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Abstract
Digital breast tomosynthesis (DBT) is a 3D imaging modality in which a reconstruction of the breast is
generated from various x-ray projections. Due to the newness of this technology, the development of an
analytical model of image quality has been on-going. In this thesis, a more complete model is developed by
addressing the limitations found in the previous linear systems (LS) model [Zhao, Med. Phys. 2008, 35(12):
5219-32].

A central assumption of the LS model is that the angle of x-ray incidence is approximately normal to the
detector in each projection. To model the effect of oblique x-ray incidence, this thesis generalizes Swank's
calculations of the transfer functions of x-ray fluorescent screens to arbitrary incident angles. In the LS model,
it is also assumed that the pixelation in the reconstruction grid is the same as the detector; hence, the highest
frequency that can be resolved is the detector alias frequency. This thesis considers reconstruction grids with
smaller pixelation to investigate super-resolution, or visibility of higher frequencies. A sine plate is introduced
as a conceptual test object to analyze super-resolution. By orienting the long axis of the sine plate at various
angles, the feasibility of oblique reconstruction planes is also investigated. This formulation differs from the LS
model in which reconstruction planes are parallel to the breast support.

It is shown that the transfer functions for arbitrary angles of x-ray incidence can be modeled in closed form.
The high frequency modulation transfer function (MTF) and detective quantum efficiency (DQE) are
degraded due to oblique x-ray incidence. In addition, using the sine plate, it is demonstrated that a
reconstruction can resolve frequencies exceeding the detector alias frequency. Experimental images of bar
patterns verified the existence of super-resolution. Anecdotal clinical examples showed that super-resolution
improves the visibility of microcalcifications. The feasibility of oblique reconstructions was established
theoretically with the sine plate and was validated experimentally with bar patterns.

This thesis develops a more complete model of image quality in DBT by addressing the limitations of the LS
model. In future studies, this model can be used as a tool for optimizing DBT.
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ABSTRACT 

MODELING THE ANISOTROPIC RESOLUTION AND NOISE 

PROPERTIES OF DIGITAL BREAST TOMOSYNTHESIS 

Raymond Joseph Acciavatti 

Dr. Andrew D. A. Maidment 

 Digital breast tomosynthesis (DBT) is a 3D imaging modality in which a 

reconstruction of the breast is generated from various x-ray projections.  Due to the 

newness of this technology, the development of an analytical model of image quality has 

been on-going.  In this thesis, a more complete model is developed by addressing the 

limitations found in the previous linear systems (LS) model [Zhao, Med. Phys. 2008, 

35(12): 5219-32]. 

 A central assumption of the LS model is that the angle of x-ray incidence is 

approximately normal to the detector in each projection.  To model the effect of oblique 

x-ray incidence, this thesis generalizes Swank’s calculations of the transfer functions of 

x-ray fluorescent screens to arbitrary incident angles.  In the LS model, it is also assumed 

that the pixelation in the reconstruction grid is the same as the detector; hence, the highest 

frequency that can be resolved is the detector alias frequency.  This thesis considers 

reconstruction grids with smaller pixelation to investigate super-resolution, or visibility 

of higher frequencies.  A sine plate is introduced as a conceptual test object to analyze 

super-resolution.  By orienting the long axis of the sine plate at various angles, the 

feasibility of oblique reconstruction planes is also investigated.  This formulation differs 

from the LS model in which reconstruction planes are parallel to the breast support. 
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 It is shown that the transfer functions for arbitrary angles of x-ray incidence can 

be modeled in closed form.  The high frequency modulation transfer function (MTF) and 

detective quantum efficiency (DQE) are degraded due to oblique x-ray incidence.  In 

addition, using the sine plate, it is demonstrated that a reconstruction can resolve 

frequencies exceeding the detector alias frequency.  Experimental images of bar patterns 

verified the existence of super-resolution.  Anecdotal clinical examples showed that 

super-resolution improves the visibility of microcalcifications.  The feasibility of oblique 

reconstructions was established theoretically with the sine plate and was validated 

experimentally with bar patterns. 

