∂εf and an ε-minimizer of f .

Lemma 8 (Jean-Baptiste (2010, Chap. XI, Thm. 1.1.5)). The following two properties are equivalent.

0 ∈ ∂εf(ĥ) ⇐⇒ f(ĥ) ≤ f(h) + ε for any h ∈ Rd. (28)

The subsequent lemma describes the behavior of the ε-subdifferential with respect to the duality.

Lemma 9 (Jean-Baptiste (2010, Chap. XI, Prop. 1.2.1)). Let f∗ : Rd → R∪ {+∞} be the Fenchel conjugate of f , namely,
f∗(·) = suph∈Rd〈·, h〉 − f(h). Then, given ĥ ∈ Dom(f), the vector u ∈ Rd is an ε-subgradient of f at ĥ iff

f∗(u) + f(ĥ)− 〈u, ĥ〉 ≤ ε. (29)

As a result,
u ∈ ∂εf(ĥ) ⇐⇒ ĥ ∈ ∂εf∗(u). (30)

We now describe some properties of the ε-subdifferential which are used in the following analysis.

Lemma 10 (Jean-Baptiste (2010, Chap. XI, Thm. 3.1.1)). Let f1 and f2 be two convex closed and proper functions. Then,
given ĥ ∈ Dom(f1 + f2) = Dom(f1) ∩ Dom(f2), we have that⋃

0≤ε1+ε2≤ε

∂ε1f1(ĥ) + ∂ε2f2(ĥ) ⊂ ∂ε
(
f1 + f2

)
(ĥ). (31)

Moreover, denoting by ri(A) the relative interior of a set A, when ri
(
Dom(f1)

)
∩ ri
(
Dom(f2)

)
6= ∅, equality holds.

Lemma 11 (Jean-Baptiste (2010, Chap. XI, Prop. 1.3.1)). Let a 6= 0 be a scalar. Then, for a given ĥ ∈ Dom(f ◦ a), we
have that

∂ε
(
f ◦ a

)(
ĥ
)

= a ∂εf
(
aĥ
)
. (32)

Lemma 12. Let X ∈ Rn×d be a matrix. Then, for a given ĥ ∈ Rd such that Xĥ ∈ Dom(f), we have that

X>∂εf
(
Xĥ
)
⊂ ∂ε

(
f ◦X

)
(ĥ). (33)

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Proof. Let be u ∈ X>∂εf
(
Xĥ
)
. Then, by definition, there exist v ∈ ∂εf

(
Xĥ
)

such that u = X>v. Consequenlty, for any
h ∈ Rd, we can write〈

u, h− ĥ
〉

=
〈
X>v, h− ĥ

〉
=
〈
v,Xh−Xĥ

〉
≤ f

(
Xh
)
− f

(
Xĥ
)

+ ε =
(
f ◦X

)
(h)−

(
f ◦X

)
(ĥ) + ε, (34)

where, in the inequality we have used the fact that v ∈ ∂εf
(
Xĥ
)
. This gives the desired statement.

The next two results characterize the ε-subdifferential of two functions, which are useful in our subsequent analysis. In the
following we denote by Sd+ the set of the d× d symmetric positive semi-definite matrices.

Example 1 (Quadratic Functions, (Jean-Baptiste, 2010, Chap. XI, Ex. 1.2.2)). For a given matrix Q ∈ Sd+ and a given
vector b ∈ Rd, consider the function

f : h ∈ Rd 7→ 1

2

〈
Qh, h

〉
+ 〈b, h〉. (35)

Then, given ĥ ∈ Dom(f) = Rd, we can express the ε-subdifferential of f at ĥ with respect to the gradient∇f(ĥ) = Qĥ+ b
as follows

∂εf(ĥ) =
{
∇f(ĥ) +Qs :

1

2

〈
Qs, s

〉
≤ ε
}
. (36)

Example 2 (Moreau Envelope (Jean-Baptiste, 2010, Chap. XI, Ex. 3.4.4)). For λ > 0 and a fixed vector h ∈ Rd, consider
the Moreau envelope of f at the point h with parameter λ, given by

L(h) = min
w∈Rd

f(w) +
λ

2

∥∥w − h∥∥2
. (37)

Denote by wh the unique minimizer of the above function, namely, the vector characterized by the optimality conditions

0 ∈ ∂f(wh) + λ
(
wh − h

)
. (38)

Then, for any λ > 0 and h ∈ Rd, we have that

∂εL(h) =
⋃

0≤α≤ε

∂ε−αf(wh) ∩ B
(
−λ
(
wh − h

)
,
√

2λα
)
, (39)

where, for any center c ∈ Rd and any radius r ≥ 0, we recall the notation

B(c, r) =
{
u ∈ Rd : ‖u− c‖ ≤ r

}
. (40)

For ε = 0 we retrieve the well-known result according to which L is differentiable, with λ-Lipschitz gradient given by

∇L(h) = −λ
(
wh − h

)
. (41)

Finally, from Eq. (39), we can deduce that, if u ∈ ∂εL(h), then∥∥∇L(h)− u
∥∥ ≤ √2λε. (42)

B. Primal-Dual Formulation of the Within-Task Problem
In this section, we give the primal-dual formulation of the biased regularized empirical risk minimization problem outlined
in Eq, (3) for each single task. Specifically, rewriting for any w ∈ Rd and u ∈ Rn, the empirical risk

RZn(w) =
(
g ◦Xn

)
(w) g(u) =

1

n

n∑
k=1

`k(uk), (43)

for any h ∈ Rd, we can express our meta-objective function in Eq. (15) as

LZn(h) = min
w∈Rd

(
g ◦Xn

)
(w) +

λ

2
‖w − h‖2. (44)

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

We remark that, in the optimization community, this function coincides with the Moreau envelope of the empirical error at
the point h, see also Ex. 2. In this section, in order to simplify the presentation, we omit the dependence on the dataset Zn in
the notation. The unique minimizer of the above function

wh = argmin
w∈Rd

(
g ◦Xn

)
(w) +

λ

2
‖w − h‖2 (45)

is known as the proximity operator of the empirical error at the point h and it coincides with the ERM algorithm introduced
in Eq. (3) in the paper. We interpret the vector wh in Eq. (3)–(45) as the solution of the primal problem

wh = argmin
w∈Rd

Φh(w) Φh(w) =
(
g ◦Xn

)
(w) +

λ

2
‖w − h‖2. (46)

The next proposition is a standard result stating that, in this setting, strong duality holds and the optimality conditions, also
known as Karush–Kuhn–Tucker (KKT) conditions provide a unique way to determine the primal variables from the dual
ones.

Proposition 13 (Strong Duality, (Borwein & Zhu, 2005, Thm. 4.4.2), (Bauschke & Combettes, 2011, Prop. 15.18)).
Consider the primal problem in Eq. (131). Then, its dual problem admits a solution

uh ∈ argmin
u∈Rn

Ψh(u) Ψh(u) = g∗(u) +
1

2λ

∥∥X>n u∥∥2 −
〈
Xnh, u

〉
, (47)

where, thanks to the separability of g, for any u ∈ Rn, we have that

g∗(u) =
1

n

n∑
k=1

`∗k(nuk). (48)

Moreover, strong duality holds, namely,

L(h) = Φh(wh) = min
w∈Rd

Φh(w) = − min
u∈Rn

Ψh(u) = −Ψh(uh) (49)

and the optimality (KKT) conditions read as follows

wh = − 1

λ
X>n uh + h ⇐⇒ λ(wh − h) = −X>n uh

uh ∈ ∂g(Xnwh) ⇐⇒ Xnwh ∈ ∂g∗(uh).
(50)

C. Properties of the Meta-Objective
In this section we recall some properties of the meta-objective function LZn already outlined in the text in Prop. 4.

Proposition 4 (Properties of LZn). The function LZn in Eq. (15) is convex and λ-smooth over Rd. Moreover, for any
h ∈ Rd, its gradient is given by the formula

∇LZn(h) = −λ
(
wh(Zn)− h

)
, (17)

where wh(Zn) is the ERM algorithm in Eq. (3). Finally, when Asm. 1 and Asm. 2 hold, LZn is LR-Lipschitz.

