6,758 research outputs found

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 355)

    Get PDF
    This bibliography lists 147 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during October, 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Learning to super-resolve images using self-similarities

    Get PDF
    The single image super-resolution problem entails estimating a high-resolution version of a low-resolution image. Recent studies have shown that high resolution versions of the patches of a given low-resolution image are likely to be found within the given image itself. This recurrence of patches across scales in an image forms the basis of self-similarity driven algorithms for image super-resolution. Self-similarity driven approaches have the appeal that they do not require any external training set; the mapping from low-resolution to high-resolution is obtained using the cross scale patch recurrence. In this dissertation, we address three important problems in super-resolution, and present novel self-similarity based solutions to them: First, we push the state-of-the-art in terms of super-resolution of fine textural details in the scene. We propose two algorithms that use self-similarity in conjunction with the fact that textures are better characterized by their responses to a set of spatially localized bandpass filters, as compared to intensity values directly. Our proposed algorithms seek self-similarities in the sub-bands of the image, for better synthesizing fine textural details. Second, we address the problem of super-resolving an image in the presence of noise. To this end, we propose the first super-resolution algorithm based on self-similarity that effectively exploits the high-frequency content present in noise (which is ordinarily discarded by denoising algorithms) for synthesizing useful textures in high-resolution. Third, we present an algorithm that is able to better super-resolve images containing geometric regularities such as in urban scenes, cityscapes etc. We do so by extracting planar surfaces and their parameters (mid-level cues) from the scene and exploiting the detected scene geometry for better guiding the self-similarity search process. Apart from the above self-similarity algorithms, this dissertation also presents a novel edge-based super-resolution algorithm that super-resolves an image by learning from training data how edge profiles transform across resolutions. We obtain edge profiles via a detailed and explicit examination of local image structure, which we show to be more robust and accurate as compared to conventional gradient profiles

    Modeling the Anisotropic Resolution and Noise Properties of Digital Breast Tomosynthesis

    Get PDF
    Digital breast tomosynthesis (DBT) is a 3D imaging modality in which a reconstruction of the breast is generated from various x-ray projections. Due to the newness of this technology, the development of an analytical model of image quality has been on-going. In this thesis, a more complete model is developed by addressing the limitations found in the previous linear systems (LS) model [Zhao, Med. Phys. 2008, 35(12): 5219-32]. A central assumption of the LS model is that the angle of x-ray incidence is approximately normal to the detector in each projection. To model the effect of oblique x-ray incidence, this thesis generalizes Swank\u27s calculations of the transfer functions of x-ray fluorescent screens to arbitrary incident angles. In the LS model, it is also assumed that the pixelation in the reconstruction grid is the same as the detector; hence, the highest frequency that can be resolved is the detector alias frequency. This thesis considers reconstruction grids with smaller pixelation to investigate super-resolution, or visibility of higher frequencies. A sine plate is introduced as a conceptual test object to analyze super-resolution. By orienting the long axis of the sine plate at various angles, the feasibility of oblique reconstruction planes is also investigated. This formulation differs from the LS model in which reconstruction planes are parallel to the breast support. It is shown that the transfer functions for arbitrary angles of x-ray incidence can be modeled in closed form. The high frequency modulation transfer function (MTF) and detective quantum efficiency (DQE) are degraded due to oblique x-ray incidence. In addition, using the sine plate, it is demonstrated that a reconstruction can resolve frequencies exceeding the detector alias frequency. Experimental images of bar patterns verified the existence of super-resolution. Anecdotal clinical examples showed that super-resolution improves the visibility of microcalcifications. The feasibility of oblique reconstructions was established theoretically with the sine plate and was validated experimentally with bar patterns. This thesis develops a more complete model of image quality in DBT by addressing the limitations of the LS model. In future studies, this model can be used as a tool for optimizing DBT
    corecore