 This thesis develops a more complete model of image quality in DBT by 

addressing the limitations of the LS model.  In future studies, this model can be used as a 

tool for optimizing DBT. 
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1.  SCOPE OF THIS THESIS 

 In the United States, breast cancer is one of the leading causes of cancer death in 

women (second to lung cancer).  It is estimated that a woman’s risk of being diagnosed 

with breast cancer is one in eight.1  As more individuals live longer due to refinements in 

medical therapies, it is projected that breast cancer incidence will increase by as much as 

one-third over the next 20 years.2 

 The gold standard for breast cancer screening in women is digital mammography 

(DM).  In DM, an x-ray source projects x rays onto a compressed breast to create a 2D 

image.  Compression lowers the path length of x rays to reduce the radiation dose, and 

immobilizes the breast to reduce motion artifacts.  Although the breast can be imaged 

with multiple views, the two views that are used for screening are cranial-caudal (CC) 

and mediolateral oblique (MLO). 

 The American Cancer Society recommends all women aged 40 and older to have 

an annual mammography exam.1  Over the past twenty years, mammography has helped 

to reduce breast cancer mortality by detecting cancer in its early stages.3  However, one 

shortcoming of mammography is that superposition of dense tissue over a tumor may 

obscure the cancer.  It is reported that 17% of breast cancers are not successfully 

visualized by DM and that 70-90% of DM radiographs which are initially believed to be 

suggestive of malignancy are falsely positive.4 

 Digital breast tomosynthesis (DBT) is being investigated as a 3D alternative to 

DM in which tomographic sections of the breast are generated from x-ray projections 

taken over a limited range of angles (Figure 1.1).  The tomographic nature of DBT filters 



 

 3

out adjacent anatomical structures, thereby reducing the possibility for overlap of dense 

tissue over a cancer.  Preliminary studies have shown that DBT has improved sensitivity 

and specificity for the early detection of breast cancer relative to DM.5, 6 

 

 

Figure 1.1: Diagram of tomosynthesis acquisition geometry.  A schematic diagram of 
the Selenia Dimensions acquisition geometry (Hologic Inc., Bedford, MA) is shown.  The 
sine plate is a conceptual test object used for analyzing image quality throughout this 
thesis.  Increasing the frequency of the sine plate simulates small closely-spaced 
structures such as microcalcifications, which are early indicators of breast cancer. 
 

 The Perelman School of Medicine at the University of Pennsylvania is one of a 

small number of major medical centers in the world to convert its screening practices to 

DBT.  Since September of 2011, Penn has used DBT to screen all patients.  The 

Perelman Center for Advanced Medicine at Penn has four Selenia Dimensions DBT units 

(Hologic Inc., Bedford, MA) for this purpose.  Although DBT systems produced by other 
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manufacturers are being used in clinical trials, the Hologic system is currently the only 

DBT unit with FDA-approval (as of April 2013). 

 Penn has found that DBT offers many benefits relative to DM.  One notable 

improvement is reducing the call-back rate (CBR) without reducing the positive 

predictive value of biopsies.  Conant et al. reported that the average CBR at Penn 

decreased from 10.33% (2010-2011) to 8.7% (2011-2012).7  A reduction in CBR was 

observed for all readers and was not dependent upon their experience.  The change in 

CBR was statistically significant when controlled for variable-reader volumes                 

(p = 0.004).  In addition, Penn observed that the cancer detection rate increased from 4.25 

per 1000 women screened to 5.58 per 1000; this change was not statistically significant 

(p = 0.161).  Many researchers believe that the benefits of DBT may ultimately fuel its 

widespread dissemination as an upgrade or adjunct to DM in screening centers 

throughout the United States. 

 Although the potential benefits of tomosynthesis over conventional 

mammography have been identified, the technology is still in its early stages of 

development and a platform for optimizing DBT has not yet been identified.  A 

prerequisite for optimizing DBT is the development of a rigorous model of image quality.  