Proof. The first part of the statement is a well-known fact, see (Bauschke & Combettes, 2011, Prop. 12.29) and also Ex. 2.
In order to prove the second part of the statement, we exploit Asm. 1 and Asm. 2 and we proceed as follows. According to
the change of variables v = w − h, exploiting the fact that, for any two convex functions f1 and f2, we have∣∣∣ min

v∈Rd
f1(v)− min

v∈Rd
f2(v)

∣∣∣ ≤ sup
v∈Rd

∣∣f1(v)− f2(v)
∣∣, (51)

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

for any h1, h2 ∈ Rd, we can write the following∣∣∣LZn(h1)− LZn(h2)
∣∣∣

=
∣∣∣ min
w∈Rd

(1

n

n∑
k=1

`k
(
〈xk, w〉

)
+

λ

2
‖w − h1‖2

)
− min
w∈Rd

(1

n

n∑
k=1

`k
(
〈xk, w〉

)
+

λ

2
‖w − h2‖2

)∣∣∣
=
∣∣∣ min
v∈Rd

(1

n

n∑
k=1

`k
(
〈xk, v + h1〉

)
+

λ

2
‖v‖2

)
− min
v∈Rd

(1

n

n∑
k=1

`k
(
〈xk, v + h2〉

)
+

λ

2
‖v‖2

)∣∣∣
≤ sup
v∈Rd

∣∣∣ 1
n

n∑
k=1

`k
(
〈xk, v + h1〉

)
+

λ

2
‖v‖2 − 1

n

n∑
k=1

`k
(
〈xk, v + h2〉

)
− λ

2
‖v‖2

∣∣∣
= sup
v∈Rd

∣∣∣ 1
n

n∑
k=1

(
`k
(
〈xk, v + h1〉

)
− `k

(
〈xk, v + h2〉

))∣∣∣
≤ sup
v∈Rd

1

n

n∑
k=1

∣∣∣`k(〈xk, v + h1〉
)
− `k

(
〈xk, v + h2〉

)∣∣∣
≤ L

n
sup
v∈Rd

n∑
k=1

∣∣∣〈xk, v + h1〉 − 〈xk, v + h2〉
∣∣∣

=
L

n

n∑
k=1

∣∣∣〈xk, h1 − h2〉
∣∣∣

≤ L

n

n∑
k=1

‖xk‖‖h1 − h2‖

≤ LR‖h1 − h2‖,

(52)

where, in the third inequality we have used Asm. 2, in the fourth inequality we have applied Cauchy-Schwartz inequality
and in the last step we have used Asm. 1. Consequently, we can state that LZn is LR-Lipschitz.

To conclude this section, in the next proposition, we recall the closed form of the conjugate of the function LZn .

Lemma 14 (Fenchel Conjugate of LZn). For any α ∈ Rd, the Fenchel conjugate function of LZn is

L∗Zn(α) =
(
g ◦Xn

)∗
(α) +

1

2λ

∥∥α∥∥2
. (53)

Proof. We recall that the infimal convolution of two proper closed convex functions f1 and f2 is defined as
(
f1 � f2

)
(·) =

infw f1(w)+f2(·−w) and its Fenchel conjugate is give by
(
f1 � f2

)∗
= f∗1 +f∗2 , see (Bauschke & Combettes, 2011, Chap.

XII). Hence, the statement follows from observing that, for any h ∈ Rd and any α ∈ Rd, LZn(h) =
(
g ◦Xn

)
�
λ

2
‖ · ‖2(h)

and
(λ

2
‖ · ‖2

)∗
(α) =

1

2λ
‖α‖2.

D. From the Dual an ε-Subgradient for the Meta-Objective
In this section, we show how to exploit an ε-minimizer ûh of the dual problem in Eq. (47) in order to get an ε-subgradient
of the function LZn in Eq. (15)–(44) at the point h. This is described in the following proposition, which will play a
fundamental role in our analysis.

Proposition 15 (ε-Subgradient for the Meta-Objective LZn). In the setting described above, for a fixed value h ∈ Rd and a
fixed parameter λ > 0, consider an ε-minimizer ûh ∈ Rn of the dual objective Ψh in Eq. (47), for some value ε ≥ 0. Then,
the vector X>n ûh ∈ Rd is an ε-subgradient of LZn at the point h.

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Proof. By Lemma 8, the assumption that ûh is an ε-minimizer of Ψh is equivalent to the condition 0 ∈ ∂εΨh(ûh). Now
recall that, for any u ∈ Rn, the expression of the dual objective is given by

Ψh(u) = g∗(u) +
1

2λ

∥∥X>n u∥∥2 −
〈
Xnh, u

〉
. (54)

Consequently, thanks to Lemma 10, for any u ∈ Dom(Ψh) = Dom(g∗), we have that

∂εΨh(u) =
⋃

0≤ε1+ε2≤ε

∂ε1g
∗(u) + ∂ε2

{ 1

2λ

∥∥X>n · ∥∥2 −
〈
Xnh, ·

〉}
(u). (55)

Thanks to Ex. 1, for any u ∈ Rn, we can write

∂ε2

{ 1

2λ

∥∥X>n · ∥∥2 −
〈
Xnh, ·

〉}
(u) =

{
Xn

(X>n u
λ
− h+

X>n s

λ

)
:

1

2

〈XnX
>
n s

λ
, s
〉
≤ ε2

}
. (56)

Hence, we know that 0 ∈ ∂εΨh(ûh) iff

∃ ε1, ε2, s ∈ Rn : 0 ≤ ε1 + ε2 ≤ ε,
1

2

〈XnX
>
n s

λ
, s
〉
≤ ε2 (57)

such that the following relations hold true

0 ∈ ∂ε1g∗(ûh) +Xn

(X>n ûh
λ
− h+

X>n s

λ

)
⇐⇒ Xn

(
h− X>n (ûh + s)

λ

)
∈ ∂ε1g∗(ûh)

Lemma 9 ⇐⇒ ûh ∈ ∂ε1g
(
Xn

(
h− X>n (ûh + s)

λ

))
=⇒ X>n ûh ∈ X>n ∂ε1g

(
Xn

(
h− X>n (ûh + s)

λ

))
Lemma 12 =⇒ X>n ûh ∈ ∂ε1

(
g ◦Xn

)(
h− X>n (ûh + s)

λ

)
Lemma 9 ⇐⇒ h− X>n (ûh + s)

λ
∈ ∂ε1

(
g ◦Xn

)∗(
X>n ûh

)
⇐⇒ h ∈ ∂ε1

(
g ◦Xn

)∗(
X>n ûh

)
+
X>n (ûh + s)

λ
.

(58)

Now, thanks to Lemma 14, we have that, for any α ∈ Rd, the Fenchel conjugate function of LZn is

L∗Zn(α) =
(
g ◦Xn

)∗
(α) +

1

2λ

∥∥α∥∥2
. (59)

Hence, thanks to Lemma 10, for any α ∈ Dom(L∗Zn) = Dom
((
g ◦Xn

)∗) ⊃ X>nDom(g∗), we have that

∂εL∗Zn(α) =
⋃

0≤ε1+ε2≤ε

∂ε1
(
g ◦Xn

)∗
(α) + ∂ε2

{ 1

2λ

∥∥ · ∥∥2
}

(α). (60)

Moreover, thanks to Ex. 1, we observe that

∂ε2

{ 1

2λ

∥∥ · ∥∥2
}

(α) =
{α+ s̃

λ
:

1

2λ

∥∥s̃∥∥2 ≤ ε2
}
. (61)

Therefore, making the identification s̃ = X>n s, the last relation in Eq. (58) tells us

0 ∈ ∂εΨh(ûh) =⇒ h ∈ ∂ε1
(
g ◦Xn

)∗(
X>n ûh

)
+
X>n (ûh + s)

λ
=⇒ h ∈ ∂εL∗Zn(X>n ûh)

⇐⇒ X>n ûh ∈ ∂εLZn(h),
(62)

where, in the last equivalence, we have used again Lemma 9. This proves the desired statement.

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

E. SGD on the Primal: Coordinate Descent on the Dual
In this section, we focus on the within-task algorithm we adopt in the paper, namely Alg. 1. More precisely, we start from
describing how the iterations generated by Alg. 1 can be considered as the primal iterations of a primal-dual algorithm in
which the dual scheme consists of a coordinate descent algorithm on the dual problem. After this, we report in App. E.1 a
key inequality for the dual decrease of this approach. From this result, a regret bound for Alg. 1 and the proof of Prop. 5, the
key result describing the ε-subgradients of our meta-algorithm, can be deduced as corollaries. This is done in App. E.2 and
App. E.3, respectively.

