132 research outputs found

    Discriminative Parameter Estimation for Random Walks Segmentation

    Get PDF
    The Random Walks (RW) algorithm is one of the most e - cient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Speci cally, they provide a hard segmentation of the images, instead of a proba- bilistic segmentation. We overcome this challenge by treating the opti- mal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach signi cantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.Comment: Medical Image Computing and Computer Assisted Interventaion (2013

    Gap between theory and practice: noise sensitive word alignment in machine translation

    Get PDF
    Word alignment is to estimate a lexical translation probability p(e|f), or to estimate the correspondence g(e, f) where a function g outputs either 0 or 1, between a source word f and a target word e for given bilingual sentences. In practice, this formulation does not consider the existence of ‘noise’ (or outlier) which may cause problems depending on the corpus. N-to-m mapping objects, such as paraphrases, non-literal translations, and multiword expressions, may appear as both noise and also as valid training data. From this perspective, this paper tries to answer the following two questions: 1) how to detect stable patterns where noise seems legitimate, and 2) how to reduce such noise, where applicable, by supplying extra information as prior knowledge to a word aligner

    Deformable Registration through Learning of Context-Specific Metric Aggregation

    Full text link
    We propose a novel weakly supervised discriminative algorithm for learning context specific registration metrics as a linear combination of conventional similarity measures. Conventional metrics have been extensively used over the past two decades and therefore both their strengths and limitations are known. The challenge is to find the optimal relative weighting (or parameters) of different metrics forming the similarity measure of the registration algorithm. Hand-tuning these parameters would result in sub optimal solutions and quickly become infeasible as the number of metrics increases. Furthermore, such hand-crafted combination can only happen at global scale (entire volume) and therefore will not be able to account for the different tissue properties. We propose a learning algorithm for estimating these parameters locally, conditioned to the data semantic classes. The objective function of our formulation is a special case of non-convex function, difference of convex function, which we optimize using the concave convex procedure. As a proof of concept, we show the impact of our approach on three challenging datasets for different anatomical structures and modalities.Comment: Accepted for publication in the 8th International Workshop on Machine Learning in Medical Imaging (MLMI 2017), in conjunction with MICCAI 201

    Practical Bayesian Optimization of Machine Learning Algorithms

    Full text link
    Machine learning algorithms frequently require careful tuning of model hyperparameters, regularization terms, and optimization parameters. Unfortunately, this tuning is often a "black art" that requires expert experience, unwritten rules of thumb, or sometimes brute-force search. Much more appealing is the idea of developing automatic approaches which can optimize the performance of a given learning algorithm to the task at hand. In this work, we consider the automatic tuning problem within the framework of Bayesian optimization, in which a learning algorithm's generalization performance is modeled as a sample from a Gaussian process (GP). The tractable posterior distribution induced by the GP leads to efficient use of the information gathered by previous experiments, enabling optimal choices about what parameters to try next. Here we show how the effects of the Gaussian process prior and the associated inference procedure can have a large impact on the success or failure of Bayesian optimization. We show that thoughtful choices can lead to results that exceed expert-level performance in tuning machine learning algorithms. We also describe new algorithms that take into account the variable cost (duration) of learning experiments and that can leverage the presence of multiple cores for parallel experimentation. We show that these proposed algorithms improve on previous automatic procedures and can reach or surpass human expert-level optimization on a diverse set of contemporary algorithms including latent Dirichlet allocation, structured SVMs and convolutional neural networks

    Modeling Latent Variable Uncertainty for Loss-based Learning

    Get PDF
    We consider the problem of parameter estimation using weakly supervised datasets, where a training sample consists of the input and a partially specified annotation, which we refer to as the output. The missing information in the annotation is modeled using latent variables. Previous methods overburden a single distribution with two separate tasks: (i) modeling the uncertainty in the latent variables during training; and (ii) making accurate predictions for the output and the latent variables during testing. We propose a novel framework that separates the demands of the two tasks using two distributions: (i) a conditional distribution to model the uncertainty of the latent variables for a given input-output pair; and (ii) a delta distribution to predict the output and the latent variables for a given input. During learning, we encourage agreement between the two distributions by minimizing a loss-based dissimilarity coefficient. Our approach generalizes latent SVM in two important ways: (i) it models the uncertainty over latent variables instead of relying on a pointwise estimate; and (ii) it allows the use of loss functions that depend on latent variables, which greatly increases its applicability. We demonstrate the efficacy of our approach on two challenging problems---object detection and action detection---using publicly available datasets.Comment: ICML201
    • 

    corecore