Although Zhao has developed a preliminary model using linear systems theory, 

simplifying assumptions are made in that work in order to keep the mathematics 

tractable.8  One limitation of Zhao’s work is the presumption that image quality is 

isotropic throughout the reconstructed volume.  An additional assumption is that the 

angle of incidence is approximately normal to the detector in all projections.  In this 



 

 5

thesis, I develop a more complete model of image quality by carefully examining the 

limitations of Zhao’s work.  Since the model is developed in closed form, it can 

ultimately be used as a tool for optimizing the design of DBT systems.  The final chapter 

of this thesis gives early thoughts for optimizing DBT. 

 

2.  REVIEW OF ZHAO’S LINEAR SYSTEMS MODEL FOR TOMOSYNTHESIS 

 Two metrics of image quality that are introduced in Zhao’s work are the 3D 

optical transfer function (OTF) and 3D noise power spectra (NPS).  The cascaded 

approach for calculating these transfer functions is summarized in Figure 1.2 and is 

reviewed in this section.  The OTF and NPS of the detector provide the input to the first 

stage of the cascade.  Zhao’s earlier work proposed a model for these transfer functions in 

amorphous selenium (a-Se).9-11  In this detector, an absorbed x ray ionizes a Se atom and 

creates an electron-hole pair.  As a result of an electric field applied along the thickness 

of the photoconductor, the electron and hole migrate to two different ends of the detector 

and an image is formed.12  Using the transfer functions of the detector, the first stage of 

the cascade in Figure 1.2 models focal spot blurring (FSB) due to continuous x-ray tube 

motion during the image acquisition.13  Although FSB has no effect on NPS,9 it has an 

important impact on OTF.  Continuous tube motion introduces a multiplicative factor to 

the input OTF (Tp) of each projection which is given by sinc(a1fr), where a1 is the 

distance traveled by the focal spot during a projection and fr is frequency measured 

perpendicular to the ray of each projection.8  In Figure 1.2, the output OTF and NPS of 

this stage of the cascade are denoted Tf and Wf, respectively. 
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 At the second stage of Figure 1.2, the logarithm of the projections is calculated to 

determine the line integral of x-ray attenuation.  The OTF and NPS are found from 

 f
l

T
T 


                        (1.1) 

 
2

f
l

W
W 


,             (1.2) 

where Γ is a constant converting x-ray intensity to digital values.8 

 

 

Figure 1.2: Linear systems theory for tomosynthesis.  In Zhao’s model of image 
quality for tomosynthesis, the 3D optical transfer function (OTF) and 3D noise power 
spectra (NPS) are calculated using a cascaded multi-step approach.  This figure is adapted 
from Zhao’s paper.8 
  

 In the third stage of the cascade, the two transfer functions are filtered.  Filters 

which lower the high frequency detector response include an interpolation (IN) filter and 

a spectrum apodization (SA) filter.  The IN filter is given by sinc2(axfr) × sinc2(ayfy), 
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where ax and ay denote the detector element sizes in the x and y directions.  By contrast, 

the SA filter is a Hanning window function applied along the r direction.  To reduce the 

low frequency detector response, an additional filter must be applied along the r 

direction.  In computed tomography (CT), the conventional low frequency filter is a ramp 

(RA) filter which increases linearly with frequency from zero.14 

 In the fourth stage of the cascade, the OTF and NPS are backprojected along the 

ray of incidence.  The OTF and NPS are thus 

   ST( , , ) ( , , ) sin cos ( )b x y z h x y z x n z n z
n

T f f f T f f f f f H f            (1.3) 

   2
ST( , , ) ( , , ) sin cos ( )b x y z h x y z x n z n z

n

W f f f W f f f f f H f      ,      (1.4) 

where ( , , )x y zf f f  is a point in frequency space and where HST is a slice thickness (ST) 

filter applied along the source-to-detector direction (z).  In Zhao’s model, HST is a 

Hanning window function.15  In addition, the index n denotes the projection number, 

which ranges between ( 1) / 2n N    and ( 1) / 2n N   for a system with an odd 

number of N total projections. 