What follows is an adaptation of the theory developed in (Shalev-Shwartz & Kakade, 2009), where the authors do not
emphasize the presence of the linear operator Xn and consider a slightly different dual problem. Specifically, proceeding as
in (Shalev-Shwartz & Kakade, 2009), the primal-dual setting we need to consider is the following. At each iteration k ∈ [n],
we define the instantaneous primal problem

wh,k+1 = argmin
w∈Rd

Φh,k+1(w) Φh,k+1(w) =

k∑
i=1

`i
(
〈xi, w〉

)
+

kλ

2
‖w − h‖2, (63)

where, Xk ∈ Rk×d is the matrix with rows only the first k input vectors. The associated dual problem reads as follows

ũh,k+1 = argmin
ũ∈Rk

Ψh,k+1(ũ) Ψh,k+1(ũ) =

k∑
i=1

`∗i (ũi)−
〈
h,X>k ũ

〉
+

1

2kλ

∥∥X>k ũ∥∥2
. (64)

In the following we will adopt the convention Φh,1 ≡ Ψh,1 ≡ 0.
Remark 1 (Strong Duality). Similarly to what observed in Prop. 15, also in this case, strong duality holds for each
instantaneous couple of primal-dual problems above, namely, for any k ∈ [n]

Φh,k+1

(
wh,k+1

)
= min
w∈Rd

Φh,k+1(w) = − min
ũ∈Rk

Ψh,k+1(ũ) = −Ψh,k+1

(
ũh,k+1

)
. (65)

Moreover, by the KKT conditions, we can express the primal solution by the dual one as follows

wh,k+1 = − 1

kλ
X>k ũh,k+1 + h. (66)

Remark 2 (Link Between the Instantaneous Problems and the Original Ones). We observe that the original primal objective
Φh in Eq. (131) and the corresponding dual objective Ψh in Eq. (47) are respectively linked with the above instantaneous
primal and dual objective functions in the following way

1

n
Φh,n+1(w) = Φh(w),

1

n
Ψh,n+1(ũ) = Ψh

(ũ
n

)
, (67)

for any w ∈ Rd and any ũ ∈ Rn.

Algorithm 3 Within-Task Algorithm, Primal-Dual Version

Input λ > 0 regularization parameter, h ∈ Rd bias

Initialization ũ
(1)
h = 0 ∈ R, w(1)

h = h ∈ Rd

For k = 1 to n

Receive `k,h(·) = `k
(
〈xk, ·〉

)
+
λ

2
‖ · −h‖2

Pay `k,h
(
w

(k)
h

)
Update ũ

(k+1)
h according to Eq. (68)

Define w
(k+1)
h = − 1

kλ
X>k ũ

(k+1)
h + h

Return
(
ũ

(k)
h

)n+1

k=1
,
(
w

(k)
h

)n+1

k=1
, w̄h =

1

n

n∑
k=1

w
(k)
h

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

As described in (Shalev-Shwartz & Kakade, 2009), we apply the coordinate descent algorithm on the instantaneous dual
problem outlined in Alg. 3. More specifically, at the iteration k, the algorithm adds a coordinate at the last k-th position of
the dual variable ũ(k)

h in the following way

ũ
(k+1)
h,i =

{
u′k if i = k

ũ
(k)
h,i if i ∈ [k − 1],

(68)

where, u′k ∈ ∂`k
(
〈xk, w(k)

h 〉
)
. We stress again that ũ(k+1)

h ∈ Rk and ũ(k)
h ∈ Rk−1. The primal variable is then updated by

the KKT conditions outlined in Eq. (66) in Rem. 1. In the next lemma, we show that, in this way, we exactly retrieve the
iterations

(
w

(k)
h

)
k

generated by Alg. 1, and, consequently, the notation does not conflict with the one used in the main body.

Lemma 16. Let w(k+1)
h be the update of the primal variable in Alg. 3. Then, introducing the subgradient

sk = xku
′
k + λ

(
w

(k)
h − h

)
∈ ∂`k,h

(
w

(k)
h

)
, (69)

we can rewrite
w

(k+1)
h = w

(k)
h −

1

kλ
sk. (70)

Consequently, the primal iterations generated by Alg. 3 coincides with the iterations generated by Alg. 1 in the paper.

Proof. We start from observing that, for any k ∈ [n], by definition, we have

w
(k+1)
h = − 1

kλ
X>k ũ

(k+1)
h + h. (71)

For k = 1 the statement holds, as a matter of fact, introducing the subgradient s1 = x1ũ
′
1 + λ

(
w

(1)
h − h

)
∈ ∂`1,h

(
w

(1)
h

)
,

we can write
w

(2)
h = − 1

λ
x1ũ
′
1 + h = − 1

λ

(
s1 − λ

(
w

(1)
h − h

))
+ h = w

(1)
h −

1

λ
s1. (72)

Now, we show that the statement holds also for k = 2, . . . , n. Since X>k ũ
(k+1)
h = X>k−1ũ

(k)
h + xku

′
k, recalling again the

subgradient sk = xku
′
k + λ

(
w

(k)
h − h

)
∈ ∂`k,h

(
w

(k)
h

)
of the regularized loss, we can write the following

w
(k+1)
h = − 1

kλ
X>k ũ

(k+1)
h + h = − 1

kλ

(
X>k−1ũ

(k)
h + xku

′
k

)
+ h

=
(k − 1)λ

kλ

(
− 1

(k − 1)λ
X>k−1ũ

(k)
h

)
− xku

′
k

kλ
+ h

=
(k − 1)λ(w

(k)
h − h)− sk + λ(w

(k)
h − h)

kλ
+ h

=
kλw

(k)
h − sk
kλ

= w
(k)
h −

1

kλ
sk.

(73)

where, in the fourth equality, we have exploited the definition of the primal iterates in Alg. 3.

E.1. Main Inequality on the Dual Decrease

The next proposition is a key tool in our analysis. It coincides with a combination of slightly different versions of Lemma 2
and Thm. 1 in (Shalev-Shwartz & Kakade, 2009).

Proposition 17 (Dual Decrease of Alg. 3, (Shalev-Shwartz & Kakade, 2009, Lemma 2 and Thm. 1)). Let
(
ũ

(k)
h

)
k

,
(
w

(k)
h

)
k

be generated according to Alg. 3 for a fixed bias of h ∈ Rd and a regularization parameter λ > 0. Then, under Asm. 1 and
Asm. 2, we have that

Ψh,n+1

(
ũ

(n+1)
h

)
−Ψh,n+1

(
ũh,n+1

)
≤ −

(n∑
k=1

`k,h
(
w

(k)
h

)
− Φh,n+1

(
wh,n+1

))
+

2R2L2
(
log(n) + 1

)
λ

.

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Proof. For any k ∈ [n], using the convention Ψh,1 ≡ 0, define the dual decrease

∆k = Ψh,k+1

(
ũ

(k+1)
h

)
−Ψh,k

(
ũ

(k)
h

)
. (74)

Hence, thanks to the telescopic sum and again the assumption Ψh,1 ≡ 0, we can write

Ψh,n+1

(
ũ

(n+1)
h

)
=

n∑
k=1

∆k + Ψh,1

(
ũ

(1)
h

)
=

n∑
k=1

∆k. (75)

We now show that, for any k ∈ [n], the following relation holds

∆k = −`k,h
(
w

(k)
h

)
+

1

2kλ

∥∥xku′k + λ
(
w

(k)
h − h

)∥∥2
. (76)

We start from considering the case k = 2, . . . , n. In this case, thanks to the updating rule in Eq. (68), the fact X>k ũ
(k+1)
h =

X>k−1ũ
(k)
h + xku

′
k and the closed form of the dual objective, we have that

∆k = Ψh,k+1

(
ũ

(k+1)
h

)
−Ψh,k

(
ũ

(k)
h

)
=

k−1∑
i=1

`∗i
(
ũ

(k)
h,i

)
+ `∗k

(
u′k
)

+
1

2kλ

∥∥X>k−1ũ
(k)
h + xku

′
k

∥∥2 −
〈
h,X>k−1ũ

(k)
h + xku

′
k

〉
−
k−1∑
i=1

`∗i
(
ũ

(k)
h,i

)
− 1

2(k − 1)λ

∥∥X>k−1ũ
(k)
h

∥∥2
+
〈
h,X>k−1ũ

(k)
h

〉
= `∗k

(
u′k
)

+
1

2kλ

∥∥X>k−1ũ
(k)
h + xku

′
k

∥∥2 −
〈
h, xku

′
k

〉
− 1

2(k − 1)λ

∥∥X>k−1ũ
(k)
h

∥∥2

= `∗k
(
u′k
)

+
1

2λ

(1

k
− 1

k − 1

)∥∥X>k−1ũ
(k)
h

∥∥2
+

1

2kλ

∥∥xku′k∥∥2
+
〈X>k−1ũ

(k)
h

kλ
− h, xku′k

〉
= `∗k

(
u′k
)

