9 research outputs found

    INVESTIGATION OF THE K2 ALGORITHM IN LEARNING BAYESIAN NETWORK CLASSIFIERS

    Get PDF
    This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Applied Artificial Intelligence, 25:74–96, 201

    A geometric characterisation of sensitivity analysis in monomial models

    Get PDF
    Sensitivity analysis in probabilistic discrete graphical models is usually conducted by varying one probability value at a time and observing how this affects output probabilities of interest. When one probability is varied then others are proportionally covaried to respect the sum-to-one condition of probability laws. The choice of proportional covariation is justified by a variety of optimality conditions, under which the original and the varied distributions are as close as possible under different measures of closeness. For variations of more than one parameter at a time proportional covariation is justified in some special cases only. In this work, for the large class of discrete statistical models entertaining a regular monomial parametrisation, we demonstrate the optimality of newly defined proportional multi-way schemes with respect to an optimality criterion based on the notion of I-divergence. We demonstrate that there are varying parameters choices for which proportional covariation is not optimal and identify the sub-family of model distributions where the distance between the original distribution and the one where probabilities are covaried proportionally is minimum. This is shown by adopting a new formal, geometric characterization of sensitivity analysis in monomial models, which include a wide array of probabilistic graphical models. We also demonstrate the optimality of proportional covariation for multi-way analyses in Naive Bayes classifiers

    A Pairwise NaĂŻve Bayes Approach to Bayesian Classification

    Get PDF
    Despite the relatively high accuracy of the naïve Bayes (NB) classifier, there may be several instances where it is not optimal, i.e. does not have the same classification performance as the Bayes classifier utilizing the joint distribution of the examined attributes. However, the Bayes classifier can be computationally intractable due to its required knowledge of the joint distribution. Therefore, we introduce a “pairwise naïve” Bayes (PNB) classifier that incorporates all pairwise relationships among the examined attributes, but does not require specification of the joint distribution. In this paper, we first describe the necessary and sufficient conditions under which the PNB classifier is optimal. We then discuss sufficient conditions for which the PNB classifier, and not NB, is optimal for normal attributes. Through simulation and actual studies, we evaluate the performance of our proposed classifier relative to the Bayes and NB classifiers, along with the HNB, AODE, LBR and TAN classifiers, using normal density and empirical estimation methods. Our applications show that the PNB classifier using normal density estimation yields the highest accuracy for data sets containing continuous attributes. We conclude that it offers a useful compromise between the Bayes and NB classifiers

    A machine learning approach to the digitalization of bank customers: evidence from random and causal forests

    Get PDF
    Understanding the digital jump of bank customers is key to design strategies to bring on board and keep online users, as well as to explain the increasing competition from new providers of financial services (such as BigTech and FinTech). This paper employs a machine learning approach to examine the digitalization process of bank customers using a comprehensive consumer finance survey. By employing a set of algorithms (random forests, conditional inference trees and causal forests) this paper identities the features predicting bank customers’ digitalization process, illustrates the sequence of consumers’ decision-making actions and explores the existence of causal relationships in the digitalization process. Random forests are found to provide the highest performance–they accurately predict 88.41% of bank customers’ online banking adoption and usage decisions. We find that the adoption of digital banking services begins with information-based services (e.g., checking account balance), conditional on the awareness of the range of online services by customers, and then is followed by transactional services (e.g., online/mobile money transfer). The diversification of the use of online channels is explained by the consciousness about the range of services available and the safety perception. A certain degree of complementarity between bank and non-bank digital channels is also found. The treatment effect estimations of the causal forest algorithms confirm causality of the identified explanatory factors. These results suggest that banks should address the digital transformation of their customers by segmenting them according to their revealed preferences and offering them personalized digital services. Additionally, policymakers should promote financial digitalization, designing policies oriented towards making consumers aware of the range of online services available.FUNCAS Foundation PGC2018 - 099415 - B - 100 MICINN/FEDER/UEJunta de Andalucia P18RT-3571 P12.SEJ.246

    Bayesian networks for classification, clustering, and high-dimensional data visualisation