 To take into account the size of voxels in the reconstruction, the OTF and NPS are 

aliased in stage 5 of Figure 1.2 

 ( , , ) ( , , )
z

z
v x y z b x y z z

j z

j
T f f f T f f f f

d

 

  
 

          (1.5) 

 
, ,

( , , ) ( , , ) , ,
x y z

yx z
v x y z b x y z x y z

j j j x y z

jj j
W f f f W f f f f f f

d d d

 

     
 

 ,      (1.6) 
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where dx, dy, and dz are the dimensions of each voxel and where jx, jy, and jz are integers.8  

In this formulation, the aliased OTF is found by summing the output of stage 4 over 

frequencies given by integer multiples of 1
zd  .  By contrast, the aliased NPS is calculated 

by analogous summations over all three directions. 

 

3.  TRANSFER FUNCTIONS FOR TOMOSYNTHESIS 

 One assumption made in Zhao’s work is that the x rays in each projection form a 

parallel beam.  In such a geometry, the sampling of Fourier space is determined from the 

Central Slice Theorem.  As illustrated in Figure 1.3, Fourier space is sampled along the 

direction perpendicular to the x-ray beam of each projection.  Defining the xz plane as the 

plane of the chest wall (i.e., the plane of x-ray tube motion in Figure 1.1), one can show 

that the sampling of Fourier space is identical in cross sections for which fy is constant.  

In these cross sections (the fx-fz planes of Fourier space), the sampled area resembles a 

double cone whose opening angle matches the angular range of the scan (Figure 1.3).  

Zhao demonstrated that cross sections of the 3D OTF [Eq. (1.5)] are non-zero in 

analogous regions of Fourier space.8 

 By convention, slices in a tomosynthesis reconstruction are created using planes 

parallel to the breast support (i.e., the xy plane).  To calculate the in-plane OTF for such a 

slice, the 3D OTF given by Eq. (1.5) is integrated along the z direction.  The z direction is 

chosen since it is perpendicular to the slice.  This line integral yields a 2D OTF 

measuring modulation within the plane of reconstruction.  As Zhao demonstrated in a 
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separate paper, the in-plane OTF can be measured experimentally using the edge 

technique.16 

 

 

Figure 1.3:  Illustration of the Central Slice Theorem.  According to the Central Slice 
Theorem, a parallel projection samples Fourier space perpendicular to the direction of the 
incident x-ray beam.  Since the x-ray tube motion occurs within the xz plane, the 
sampling of Fourier space is identical in cross sections for which fy is constant.  In these 
cross sections (the fx-fz planes of Fourier space), the sampled area resembles a double 
cone.  This sampled area is termed the “Fourier double cone” (FDC) throughout this 
thesis.  The opening angle (Θ) of the FDC matches the angular range of the DBT scan. 
 

 Figure 1.4(a) illustrates the effect of filtering on the in-plane OTF for frequency 

measurements along the x direction (i.e., 0yf  ).  This direction corresponds to the tube 

travel direction as shown in Figure 1.1.  It is useful to interpret the in-plane OTF 

conceptually as a measurement of the relative amplitude of a sinusoidal test object in the 

plane of reconstruction.  At each frequency, the in-plane OTF compares the amplitude of 

the reconstruction against the amplitude of the attenuation coefficient of the sinusoidal 

object.  Figure 1.4(a) has been generated using the reconstruction of a sine plate that is 

explicitly calculated in Chapter 3 of this thesis; although the figure is not taken directly 



 

 10

from Zhao’s paper, the trends shown are qualitatively concordant with Figure 14 of that 

paper.8 

 

 

Figure 1.4:  Comparison of resolution in the reconstruction and in the detector.     
(a) The in-plane OTF is studied as a function of frequency (fx) in a DBT system with   
140 µm detector elements.  In SBP reconstruction, modulation decreases with frequency 
up to the first zero of the OTF.  Conversely, in FBP reconstruction, modulation increases 
linearly at low frequencies, following the ramp filter.  Incorporating SA filtering reduces 
the high frequency signal.  (b) Regardless of the reconstruction filter, the first zero of the 
in-plane OTF can be recovered from the MTF of the detector sampling process. 
 