+
1

2λ

(1

k
− 1

k − 1

)
λ2(k − 1)2

∥∥w(k)
h − h

∥∥2
+

1

2kλ

∥∥xku′k∥∥2 −
〈 (k − 1)λ

kλ

(
w

(k)
h − h

)
+ h, xku

′
k

〉
= `∗k

(
u′k
)

+
λ

2

(1

k
− 1
)∥∥w(k)

h − h
∥∥2

+
1

2kλ

∥∥xku′k∥∥2 −
〈(

1− 1

k

)(
w

(k)
h − h

)
+ h, xku

′
k

〉
=
(
`∗k
(
u′k
)
−
〈
w

(k)
h , xku

′
k

〉
− λ

2

∥∥w(k)
h − h

∥∥2
)

+
1

2kλ

(
λ2
∥∥w(k)

h − h
∥∥2

+
∥∥xku′k∥∥2

+ 2
〈
λ
(
w

(k)
h − h

)
, xku

′
k

〉)
= −

(
`k
(
〈xk, w(k)

h 〉
)

+
λ

2

∥∥w(k)
h − h

∥∥2
)

+
1

2kλ

∥∥xku′k + λ
(
w

(k)
h − h

)∥∥2

= −`k,h
(
w

(k)
h

)
+

1

2kλ

∥∥xku′k + λ
(
w

(k)
h − h

)∥∥2
,

where, in the fifth equality we have used the definition of the primal variable w(k)
h = − 1

(k − 1)λ
X>k−1ũ

(k)
h + h, in the sixth

equality we have used the relation

1

λ

(1

k
− 1

k − 1

)
λ2(k − 1)2 = λ

(1

k
− 1
)
, (77)

and, finally, in the eighth equality we have exploited the assumption u′k ∈ ∂`k
(
〈xk, w(k)

h 〉
)
, implying by Fenchel–Young

equality

`∗k
(
u′k
)
−
〈
w

(k)
h , xku

′
k

〉
= −`k

(
〈xk, w(k)

h 〉
)
. (78)

We now observe that the above relation in Eq. (76) holds also in the case k = 1, as a matter of fact, by definition, since

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Ψh,1 ≡ 0, we have

∆1 = Ψh,2

(
ũ

(2)
h

)
−Ψh,1

(
ũ

(1)
h

)
= Ψh,2

(
ũ

(2)
h

)
= `∗1(u′1)−

〈
h, x1u

′
1

〉
+

1

2λ

∥∥x1u
′
1

∥∥2

=
(
`∗1(u′1)−

〈
w

(1)
h , x1u

′
1

〉
−
λ
∥∥w(1)

h − h
∥∥2

2

)
+

1

2λ

∥∥x1u
′
1 + λ

(
w

(1)
h − h

)∥∥2

= −
(
`1
(
〈x1, w

(1)
h 〉
)

+
λ

2

∥∥w(1)
h − h

∥∥2
)

+
1

2λ

∥∥x1u
′
1 + λ

(
w

(1)
h − h

)∥∥2

= −`1,h
(
w

(1)
h

)
+

1

2λ

∥∥x1u
′
1 + λ

(
w

(1)
h − h

)∥∥2
,

(79)

where, in the fourth equality we have rewritten

1

2λ

∥∥x1u
′
1

∥∥2
=

1

2λ

∥∥x1u
′
1 + λ

(
w

(1)
h − h

)∥∥2 −
〈
w

(1)
h − h, x1u

′
1

〉
−
λ
∥∥w(1)

h − h
∥∥2

2
, (80)

and, in the fifth equality, we have used again the assumption u′1 ∈ ∂`1
(
〈x1, w

(1)
h 〉
)
, implying by Fenchel–Young equality

`∗1
(
u′1
)
−
〈
w

(1)
h , x1u

′
1

〉
= −`1

(
〈x1, w

(1)
h 〉
)
. (81)

Therefore, using Eq. (75) and summing over k ∈ [n], we get the following

Ψh,n+1

(
ũ

(n+1)
h

)
=

n∑
k=1

∆k = −
n∑
k=1

`k,h
(
w

(k)
h

)
+

n∑
k=1

1

2kλ

∥∥xku′k + λ
(
w

(k)
h − h

)∥∥2

= −
n∑
k=1

`k,h
(
w

(k)
h

)
+

1

2λ

n∑
k=1

1

k

∥∥xku′k + λ
(
w

(k)
h − h

)∥∥2
.

(82)

Now, for k = 2, . . . , n, thanks to the definition of w(k)
h , we can write

λ
(
w

(k)
h − h

)
= − 1

k − 1
X>k−1ũ

(k)
h = − 1

k − 1

k−1∑
i=1

xiu
′
i. (83)

Hence, under Asm. 1 and Asm. 2, since |u′i| ≤ L, for any i, for k = 2, . . . , n, we get∥∥λ(w(k)
h − h

)∥∥ ≤ LR. (84)

Moreover, we observe that the above majorization holds also for the case k = 1, as a matter of fact, thanks to the definition
w

(1)
h = h, we have that ∥∥λ(w(1)

h − h
)∥∥ = 0. (85)

Hence, using the inequality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 for any a, b ∈ Rd, for k = 1, . . . , n, we get∥∥xku′k + λ
(
w

(k)
h − h

)
‖2 ≤ 2

∥∥xku′k∥∥2
+ 2
∥∥λ(w(k)

h − h
)∥∥2 ≤ 4R2L2. (86)

Finally, coming back to Eq. (82), using the inequality
∑n
k=1 1/k ≤ log(n) + 1, we get

Ψh,n+1

(
ũ

(n+1)
h

)
≤ −

n∑
k=1

`k,h
(
w

(k)
h

)
+

1

2λ

n∑
k=1

1

k

∥∥xku′k + λ
(
w

(k)
h − h

)∥∥2

≤ −
n∑
k=1

`k,h
(
w

(k)
h

)
+

2R2L2

λ

n∑
k=1

1

k

≤ −
n∑
k=1

`k,h
(
w

(k)
h

)
+

2R2L2
(
log(n) + 1

)
λ

.

(87)

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

The desired statement follows by adding to both sides −Ψh,n+1

(
ũh,n+1

)
and observing that, by strong duality, as already

observed in Eq. (65) in Rem. 1, we have that

Φh,k+1

(
wh,k+1

)
= min
w∈Rd

Φh,k+1(w) = − min
ũ∈Rk

Ψh,k+1(ũ) = −Ψh,k+1

(
ũh,k+1

)
. (88)

E.2. Regret Bound for Alg. 3

The following result is a direct corollary of Prop. 17. It is a well-known fact and it coincides with a regret bound for the
iterations in Alg. 1. This result will be then used in the following App. F in order to prove Prop. 1.

Corollary 18. Let
(
w

(k)
h

)
k

be the iterations generated by Alg. 1. Then, under the same assumptions of Prop. 17, for any
w ∈ Rd, the following regret bound holds

1

n

n∑
k=1

`k,h
(
w

(k)
h

)
− Φh(w) ≤ 1

n

n∑
k=1

`k,h
(
w

(k)
h

)
− Φh(wh) ≤

2R2L2
(
log(n) + 1

)
λn

. (89)

Proof. We start from observing that, as already pointed out in Rem. 2, for any w ∈ Rd, we have Φh,n+1(w)/n = Φh(w).
Consequently, wh = argminw∈Rd Φ(w) = argminw∈Rd Φh,n+1(w) = wh,n+1. This implies Φh,n+1

(
wh,n+1

)
/n =

Φh(wh). Hence, thanks to this last observation, the definition of ũh,n+1 and Prop. 17, we can write

0 ≤ Ψh,n+1

(
ũ

(n+1)
h

)
−Ψh,n+1

(
ũh,n+1

)
≤ −

(n∑
k=1

`k,h
(
w

(k)
h

)
− Φh,n+1

(
wh,n+1

))
+

2R2L2
(
log(n) + 1

)
λ

.

The statement derives from dividing by n. The first inequality simply derives from the definition of wh.

E.3. Proof of Prop. 5

The second corollary deriving from Prop. 17 is the main tool used to prove Prop. 5. It essentially states that the last dual
iteration of Alg. 3 is an ε-minimizer of our original dual objective Ψh in Eq. (47), for an appropriate value of ε. This
observation, combined with an expectation argument and Prop. 15, allows us to build an ε-subgradient for the meta-objective
function, as described in Prop. 5.