    Get PDF
    This thesis presents new developments for a particular class of Bayesian networks which are limited in the number of parent nodes that each node in the network can have. This restriction yields structures which have low complexity (number of edges), thus enabling the formulation of optimal learning algorithms for Bayesian networks from data. The new developments are focused on three topics: classification, clustering, and high-dimensional data visualisation (topographic map formation). For classification purposes, a new learning algorithm for Bayesian networks is introduced which generates simple Bayesian network classifiers. This approach creates a completely new class of networks which previously was limited mostly to two well known models, the naive Bayesian (NB) classifier and the Tree Augmented Naive Bayes (TAN) classifier. The proposed learning algorithm enhances the NB model by adding a Bayesian monitoring system. Therefore, the complexity of the resulting network is determined according to the input data yielding structures which model the data distribution in a more realistic way which improves the classification performance. Research on Bayesian networks for clustering has not been as popular as for classification tasks. A new unsupervised learning algorithm for three types of Bayesian network classifiers, which enables them to carry out clustering tasks, is introduced. The resulting models can perform cluster assignments in a probabilistic way using the posterior probability of a data point belonging to one of the clusters. A key characteristic of the proposed clustering models, which traditional clustering techniques do not have, is the ability to show the probabilistic dependencies amongst the variables for each cluster. This feature enables a better understanding of each cluster. The final part of this thesis introduces one of the first developments for Bayesian networks to perform topographic mapping. A new unsupervised learning algorithm for the NB model is presented which enables the projection of high-dimensional data into a two-dimensional space for visualisation purposes. The Bayesian network formalism of the model allows the learning algorithm to generate a density model of the input data and the presence of a cost function to monitor the convergence during the training process. These important features are limitations which other mapping techniques have and which have been overcome in this research

    Novel approaches for hierarchical classification with case studies in protein function prediction

    Get PDF
    A very large amount of research in the data mining, machine learning, statistical pattern recognition and related research communities has focused on flat classification problems. However, many problems in the real world such as hierarchical protein function prediction have their classes naturally organised into hierarchies. The task of hierarchical classification, however, needs to be better defined as researchers into one application domain are often unaware of similar efforts developed in other research areas. The first contribution of this thesis is to survey the task of hierarchical classification across different application domains and present an unifying framework for the task. After clearly defining the problem, we explore novel approaches to the task. Based on the understanding gained by surveying the task of hierarchical classification, there are three major approaches to deal with hierarchical classification problems. The first approach is to use one of the many existing flat classification algorithms to predict only the leaf classes in the hierarchy. Note that, in the training phase, this approach completely ignores the hierarchical class relationships, i.e. the parent-child and sibling class relationships, but in the testing phase the ancestral classes of an instance can be inferred from its predicted leaf classes. The second approach is to build a set of local models, by training one flat classification algorithm for each local view of the hierarchy. The two main variations of this approach are: (a) training a local flat multi-class classifier at each non-leaf class node, where each classifier discriminates among the child classes of its associated class; or (b) training a local fiat binary classifier at each node of the class hierarchy, where each classifier predicts whether or not a new instance has the classifier’s associated class. In both these variations, in the testing phase a procedure is used to combine the predictions of the set of local classifiers in a coherent way, avoiding inconsistent predictions. The third approach is to use a global-model hierarchical classification algorithm, which builds one single classification model by taking into account all the hierarchical class relationships in the training phase. In the context of this categorization of hierarchical classification approaches, the other contributions of this thesis are as follows. The second contribution of this thesis is a novel algorithm which is based on the local classifier per parent node approach. The novel algorithm is the selective representation approach that automatically selects the best protein representation to use at each non-leaf class node. The third contribution is a global-model hierarchical classification extension of the well known naive Bayes algorithm. Given the good predictive performance of the global-model hierarchical-classification naive Bayes algorithm, we relax the Naive Bayes’ assumption that attributes are independent from each other given the class by using the concept of k dependencies. Hence, we extend the flat classification /¿-Dependence Bayesian network classifier to the task of hierarchical classification, which is the fourth contribution of this thesis. Both the proposed global-model hierarchical classification Naive Bayes and the proposed global-model hierarchical /¿-Dependence Bayesian network classifier have achieved predictive accuracies that were, overall, significantly higher than the predictive accuracies obtained by their corresponding local hierarchical classification versions, across a number of datasets for the task of hierarchical protein function prediction
    corecore