 In a simple backprojection (SBP) reconstruction with no filtering, Figure 1.4(a) 

demonstrates that the in-plane OTF decreases with frequency.  This trend is monotonic 

up to the first zero of the plot (7.14 lp/mm).  The first zero arises from the MTF of the 

detector sampling process; the MTF is the normalized modulus of the OTF17-19 

 MTF( , ) sinc( )sinc( )x y x x y yf f a f a f ,         (1.7) 

where 

 
sin( )

sinc( )
u

u
u




 .            (1.8) 
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For measurements along the x direction, the first zero of Eq. (1.7) occurs at the frequency 

1
xa , or 7.14 mm-1 for 140 µm detector elements [Figure 1.4(a)].  As the size of the 

detector elements is reduced, the first zero is shifted to a higher frequency.  Figure 1.4(b) 

illustrates this property using a 70 µm detector; the first zero of the MTF is 14.3 mm-1. 

 If RA filtering is incorporated into the reconstruction, Figure 1.4(a) demonstrates 

that the in-plane OTF increases linearly at low frequencies.  In contrast to the plot for 

SBP reconstruction, this trend arises from the frequency dependence of the filter.  At high 

frequencies, the RA filter and the detector MTF have competing influences on 

modulation.  Although the RA filter increases with frequency, the detector MTF 

decreases to zero at the frequency 1
xa  (7.14 lp/mm for 140 µm detector elements).  

Consequently, there is an intermediate frequency at which the in-plane OTF is 

maximized. 

 Since noise tends to occur at high frequencies, an SA filter is often applied in 

addition to the RA filter in order to reduce the high frequency signal in the 

reconstruction.  As shown in Figure 1.4(a), this additional filter does not change the in-

plane OTF considerably at low frequencies.  However, at higher frequencies approaching 

the first zero of the OTF, the reconstruction with the RA and SA filters has less 

modulation than the reconstruction with the RA filter alone. 

 To analyze the noise properties in the reconstruction, the in-plane NPS can be 

calculated by integrating the 3D NPS along z.  Zhao showed that the in-plane NPS 

decreases with frequency in an SBP reconstruction.  The degradation with frequency is 

less pronounced than the in-plane OTF.  By contrast, if RA filtering is incorporated into 
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the reconstruction, Zhao demonstrated that the in-plane NPS is proportional to 2
xf  at low 

frequencies.  This trend is observed regardless of whether SA filtering is applied. 

 In order to validate the in-plane NPS calculation, Zhao determined the 3D NPS 

experimentally.  In that paper, the reconstruction of a Lucite phantom was divided into 

multiple sub-images consisting of uniform noise.  An individual realization of the 3D 

NPS was then determined from the 3D Fourier transform of the mean subtracted image.  

By calculating the ensemble average of the NPS realizations of various sub-images, the 

final NPS was determined experimentally and its dependence on reconstruction filter was 

shown to match the qualitative trends found from the theoretical calculations. 

 While the NPS of the reconstruction is colored, it should be pointed out that the 

NPS of a single projection is white (i.e., frequency-independent).  My earlier work has 

shown that the NPS of a parallel projection is 2 2
x ya a , where   is the mean number of   

x-ray photons per unit area on the detector.19  This NPS formula assumes that the x-ray 

photons are Poisson-distributed across the detector and that the x-ray converter has an 

MTF of unity at all frequencies.  An amorphous selenium (a-Se) photoconductor 

operated in drift mode is a good approximation for an x-ray converter with this 

property.20 

 

4.  LIMITATIONS OF ZHAO’S MODEL THAT ARE EXPLORED IN THIS 

THESIS 

 One trade-off of DBT is resolution loss in the projection images as a result of 

oblique x-ray incidence.  Zhao’s model possesses an important limitation in making the 
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assumption that the MTF and NPS of each projection can be approximated by their value 

at normal incidence.  In calculating the 3D transfer functions in stage 4 of the cascade, 

this assumption is evident in Eqs. (1.3) and (1.4), as Th and Wh are factored out of the 

summation over all projections.  This step is justified only if the transfer functions for 

each projection are identical.  In order to model the consequences of oblique x-ray 

incidence in this thesis, I extend Swank’s analytical formulation of the transfer functions 