Corollary 19. Let ũ(n+1)
h be the last dual iteration of Alg. 3. Then, under the same assumptions of Prop. 17, for any

w ∈ Rd, the vector ûh = ũ
(n+1)
h /n is an ε-minimizer of the dual objective Ψh in Eq. (47), with

ε = −
(1

n

n∑
k=1

`k,h
(
w

(k)
h

)
− Φh

(
w
))

+
2R2L2

(
log(n) + 1

)
λn

, (90)

where
(
w

(k)
h

)
k

is the iteration generated by Alg. 1.

Proof. We start from recalling that, as already observed in Prop. 17, the primal iterations generated by Alg. 3 coincide with
the iterations generated by Alg. 1. Now, thanks to Prop. 17, dividing by n, we have that

1

n
Ψh,n+1

(
ũ

(n+1)
h

)
− 1

n
Ψh,n+1

(
ũh,n+1

)
≤ ε̃,

with

ε̃ = −
(1

n

n∑
k=1

`k,h
(
w

(k)
h

)
− 1

n
Φh,n+1

(
wh,n+1

))
+

2R2L2
(
log(n) + 1

)
λn

. (91)

As already pointed out, we now observe that, Φh,n+1

(
wh,n+1

)
/n = Φh(wh), hence, for any w ∈ Rd, we can rewrite

ε̃ = −
(1

n

n∑
k=1

`k,h
(
w

(k)
h

)
− Φh(wh)

)
+

2R2L2
(
log(n) + 1

)
λn

≤ −
(1

n

n∑
k=1

`k,h
(
w

(k)
h

)
− Φh(w)

)
+

2R2L2
(
log(n) + 1

)
λn

= ε.

(92)

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Summarizing, we have obtained that

0 ∈ ∂ε
(1

n
Ψh,n+1

)
(ũ

(n+1)
h), (93)

where the value of ε is the one in Eq. (92). Now, we observe that, thanks to the relation
1

n
Ψh,n+1(ũ) = Ψh

(ũ
n

)
=(

Ψh ◦
1

n

)
(ũ) (see Rem. 2), exploiting Lemma 11, for any ũ ∈ Rn, we have that,

∂ε

(1

n
Ψh,n+1

)
(ũ) = ∂ε

(
Ψh ◦

1

n

)
(ũ) =

1

n
∂εΨh

(ũ
n

)
. (94)

Consequently, Eq. (93), implies 0 ∈ ∂εΨh

(ũ(n+1)
h

n

)
, which is equivalent, as already observed in Lemma 8, to the desired

statement.

The last ingredient we need to prove Prop. 5 is the following expectation argument.

Corollary 20. Let
(
w

(k)
h

)
k

be the iterations generated by Alg. 1, Let ε be the value in Cor. 19 with w = wµ,h, where

wµ,h = argmin
w∈Rd

Rµ
(
w
)

+
λ

2

∥∥w − h∥∥2
. Then, under the same assumptions of Prop. 17, we have that

EZn∼µn
[
ε
]
≤

2R2L2
(
log(n) + 1

)
λn

. (95)

Proof. We recall that the value of ε in Cor. 19 with w = wµ,h is explicitly given by

ε = −
(1

n

n∑
k=1

`k
(
〈xk, w(k)

h 〉
)

+
λ

2

∥∥w(k)
h − h

∥∥2 − Φh(wµ,h)
)

+
2R2L2

(
log(n) + 1

)
λn

. (96)

Hence, to prove the statement we just need to show that

0 ≤ EZn∼µn
[1

n

n∑
k=1

`k
(
〈xk, w(k)

h 〉
)

+
λ

2

∥∥w(k)
h − h

∥∥2 − Φh(wµ,h)
]
. (97)

In order to do this, we recall that w̄h denotes the average of the first n iterations
(
w

(k)
h

)
k

and we observe the following

0 ≤ EZn∼µn
[
Rµ
(
w̄h(Zn)

)
+
λ

2

∥∥w̄h(Zn)− h
∥∥2
]
− EZn∼µn

[
Rµ
(
wµ,h

)
+
λ

2

∥∥wµ,h − h∥∥2
]

≤ EZn∼µn
[1

n

n∑
i=1

Rµ
(
wh

(i)
)

+
λ

2

∥∥wh(i) − h
∥∥2
]
− EZn∼µn

[
Rµ
(
wµ,h

)
+
λ

2

∥∥wµ,h − h∥∥2
]

= EZn∼µn
[1

n

n∑
i=1

Rµ
(
wh

(i)
)

+
λ

2

∥∥wh(i) − h
∥∥2
]
− EZn∼µn

[1

n

n∑
i=1

`i
(
〈xi, wµ,h〉

)
+
λ

2

∥∥wµ,h − h∥∥2
]

= EZn∼µn
[1

n

n∑
i=1

`i
(
〈xi, wh(i)〉

)
+
λ

2

∥∥wh(i) − h
∥∥2
]
− EZn∼µn

[1

n

n∑
i=1

`i
(
〈xi, wµ,h〉

)
+
λ

2

∥∥wµ,h − h∥∥2
]

= EZn∼µn
[1

n

n∑
k=1

`k
(
〈xk, w(k)

h 〉
)

+
λ

2

∥∥w(k)
h − h

∥∥2 − Φh(wµ,h)
]
,

(98)

where, the first inequality is a consequence of the definition of wµ,h, the second inequality derives from Jensen’s inequality,
the first equality holds since wµ,h does not depend on the data and, finally, the second equality holds by standard online-
to-batch arguments, more precisely, since wh(i) does not depend on the point zi, we have that, EZn∼µn`i

(
〈xi, wh(i)〉

)
=

EZn∼µnRµ
(
wh

(i)
)
.

We now are ready to prove Prop. 5.

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Proposition 5 (An ε-Subgradient for LZn). Let wh(n+1)(Zn) be the last iterate of Alg. 1. Then, under Asm. 1 and Asm. 2,
the vector

∇̂LZn(h) = −λ
(
wh

(n+1)(Zn)− h
)

(18)

is an ε-subgradient of LZn at point h, where ε is such that

EZn∼µn
[
ε
]
≤

2R2L2
(
log(n) + 1

)
λn

. (19)

Moreover, introducing ∆Zn(h) = ∇LZn(h)− ∇̂LZn(h),

EZn∼µn
∥∥∆Zn(h)

∥∥2 ≤
4R2L2

(
log(n) + 1

)
n

. (20)

Proof. We start from observing that, thanks to Lemma 16, we have that

−λ
(
wh

(n+1) − h
)

= X>n
ũ

(n+1)
h

n
. (99)

Hence, thanks to Prop. 15 and Cor. 19 applied to the vector ûh = ũ
(n+1)
h /n, we can state that−λ

(
wh

(n+1)−h
)
∈ ∂εLZn(h),

with ε given as in Eq. (90), choosing w = wµ,h. Hence, the statement in Eq. (19) is a consequence of these observations and
Cor. 20. Finally, we observe that, thanks to the fact −λ

(
wh

(n+1) − h
)
∈ ∂εLZn(h) and Eq. (42) in Ex. 2, we know that∥∥∇LZn(h)− ∇̂LZn(h)

∥∥2 ≤ 2λε, (100)

where ε is the same value as before. The statement in Eq. (20) derives from taking the expectation with respect to the dataset
Zn and applying again the result in Cor. 20.

F. Proof of Prop. 1
In this section, we report the proof of Prop. 1 which is often used in the main body of this work. The proof exploits the
regret bound for Alg. 1 given in Cor. 18 in App. E.2 and it essentially relies on online-to-batch conversion arguments.

Proposition 1. Let Asm. 1 and Asm. 2 hold and let w̄h be the output of Alg. 1. Then, we have that

EZn∼µn
[
Rµ
(
w̄h(Zn)

)
−RZn,h(wh(Zn))

]
≤ cn,λ

cn,λ =
2R2L2

(
log(n) + 1

)
λn

.

