9,773 research outputs found

    Learning to Generate Unambiguous Spatial Referring Expressions for Real-World Environments

    Full text link
    Referring to objects in a natural and unambiguous manner is crucial for effective human-robot interaction. Previous research on learning-based referring expressions has focused primarily on comprehension tasks, while generating referring expressions is still mostly limited to rule-based methods. In this work, we propose a two-stage approach that relies on deep learning for estimating spatial relations to describe an object naturally and unambiguously with a referring expression. We compare our method to the state of the art algorithm in ambiguous environments (e.g., environments that include very similar objects with similar relationships). We show that our method generates referring expressions that people find to be more accurate (āˆ¼\sim30% better) and would prefer to use (āˆ¼\sim32% more often).Comment: International Conference on Intelligent Robots and Systems (IROS 2019), Demo 1: Finding the described object (https://youtu.be/BE6-F6chW0w), Demo 2: Referring to the pointed object (https://youtu.be/nmmv6JUpy8M), Supplementary Video (https://youtu.be/sFjBa_MHS98

    Towards an Indexical Model of Situated Language Comprehension for Cognitive Agents in Physical Worlds

    Full text link
    We propose a computational model of situated language comprehension based on the Indexical Hypothesis that generates meaning representations by translating amodal linguistic symbols to modal representations of beliefs, knowledge, and experience external to the linguistic system. This Indexical Model incorporates multiple information sources, including perceptions, domain knowledge, and short-term and long-term experiences during comprehension. We show that exploiting diverse information sources can alleviate ambiguities that arise from contextual use of underspecific referring expressions and unexpressed argument alternations of verbs. The model is being used to support linguistic interactions in Rosie, an agent implemented in Soar that learns from instruction.Comment: Advances in Cognitive Systems 3 (2014

    Augmenting Situated Spoken Language Interaction with Listener Gaze

    Get PDF
    Collaborative task solving in a shared environment requires referential success. Human speakers follow the listenerā€™s behavior in order to monitor language comprehension (Clark, 1996). Furthermore, a natural language generation (NLG) system can exploit listener gaze to realize an effective interaction strategy by responding to it with verbal feedback in virtual environments (Garoufi, Staudte, Koller, & Crocker, 2016). We augment situated spoken language interaction with listener gaze and investigate its role in human-human and human-machine interactions. Firstly, we evaluate its impact on prediction of reference resolution using a mulitimodal corpus collection from virtual environments. Secondly, we explore if and how a human speaker uses listener gaze in an indoor guidance task, while spontaneously referring to real-world objects in a real environment. Thirdly, we consider an object identification task for assembly under system instruction. We developed a multimodal interactive system and two NLG systems that integrate listener gaze in the generation mechanisms. The NLG system ā€œFeedbackā€ reacts to gaze with verbal feedback, either underspecified or contrastive. The NLG system ā€œInstallmentsā€ uses gaze to incrementally refer to an object in the form of installments. Our results showed that gaze features improved the accuracy of automatic prediction of reference resolution. Further, we found that human speakers are very good at producing referring expressions, and showing listener gaze did not improve performance, but elicited more negative feedback. In contrast, we showed that an NLG system that exploits listener gaze benefits the listenerā€™s understanding. Specifically, combining a short, ambiguous instruction with con- trastive feedback resulted in faster interactions compared to underspecified feedback, and even outperformed following long, unambiguous instructions. Moreover, alternating the underspecified and contrastive responses in an interleaved manner led to better engagement with the system and an effcient information uptake, and resulted in equally good performance. Somewhat surprisingly, when gaze was incorporated more indirectly in the generation procedure and used to trigger installments, the non-interactive approach that outputs an instruction all at once was more effective. However, if the spatial expression was mentioned first, referring in gaze-driven installments was as efficient as following an exhaustive instruction. In sum, we provide a proof of concept that listener gaze can effectively be used in situated human-machine interaction. An assistance system using gaze cues is more attentive and adapts to listener behavior to ensure communicative success

    Language-guided Robot Grasping: CLIP-based Referring Grasp Synthesis in Clutter

    Get PDF
    Robots operating in human-centric environments require the integration of visual grounding and grasping capabilities to effectively manipulate objects based on user instructions. This work focuses on the task of referring grasp synthesis, which predicts a grasp pose for an object referred through natural language in cluttered scenes. Existing approaches often employ multi-stage pipelines that first segment the referred object and then propose a suitable grasp, and are evaluated in private datasets or simulators that do not capture the complexity of natural indoor scenes. To address these limitations, we develop a challenging benchmark based on cluttered indoor scenes from OCID dataset, for which we generate referring expressions and connect them with 4-DoF grasp poses. Further, we propose a novel end-to-end model (CROG) that leverages the visual grounding capabilities of CLIP to learn grasp synthesis directly from image-text pairs. Our results show that vanilla integration of CLIP with pretrained models transfers poorly in our challenging benchmark, while CROG achieves significant improvements both in terms of grounding and grasping. Extensive robot experiments in both simulation and hardware demonstrate the effectiveness of our approach in challenging interactive object grasping scenarios that include clutter

    Language-guided Robot Grasping: CLIP-based Referring Grasp Synthesis in Clutter

    Full text link
    Robots operating in human-centric environments require the integration of visual grounding and grasping capabilities to effectively manipulate objects based on user instructions. This work focuses on the task of referring grasp synthesis, which predicts a grasp pose for an object referred through natural language in cluttered scenes. Existing approaches often employ multi-stage pipelines that first segment the referred object and then propose a suitable grasp, and are evaluated in private datasets or simulators that do not capture the complexity of natural indoor scenes. To address these limitations, we develop a challenging benchmark based on cluttered indoor scenes from OCID dataset, for which we generate referring expressions and connect them with 4-DoF grasp poses. Further, we propose a novel end-to-end model (CROG) that leverages the visual grounding capabilities of CLIP to learn grasp synthesis directly from image-text pairs. Our results show that vanilla integration of CLIP with pretrained models transfers poorly in our challenging benchmark, while CROG achieves significant improvements both in terms of grounding and grasping. Extensive robot experiments in both simulation and hardware demonstrate the effectiveness of our approach in challenging interactive object grasping scenarios that include clutter.Comment: Poster CoRL 2023. Dataset and code available here: https://github.com/gtziafas/OCID-VL
    • ā€¦
    corecore