of x-ray fluorescent screens to oblique incidence (Chapter 2).21  This approach differs 

from previous research on oblique incidence in that closed form solutions for the transfer 

functions are obtained, providing greater insight into the underlying detector physics than 

empirical studies22 or Monte Carlo simulations.23 

 Because x rays are emitted from the focal spot in all directions, the incident angle 

is spatially variant at each point on the detector.  In this thesis, I demonstrate that the 

transfer functions for each projection vary at each point on the detector as a result of this 

property.21  Unlike Zhao’s paper which modeled a parallel beam geometry, I analyze the 

spatial anisotropy of the transfer functions by modeling a divergent beam geometry. 

 In Zhao’s model, the x and y dimensions of the voxels in the reconstruction are 

chosen to match the detector element size.  Hence, the highest frequency that can be 

resolved in each slice is the alias frequency of the detector.  This thesis considers 

reconstruction grids with much smaller pixelation in order to visualize higher frequencies 

(Chapter 3).24  Because oblique x-ray incidence shifts the image of an object in sub-pixel 

detector element increments with each increasing projection angle, it is demonstrated that 

DBT is capable of super-resolution (i.e., sub-pixel resolution).  For analytical proof of 
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super-resolution, a theoretical framework is developed in which the reconstruction of a 

high frequency sinusoidal input is calculated.  The feasibility of super-resolution is also 

validated experimentally by acquiring images of a bar pattern phantom with frequencies 

higher than the detector alias frequency.  Super-resolution cannot be demonstrated using 

Zhao’s work, since it does not model the sub-pixel shifts in the image of an object 

between projections. 

 This thesis shows that the existence of super-resolution is dependent on position 

in the reconstruction and on the directionality of the input frequency.  Super-resolution is 

feasible over a broad range of positions if the test frequency is oriented along the tube 

travel direction (x), but is achievable at fewer positions if the test frequency is oriented 

along the chest wall-to-nipple direction (y).24  In Zhao’s model, the spatial anisotropy of 

image quality within the plane of reconstruction is not demonstrated. 

 Following convention, Zhao’s paper assumes that slices in a DBT reconstruction 

should only be created using planes parallel to the breast support.  This thesis 

demonstrates that slices can also be generated along oblique directions through the same 

volume, analogous to multiplanar reconstructions in CT.  To investigate the visibility of 

individual frequencies in oblique planes, the reconstruction of a sinusoidal input is 

calculated.  Unlike Chapter 3 in which the sinusoidal input is parallel to the breast 

support, the object is oriented at an angle (i.e., “pitch”) in the following two chapters on 

oblique reconstructions (Chapters 4 and 5).  By comparing the signal in the 

reconstruction against the attenuation coefficient of the sine plate, this thesis generalizes 

Zhao’s calculation of in-plane OTF to a slice along any pitch in the reconstructed 
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volume.  This formulation differs from Zhao’s model, which is limited to the 0° pitch 

parallel to the breast support. 

 As demonstrated by Zhao, a cross section of the 3D OTF resembles a double cone 

[Figure 1.3(b)] in any plane perpendicular to the fy axis (namely, the fx-fz planes of 

Fourier space).  This region is termed the Fourier double cone (FDC) throughout this 

thesis, even though it is not 3D in the strict sense of a cone.  The opening angle of the 

FDC matches the angular range of the scan.  Although the 3D OTF is zero along pitches 

outside the opening angle of the FDC, the in-plane OTF is not zero along these pitches.  

This thesis demonstrates that the in-plane OTF can be calculated by integrating the       

3D OTF along the direction perpendicular to the plane of the slice.  In Zhao’s work, the 

in-plane OTF is found by integrating the 3D OTF along the z direction; this formulation 

presumes that the slice is parallel to the breast support (i.e., the xy plane). 