(7)

Proof. The proof is similar to the one of Cor. 20. More precisely, we can write

EZn∼µn
[
Rµ
(
w̄h(Zn)

)]
− EZn∼µn

[
RZn

(
wh(Zn)

)
+
λ

2

∥∥wh(Zn)− h
∥∥2
]

≤ EZn∼µn
[
Rµ
(
w̄h(Zn)

)
+
λ

2

∥∥w̄h(Zn)− h
∥∥2
]
− EZn∼µn

[
RZn

(
wh(Zn)

)
+
λ

2

∥∥wh(Zn)− h
∥∥2
]

≤ EZn∼µn
[1

n

n∑
i=1

Rµ
(
wh

(i)
)

+
λ

2

∥∥wh(i) − h
∥∥2
]
− EZn∼µn

[
RZn

(
wh(Zn)

)
+
λ

2

∥∥wh(Zn)− h
∥∥2
]

= EZn∼µn
[1

n

n∑
i=1

`i
(
〈xi, wh(i)〉

)
+
λ

2

∥∥wh(i) − h
∥∥2
]
− EZn∼µn

[
RZn

(
wh(Zn)

)
+
λ

2

∥∥wh(Zn)− h
∥∥2
]

= EZn∼µn
[1

n

n∑
i=1

`i
(
〈xi, wh(i)〉

)
+
λ

2

∥∥wh(i) − h
∥∥2 − Φh(wh(Zn))

]
≤

2R2L2
(
log(n) + 1

)
λn

,

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

where, in the first inequality we have exploited the non-negativity of the regularizer and in the second inequality we have
applied Jensen’s inequality. The first equality above holds by standard online-to-batch arguments, more precisely, since wh(i)

does not depend on the point zi, we have that, EZn∼µn`i
(
〈xi, wh(i)〉

)
= EZn∼µnRµ

(
wh

(i)
)
. Finally, the last inequality is

due to the application of the regret bound given in Cor. 18.

G. Convergence Rate of Alg. 2
In this section, we give the convergence rate bound of Alg. 2 which is used in the paper for the proof of the excess transfer
risk bound given in Thm. 6.

We recall that the meta-algorithm we adopt to estimate the bias h is SGD applied to the function Ên(·) =
Eµ∼ρ EZn∼µn LZn(·). We recall also that, at each iteration t, the meta-algorithm approximate the gradient of the
function Lt at the point h(t) by the vector ∇̂t which is computed as described in Eq. (21). In the subsequent analysis we use
the notation

E
Z

(t)
n

[
·
]

= E
[
·
∣∣Z(1)
n , . . . , Z(t−1)

n

]
, (101)

where, the expectation must be intended with respect to the sampling of the dataset from the distribution induced by the
sampling of the task µ ∼ ρ and then the sampling of the dataset from that task. We observe that, thanks to Prop. 5 and the
independence of h(t) on Z(t)

n , we can state that this vector ∇̂t is an εt-subgradient of Lt at the point h(t), where, εt is such
that

E
Z

(t)
n

[
εt
]
≤

2R2L2
(
log(n) + 1

)
λn

(102)

E
Z

(t)
n

∥∥∇(t) − ∇̂(t)
∥∥2 ≤

4R2L2
(
log(n) + 1

)
n

. (103)

Before proceeding with the proof of the convergence rate of Alg. 2, we need to introduce the following result contained in
(Shalev-Shwartz & Ben-David, 2014).

Lemma 21 (Shalev-Shwartz & Ben-David (2014, Lemma 14.1)). Let h(t) be update of Alg. 2. Then, for any ĥ ∈ Rd, we
have

T∑
t=1

〈
h(t) − ĥ, ∇̂(t)

〉
≤ 1

2

(1

γ

∥∥h(1) − ĥ
∥∥2

+ γ

T∑
t=1

∥∥∇̂(t)
∥∥2
)
.

Proof. Thanks to the definition of the update, for any ĥ ∈ Rd, we have that∥∥h(t+1) − ĥ
∥∥2 ≤

∥∥h(t) − γ∇̂(t) − ĥ
∥∥2

=
∥∥h(t) − ĥ

∥∥2 − 2γ
〈
h(t) − ĥ, ∇̂(t)

〉
+ γ2

∥∥∇̂(t)
∥∥2
.

Hence, rearranging the terms, we get the following〈
h(t) − ĥ, ∇̂(t)

〉
=

1

2γ

(∥∥h(t) − ĥ
∥∥2 −

∥∥h(t+1) − ĥ
∥∥2
)

+
γ

2

∥∥∇̂(t)
∥∥2
.

Summing over t ∈ [T], exploiting the telescopic sum and the fact −
∥∥h(T+1) − ĥ

∥∥2 ≤ 0, the statement follows.

We now are ready to study the convergence rate of Alg. 2.

Proposition 22 (Convergence Rate of Alg. 2). Let Asm. 1 and Asm. 2 hold and let h̄T be the output of Alg. 2 run with step
size

γ =

√
2
∥∥ĥ∥∥

LR

√(
T
(

1 +
4
(
log(n) + 1

)
n

))−1

. (104)

Then, for any ĥ ∈ Rd, we have that

E Ên(h̄T)− Ên(ĥ) ≤
∥∥ĥ∥∥ LR

√
2
(

1 +
4
(
log(n) + 1

)
n

) 1

T
+

2R2L2
(
log(n) + 1

)
λn

,

where, the expectation above is with respect to the sampling of the datasets Z(1)
n , . . . , Z

(T)
n from the environment ρ.

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Proof. We start from observing that, by convexity of L
Z

(t)
n

, thanks to the fact that ∇̂t is an εt-subgradient of L
Z

(t)
n

at the

point h(t), for any ĥ ∈ Rd, we can write

L
Z

(t)
n

(
h(t)
)
− L

Z
(t)
n

(
ĥ
)
≤
〈
∇̂(t), h(t) − ĥ

〉
+ εt. (105)

Now, taking the expectation with respect to the sampling of Z(t)
n , thanks to what observed in Eq. (102), we have

E
Z

(t)
n

[
L
Z

(t)
n

(
h(t)
)
− L

Z
(t)
n

(
ĥ
)]
≤ E

Z
(t)
n

〈
∇̂(t), h(t) − ĥ

〉
+ E

Z
(t)
n

[
εt
]︸ ︷︷ ︸

≤ E
Z

(t)
n

〈
∇̂(t), h(t) − ĥ

〉
+

2R2L2
(
log(n) + 1

)
λn︸ ︷︷ ︸
ελ,n

.
(106)

Hence, taking the global expectation, we get

E
[
L
Z

(t)
n

(
h(t)
)
− L

Z
(t)
n

(
ĥ
)]
≤ E

〈
∇̂(t), h(t) − ĥ

〉
+ ελ,n. (107)

Summing over t ∈ [T] and dividing by T , we get

1

T

T∑
t=1

E
[
L
Z

(t)
n

(
h(t)
)
− L

Z
(t)
n

(
ĥ
)]
≤ 1

T

T∑
t=1

E
〈
∇̂(t), h(t) − ĥ

〉
+ ελ,n. (108)

Now, applying Lemma 21, as regards the first term of the RHS in the bound above, we can write

1

T

T∑
t=1

E
〈
∇̂(t), h(t) − ĥ

〉
≤ 1

2

(1

γT

∥∥h(1) − ĥ
∥∥2

+
γ

T

T∑
t=1

E
∥∥∇̂(t)

∥∥2
)
. (109)

Now we observe that, thanks to Asm. 1, Asm. 2 and Prop. 4,
∥∥∇(t)

∥∥ ≤ RL for any t ∈ [T]. Consequently, using the
inequality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 for any two vectors a, b ∈ Rd and applying Eq. (103), we can write the following

E
Z

(t)
n

∥∥∇̂(t)
∥∥2

= E
Z

(t)
n

∥∥∇̂(t) ±∇(t)
∥∥2 ≤ 2 E

Z
(t)
n

∥∥∇(t)
∥∥2

+ 2 E
Z

(t)
n

∥∥∇(t) − ∇̂(t)
∥∥2

≤ 2L2R2 +
8R2L2

(
log(n) + 1

)
n

= 2L2R2
(

1 +
4
(
log(n) + 1

)
n

)
.

(110)

Hence, taking the global expectation of the above relation and combining with Eq. (109), we get

1

T

T∑
t=1

E
〈
∇̂(t), h(t) − ĥ

〉
≤ 1

2

(1

γT

∥∥h(1) − ĥ
∥∥2

+ 2L2R2
(

1 +
4
(
log(n) + 1

)
n

)
γ
)
. (111)

We now observe that, as regards the LHS member in Eq. (108), by Jensen’s inequality and the independence of h(t) on Z(t)
n ,

we have that

E Ên(h̄T)− Ên(ĥ) = E
[
LZn(h̄T)− LZn(ĥ)

]
≤ 1

T

T∑
t=1

E
[
L
Z

(t)
n

(
h(t)
)
− L

Z
(t)
n

(
ĥ
)]
. (112)

Hence, substituting Eq. (111) and Eq. (112) into Eq. (108), since h(1) = 0, we get

E Ên(h̄T)− Ên(ĥ) ≤ 1

2

(1

γT

∥∥ĥ∥∥2
+ 2L2R2

(
1 +

4
(
log(n) + 1

)
n

)
γ
)

+
2R2L2

(
log(n) + 1

)
λn

.

