180 research outputs found

    Finding missing edges in networks based on their community structure

    Full text link
    Many edge prediction methods have been proposed, based on various local or global properties of the structure of an incomplete network. Community structure is another significant feature of networks: Vertices in a community are more densely connected than average. It is often true that vertices in the same community have "similar" properties, which suggests that missing edges are more likely to be found within communities than elsewhere. We use this insight to propose a strategy for edge prediction that combines existing edge prediction methods with community detection. We show that this method gives better prediction accuracy than existing edge prediction methods alone.Comment: 7 pages, 6 figure

    Semantics, Modelling, and the Problem of Representation of Meaning -- a Brief Survey of Recent Literature

    Full text link
    Over the past 50 years many have debated what representation should be used to capture the meaning of natural language utterances. Recently new needs of such representations have been raised in research. Here I survey some of the interesting representations suggested to answer for these new needs.Comment: 15 pages, no figure

    Inferring Robot Task Plans from Human Team Meetings: A Generative Modeling Approach with Logic-Based Prior

    Get PDF
    We aim to reduce the burden of programming and deploying autonomous systems to work in concert with people in time-critical domains, such as military field operations and disaster response. Deployment plans for these operations are frequently negotiated on-the-fly by teams of human planners. A human operator then translates the agreed upon plan into machine instructions for the robots. We present an algorithm that reduces this translation burden by inferring the final plan from a processed form of the human team's planning conversation. Our approach combines probabilistic generative modeling with logical plan validation used to compute a highly structured prior over possible plans. This hybrid approach enables us to overcome the challenge of performing inference over the large solution space with only a small amount of noisy data from the team planning session. We validate the algorithm through human subject experimentation and show we are able to infer a human team's final plan with 83% accuracy on average. We also describe a robot demonstration in which two people plan and execute a first-response collaborative task with a PR2 robot. To the best of our knowledge, this is the first work that integrates a logical planning technique within a generative model to perform plan inference.Comment: Appears in Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI-13

    Inference, Learning, and Population Size: Projectivity for SRL Models

    Full text link
    A subtle difference between propositional and relational data is that in many relational models, marginal probabilities depend on the population or domain size. This paper connects the dependence on population size to the classic notion of projectivity from statistical theory: Projectivity implies that relational predictions are robust with respect to changes in domain size. We discuss projectivity for a number of common SRL systems, and identify syntactic fragments that are guaranteed to yield projective models. The syntactic conditions are restrictive, which suggests that projectivity is difficult to achieve in SRL, and care must be taken when working with different domain sizes

    Effective and Efficient Similarity Index for Link Prediction of Complex Networks

    Get PDF
    Predictions of missing links of incomplete networks like protein-protein interaction networks or very likely but not yet existent links in evolutionary networks like friendship networks in web society can be considered as a guideline for further experiments or valuable information for web users. In this paper, we introduce a local path index to estimate the likelihood of the existence of a link between two nodes. We propose a network model with controllable density and noise strength in generating links, as well as collect data of six real networks. Extensive numerical simulations on both modeled networks and real networks demonstrated the high effectiveness and efficiency of the local path index compared with two well-known and widely used indices, the common neighbors and the Katz index. Indeed, the local path index provides competitively accurate predictions as the Katz index while requires much less CPU time and memory space, which is therefore a strong candidate for potential practical applications in data mining of huge-size networks.Comment: 8 pages, 5 figures, 3 table
    • …
    corecore