 

5.  DYNAMIC RECONSTRUCTION AND RENDERING 

 In order to demonstrate the existence of super-resolution in experimental images 

(Chapters 3 and 5), it is necessary to perform the reconstruction on a grid with smaller 

pixelation than the detector.  In this thesis, I use a state-of-the-art commercial prototype 

reconstruction solution (BrionaTM, Real Time Tomography, Villanova, PA) for this 

purpose.25  This software allows the user to magnify a region in the reconstruction in real-

time at higher resolution than the detector.  Although it is possible to interpolate a 

reconstruction performed with the same resolution as the detector, the magnified image 

that results does not support super-resolution. 
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 The BrionaTM software uses a backprojection filtering reconstruction algorithm in 

which the backprojection transformation is performed using a Graphics Processing Unit 

(GPU).  This approach allows the user to change the depth and tilt angle of the 

reconstruction plane in real-time, analogous to how a radiologist would dynamically view 

a 3D reconstruction for CT.  Backprojection filtering is implemented instead of filtered 

backprojection in order to minimize computation time.  Since filtering and backprojection 

are linear operations, their order can be switched with no impact on the final result.  The 

BrionaTM software is an important tool for validating oblique reconstructions in 

experimental images in Chapters 4 and 5 of this thesis. 

 In Zhao’s model, the reconstruction consists of a stack of slices with 1.0 mm 

thickness.  As a result, a small object that spans two adjacent slices (e.g., a calcification) 

will appear blurry.  Bakic et al. demonstrated that the size of a small object is determined 

with 50% error if it is 0.6 mm from the plane of focus.26  In order to minimize blurring, 

the BrionaTM software can generate a slice at a depth corresponding to the precise 

position at which the object is in focus.  The slice thickness is effectively zero in contrast 

to Zhao’s work. 

 

6.  THESIS ROADMAP 

 In this thesis, I develop a model of image quality for DBT by carefully examining 

the limitations of Zhao’s linear systems formulation (Figure 1.5).  My thesis begins by 

analyzing image quality in individual projections (Chapter 2).  Although degradation in 

image quality due to oblique x-ray incidence has been studied in cesium iodide (CsI) 
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phosphors with empirical data22 and amorphous selenium (a-Se) direct converting 

detectors using Monte Carlo simulations,23 no one has performed a theoretical analysis of 

the consequences of oblique x-ray incidence.  The purpose of Chapter 2 is to extend 

Swank’s analytical formulation of the transfer functions of x-ray fluorescent screens to 

oblique x-ray incidence.21 

 In assessing image quality in the reconstruction (Chapters 3-5), a significant 

component of the remainder of my thesis is to analyze a conceptual test object known as 

a “sine plate”.  This object is a thin strip whose attenuation coefficient varies sinusoidally 

(Figure 1.1).  Increasing the frequency of the object simulates small closely-spaced 

structures such as microcalcifications, which are early indicators of cancer.  The sine 

plate has led to two important discoveries in DBT.  In my work on super-resolution 

(Chapter 3), I show that a reconstruction can resolve higher frequencies than each 2D 

projection.24  The clinical impact of this finding is improving the visibility of 

microcalcifications; an early variant of this work earned the Best Student Paper Award at 

the 2011 SPIE Medical Imaging Conference.27  By orienting the long axis of the sine 

plate along various angles, I later demonstrate that reconstructions are achievable in 

obliquely pitched planes (Chapters 4-5).  This work shows that some objects are more 

easily visualized in oblique planes instead of conventional planes that are parallel to the 

breast support. 
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Figure 1.5: Thesis roadmap.  In this thesis, image quality in DBT is analyzed separately 
in projection images (Chapter 2) and in the reconstruction (Chapters 3-5). 
 

 Finally, Chapter 6 discusses avenues for future research by focusing on how the 

model of image quality developed in this thesis can be used to optimize DBT systems.  