The desired statement follows from optimizing the above bound with respect to γ.

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

H. Analysis for ERM Algorithm
In this section, we repeat the statistical study described in the paper for the family of ERM algorithms introduced in Eq. (3).
We obtain excess transfer risk bounds which are equivalent, up to constants and logarithmic factors, to those given in the
paper for the SGD family.

We start from recalling the definition of the biased ERM algorithm in Eq. (3)

wh(Zn) = argmin
w∈Rd

RZn,h(w), (113)

where, for any w, h ∈ Rd, the empirical error and its biased regularized version are defined respectively as

RZn(w) =
1

n

n∑
k=1

`k
(
〈xk, w〉

)
RZn,h(w) = RZn(w) +

λ

2
‖w − h‖2.

(114)

We assume to have an oracle providing us with this exact estimator. The study proceeds as in the paper, for the SGD
family. The main difference relies on using in the decompositions, instead of Prop. 1, the following standard result on the
generalization error of ERM algorithm.

Proposition 23. Let Asm. 1 and Asm. 2 hold. Let wh the ERM algorithm in Eq. (113). Then, for any h ∈ Rd, we have that

EZn∼µn
[
Rµ
(
wh(Zn)

)
−RZn

(
wh(Zn)

)]
≤ L2R2

λn
. (115)

In order to prove Prop. 23, we recall the following standard result linking the generalization error of the algorithm with its
stability. We refer to (Bousquet & Elisseeff, 2002) for more details.

Lemma 24 (Bousquet & Elisseeff (2002, Lemma 7)). Let A(Zn) be a (replace-one) uniformly stable algorithm with
parameter βn. Then, we have that

EZn∼µ
[
Rµ(A(Zn))−RZn(A(Zn))

]
≤ βn. (116)

We now are ready to present the proof of Prop. 23.

Proof. of Prop. 23 The proof of the statement proceeds by stability arguments. Specifically, we show that, for any h,
wh(Zn) is (replace-one) uniformly stable with parameter βn satisfying βn ≤ L2R2/(λn). Denote by Zin the dataset Zn in
which we change the point zi with another independent point sample from the same task µ. Thanks to Asm. 1 and Asm. 2,
we have that

sup
i

∣∣∣`i(〈xi, wh(Zn)〉)− `i(〈xi, wh(Zin)〉)
∣∣∣ ≤ LR∥∥wh(Zn)− wh(Zin)

∥∥. (117)

Now thanks to the λ-strong convexity ofRZn,h, and the definition of the algorithm, we have that

λ

2
‖wh(Zin)− wh(Zn)

∥∥2 ≤ RZn,h(wh(Zin))−RZn,h(wh(Zn))

λ

2
‖wh(Zn)− wh(Zin)

∥∥2 ≤ RZin,h(wh(Zn))−RZin,h(wh(Zin)).

(118)

Hence, summing these two inequalities, observing that

RZn,h(wh(Zin))−RZn,h(wh(Zn)) +RZin,h(wh(Zn))−RZin,h(wh(Zin))

≤ 1

n
sup
i

∣∣∣`i(〈xi, wh(Zn)〉)− `i(〈xi, wh(Zin)〉)
∣∣∣

and using again Asm. 1 and Asm. 2, we can write

λ‖wh(Zin)− wh(Zn)
∥∥2 ≤ 1

n
sup
i

∣∣∣`i(〈xi, wh(Zn)〉)− `i(〈xi, wh(Zin)〉)
∣∣∣ ≤ LR

n

∥∥wh(Zn)− wh(Zin)
∥∥. (119)

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Hence, we get ∥∥wh(Zin)− wh(Zn)
∥∥ ≤ LR

λn
. (120)

Therefore, continuing with Eq. (117), we get

sup
i

∣∣∣`i(〈xi, wh(Zn)〉)− `i(〈xi, wh(Zin)〉)
∣∣∣ ≤ L2R2

λn
. (121)

The statement follows by applying Lemma 24.

We now are ready to proceed with the statistical analysis of the biased ERM algorithm. In the following App. H.1 we report
the analysis for a fixed bias, while in App. H.2 we focus on the bias returned by running Alg. 2.

H.1. Analysis for a Fixed Bias

Here we study the performance of a fixed bias h. The following theorem should be compared with Thm. 2 in the paper.
Theorem 25 (Excess Transfer Risk Bound for a Fixed Bias h, ERM). Let Asm. 1 and Asm. 2 hold. Let wh the biased ERM
algorithm in Eq. (3) with regularization parameter

λ =
RL

Varh

√
1

n
. (122)

Then, the following bound holds

En(wh)− Eρ ≤ Varh 2RL

√
1

n
. (123)

Proof. For µ ∼ ρ, consider the following decomposition

EZn∼µn Rµ(wh(Zn))−Rµ(wµ) ≤ A + B, (124)

where, A and B are respectively defined by

A = EZn∼µn
[
Rµ(wh(Zn))−RZn(wh(Zn))

]
B = EZn∼µn

[
RZn,h(wh(Zn))−Rµ(wµ)

]
.

(125)

In order to bound the term A, we use Prop. 23. As regards the term B, we apply Eq. (14) in the paper. The desired statement
derives from combining the bounds on the two terms, taking the average over µ ∼ ρ and optimizing with respect to λ.

H.2. Analysis for the Bias h̄T Returned by Alg. 2

We now study the performance of the bias h̄T returned by an exact version of Alg. 2. In this case, differently from the
case analyzed in the paper for the SGD family, thanks to the assumption on the availability of the ERM algorithm in exact
form and the closed form of the gradient of the meta-objective LZn (see Prop. 4), Alg. 2 is assumed to run with exact
meta-gradients. The following theorem should be compared with Thm. 6 in the paper.
Theorem 26 (Excess Transfer Risk Bound for the Bias h̄T Estimated by Alg. 2, ERM). Let Asm. 1 and Asm. 2 hold. Let h̄T
be the output of Alg. 2 with exact meta-gradients and

γ =
‖m‖
LR

√
1

T
. (126)

Consider wh̄T the biased ERM algorithm in Eq. (3) with bias h = h̄T and regularization parameter

λ =
RL

Varm

√
1

n
. (127)

Then, the following bound holds

E En(wh̄T)− Eρ ≤ Varm 2RL

√
1

n
+ ‖m‖ LR

√
1

T
, (128)

where the expectation above is with respect to the sampling of the datasets Z(1)
n , . . . , Z

(T)
n from the environment ρ.

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Proof. We consider the following decomposition

E En(wh̄T)− Eρ ≤ A + B + C, (129)

where we have defined the following terms

A = En(wh̄T)− Ên(h̄T)

B = E Ên(h̄T)− Ên(m)

C = Ên(m)− Eρ.

(130)

To bound the term A, we use Prop. 23 with h = h̄T and we average with respect to µ ∼ ρ. As regards the term C, we apply
the inequality given in Eq. (14) with h = m and we take again the average on µ ∼ ρ. Finally, the term B is the convergence
rate of Alg. 2, but this time, with exact meta-gradients. Now, repeating exactly the same steps described in the proof Prop. 22
with ĥ = m and εn,λ = 0, it is immediate to show that for the choice of γ given in the statement we have that

B = E Ên(h̄T)− Ên(m) ≤
∥∥m∥∥ LR

√
1

T
+

2R2L2

λn
.

The desired statement follows from combining the bounds on the three terms above and optimizing with respect to λ.

Looking at the results above, we immediately see that, up to constants and logarithmic factors, the LTL bounds we have
stated in the paper for the SGD family are equivalent to the ones we have reported in this appendix for the biased ERM
family.

I. Hyper-parameters Tuning in the LTL Setting
Denote by h̄T,λ,γ the output of Alg. 2 computed with T iterations (hence T tasks) with values λ and γ. In all experiments,
we obtain this estimator h̄Ttr,λ,γ by learning it on a dataset Ztr of Ttr training tasks, each comprising a dataset Zn of n input-
output pairs (x, y) ∈ X × Y . We perform this meta-training for different values of λ ∈ {λ1, . . . , λp} and γ ∈ {γ1, . . . , γr}
and we select the best estimator based on the prediction error measured on a separate set Zva of Tva validation tasks. Once
such optimal λ and γ values have been selected, we report the average risk of the corresponding estimator on a set Zte of
Tte test tasks.

In particular, for the synthetic data we considered 10 (30 for the real data) candidates values for both λ and γ in the range
[10−6, 103] ([10−3, 103] for the real data) with logarithmic spacing.

Note that the tasks in the test and validation sets Zte and Zva are all provided with both a training and test dataset both
sampled from the same distribution. Since we are interested in measuring the performance of the algorithm trained with
n points, the training datasets have all the same sample size n as those in the meta-training datasets in Ztr, while the test
datasets contain n′ points each, for some positive integer n′. Indeed, in order to evaluate the performance of a bias h, we
need to first train the corresponding algorithm w̄h on the training dataset Zn, and then test its performance on the test set
Z ′n′ , by computing the empirical riskRZn′ (w̄h(Zn)).

In addition to this, since we are considering the online setting, the training datasets arrive one at the time, therefore model
selection is performed online: the system keeps track of all candidate values h̄Ttr,λj ,γk , j ∈ [p], k ∈ [r], and, whenever a
new training task is presented, these vectors are all updated by incorporating the corresponding new observations. The
best bias h is then returned at each iteration, based on its performance on the validation set Zva. The previous procedure
describes how to tune simultaneously both λ and γ. When the bias h we use is fixed a priori (e.g. in ITL), we just need to
tune the parameter λ; in such a case the procedure is analogous to that described above.

J. Additional Experiments
Our method uses SGD (Alg. 1) in two ways (i) to estimate the meta-gradient during meta-training and (ii) to evaluate the
bias during the meta-validation or testing phase. In this section, we report additional experiments, in which we compared
the proposed approach with exact meta-gradient approaches based on ERM. In the following experiments we approximate
the ERM algorithm by running FISTA algorithm (see e.g. Beck & Teboulle, 2009) up to convergence on the within-taks
dual problem introduced in App. B, see App. J.1 below for more details.

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

Figure 3. Synthetic Data. Test performance of different bias with respect to an increasing number of tasks. (Left) Regression with
absolute loss. (Right) Classification with hinge loss. The results are averaged over 10 independent runs (datasets generations).

Figure 4. Real Data. Test performance of different bias with respect to an increasing number of tasks. (Left) Lenk Dataset Regression.
(Right) Lenk Dataset Classification. The results are averaged over 30 independent runs (datasets generations).

In particular, we evaluated the following three settings:

• LTL SGD-SGD (our LTL method described in the paper): we use SGD both during meta-training and meta-validation /
testing phases;

• LTL ERM-SGD: we use exact meta-gradients (computed by the ERM, as described in Prop. 4 in the text) during the
meta-training phase, but we apply SGD during the meta-validation/testing;

• LTL ERM-ERM: we use ERM both for meta-training process (to compute the exact meta-gradients) and during
meta-validation/testing. This is the approach we theoretically analyzed in App. H.

We also compare the above method with four ITL settings:

• ITL ERM: we perform independent task learning using the ERM algorithm with bias h = 0;

• ITL SGD: we perform independent task learning using the SGD algorithm with bias h = 0;

• MEAN ERM: we perform independent task learning using the ERM algorithm with bias h = m (only in synthetic
experiments, in which this quantity is available);

• MEAN SGD: we perform independent task learning using the SGD algorithm with bias h = m (only in synthetic
experiments in which this quantity is available).

We evaluated the performance of all the settings described above in the synthetic and real datasets used in the paper in Sec. 6.
The results are reported in Fig. 3 and Fig. 4, respectively. Looking at the plots, we can observe that, in all the experiments,

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

SGD-SGD and ERM-SGD perform similarly. This confirms our theoretical finding: approximating the meta-gradients by
SGD introduces an error which does not significanlty affect the resulting generalization performance, and, at the same time,
it allows us to obtain an overall method with a very low computational cost.

We also point out that ERM-ERM achieves lower loss values than the other two LTL methods but, especially on the synthetic
experiments, the difference is almost negligible and this is coherent with the results obtained in App. H. Finally, as already
observed in the paper, all the LTL methods perform better than the ITL approaches (ITL ERM and ITL SGD) by a large
margin, and, as expected, in the synthetic experiments, they almost match the performance of both MEAN ERM and MEAN
SGD when the number of training tasks T is sufficiently large.

J.1. Approximating ERM by FISTA

In this section we describe how we apply FISTA algorithm (Beck & Teboulle, 2009) on the dual within-task problem in
order to compute an approximation of the ERM algorithm in Eq. (3).

We start from recalling the the primal within-task problem

wh = argmin
w∈Rd

Φh(w) Φh(w) =
1

n

n∑
i=1

`i
(
〈xi, w〉

)
+

λ

2
‖w − h‖2 (131)

and we rewrite its dual as follows

uh ∈ argmin
u∈Rn

Ψh(u) Ψh(u) = G(u) + Fh(u) (132)

G(u) =
1

n

n∑
i=1

`∗i (nui) Fh(u) =
1

2λ

∥∥X>n u∥∥2 −
〈
Xnh, u

〉
. (133)

We apply FISTA to this function Ψh, treating Fh as the smooth part and G as the non-smooth proximable part. The primal
variable is then defined as before from the dual one by the KKT conditions. The algorithm is reported in Alg. 4 below. In
the experiments reported above, we run Alg. 4 for K = 2000 iterations or until the duality gap

Φh
(
wh

(k)
)

+ Ψh

(
uh

(k)
)

(134)

is lower than 10−6.

Algorithm 4 Approximation of ERM by FISTA Algorithm

Input K number of iterations, γ = λ/(nR2) step size, λ > 0, h ∈ Rd, t1 = 1

Initialization uh
(0) = p

(1)
h ∈ Rn

For k = 1 to K
Update uh

(k) = proxγG
(
p

(k)
h − γ∇Fh

(
p

(k)
h

))
Define w

(k)
h = − 1

λ
X>n uh

(k) + h KKT conditions

Update tk+1 =
1 +

√
1 + 4t2k
2

Update p
(k+1)
h = uh

(k) +
tk − 1

tk+1

(
uh

(k) − uh(k−1)
)

Return w
(K)
h ≈ wh

More precisely, we observe that, thanks to Asm. 1, for any h ∈ Rd, Fh is
(
nR2/λ

)
-smooth. As a matter of fact, for any

u ∈ Rn, its gradient is given by

∇Fh(u) =
1

λ
XnX

>
n u−Xnh (135)

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization

and
∥∥XnX

>
n

∥∥
∞ ≤ nR

2. The term G play the role of the non-smooth part and, thanks to its separability, for any step-size
γ > 0, any i ∈ [n] and any u ∈ Rn, we have(

proxγG(u)
)
i

=
1

n
proxnγ`∗i (nui). (136)

Note that, by Moreau’s Identity (Bauschke & Combettes, 2011, Thm. 14.3), for any η > 0 and any a ∈ R, we have
proxη`∗i (a) = a− ηprox 1

η `i

(
a/η
)
. At last, we report the conjugate, the subdifferential and the closed form of the proximity

operator for the absolute and the hinge loss used in our experiments.

Example 3 (Absolute Loss for Regression and Binary Classification). Let Y ⊆ R or Y = {±1}. For any ŷ, y ∈ Y , let
`(ŷ, y) =

∣∣ŷ − y∣∣ and denote `y(·) = `(·, y). Then, we have

u ∈ ∂`y(ŷ) ⇐⇒ u ∈

{1} if ŷ − y > 0

{−1} if ŷ − y < 0

[−1, 1] if ŷ − y = 0.

(137)

Moreover, for any y ∈ Y , `y(·) is 1-Lipschitz, and, for any u ∈ R, η > 0, a ∈ R, we have that

`∗y(u) = ι[−1,1](u) + uy (138)

prox 1
η `y

(a) =

a− 1/η if a− y > 1/η

y if a− y ∈
[
− 1/η, 1/η

]
a+ 1/η if a− y < −1/η.

(139)

Example 4 (Hinge Loss for Binary Classification). Let Y = {±1}. For any ŷ, y ∈ Y , let `(ŷ, y) = max
{

0, 1− yŷ
}

and
denote `y(·) = `(·, y). Then, we have

u ∈ ∂`y(ŷ) ⇐⇒ u ∈

{−y} if 1− yŷ > 0

{0} if 1− yŷ < 0

[−1, 1]{−y} if 1− yŷ = 0.

(140)

Moreover, for any y ∈ Y , `y(·) is 1-Lipschitz, and, for any u ∈ R, η > 0, a ∈ R, we have that

`∗i (u) =
u

y
+ ι[−1,0]

(u
y

)
(141)

prox 1
η `y

(a) =

a+ y/η if ya < 1− y2/η

1/y if ya ∈
[
1− y2/η, 1

]
a if ya > 1.

(142)