One area for future research is investigating the trade-offs between long and short scan 

time in DBT systems with continuous tube motion and patient motion.  My preliminary 

research on this topic earned the Runner-Up to the Best Student Paper Award at the 2012 

SPIE Medical Imaging Conference. 
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CHAPTER 2 

 

Optimization of Phosphor-Based Detector Design for Oblique 

X-Ray Incidence in Digital Breast Tomosynthesis 

 

This chapter is based on a peer-reviewed article published in Medical Physics 38(11), 

6188-202 (2011). 
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1.  INTRODUCTION 

 In many radiographic studies, non-normally (i.e., obliquely) incident x rays 

provide a source of blurring at the periphery of the detector due to the divergence of the 

x-ray beam emitted from the focal spot.  Que and Rowlands proposed an analytical model 

of the resolution loss due to oblique incidence by deriving an expression for the 

modulation transfer function (MTF) of amorphous selenium (a-Se) detectors from first 

principles.1  Their work assumes that the detector is operated in drift mode, so that the 

point spread function (PSF) for normal incidence is a delta function and hence the MTF 

for normal incidence is unity at all frequencies.2 

 Oblique incidence is more readily observed in digital mammography (DM) than 

many other imaging studies.  A DM detector is placed closer to the focal spot than most 

modalities3 to counteract the loss in x-ray penetration resulting from the use of relatively 

low energies (~ 20 keV).4-6  The drawback of decreasing the source-to-detector distance 

is increasing the angle of incidence relative to the normal, especially at the edges of the 

detector.  For example, the maximum angle of incidence is 25° for a DM system with a 

detector field-of-view (FOV) of 24 cm × 30 cm and a source-to-image distance of 70 cm 

measured at the midpoint of the chest wall. 

 In digital breast tomosynthesis (DBT), low dose x-ray projection images are 

acquired over a limited range of angles around the breast, and sharply in-focus slices at 

all depths of the breast volume are generated using image reconstruction techniques.  

Preliminary studies indicate that DBT provides increased sensitivity and specificity 

relative to DM for the early detection of breast cancer in women.7  One shortcoming of 
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DBT, however, is that it is more directly impacted by the resolution loss due to oblique 

incidence than DM.  The maximum projection angle in DBT can be as large as 20° or 

30°, and the angle of incidence at the edges of the detector is even higher if one takes into 

account the divergent x-ray beam geometry.  While some DBT systems incorporate a 

rotating detector to counteract changes in obliquity, many systems employ a stationary 

detector. 

 Mainprize et al. experimentally demonstrated the resolution loss due to oblique 

incidence in cesium iodide doped with thallium (CsI:Tl), a structured phosphor-based 

detector, using the slanted edge technique to measure MTF.8  The authors showed that at 

10° incidence, the MTF degradation becomes comparable to the resolution loss 

associated with other common sources of image blurring, such as the blurring of the focal 

spot and the lateral spread of visible light within the scintillator.  At 40° incidence, the 

MTF is reduced considerably; for example, at 5 line pairs per mm (lp/mm), the MTF is 

degraded by 35% to 40% over a broad range of kVp and target-filter combinations. 

 While Mainprize et al. did not measure noise power spectra (NPS), Hajdok and 

Cunningham have calculated NPS using Monte Carlo simulations of a-Se.3  Their work 

demonstrated that unlike MTF, NPS has minimal angular dependence.  Since the 

detective quantum efficiency (DQE) is dependent upon the square of the MTF, Hajdok 

and Cunningham have shown that the DQE degradation with oblique incidence at high 

frequencies is more pronounced than the MTF degradation. 

 Although oblique incidence has been studied experimentally and using Monte 

Carlo simulations, a theoretical treatment has been lacking.  For this reason, the purpose 
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of this chapter is to extend Swank’s calculations9 of the transfer functions of turbid 

granular phosphors to oblique incidence.  Building off our previous work on oblique 

incidence,10 we analyze the light diffusion equations in a non-structured scintillator such 

as gadolinium oxysulfide doped with terbium (Gd2O2S:Tb), which is commonly used in 

breast imaging and which can reasonably approximate other detector materials.  The 

theoretical formulation of this work differs from the one proposed by Que and Rowlands 

in not making the assumption that the PSF for normal incidence is a delta function.  

Ultimately, the analytical model is used as a tool for optimizing the design of the 

phosphor for oblique incidence. 

 

2.  METHODS 

2.1.  Transfer Functions for Front-Screen Configuration 

 The optical transfer function (OTF), NPS, and DQE of a turbid granular phosphor 

are derived here from first principles for all angles of incidence.  The Boltzmann 

transport equation may be used to model the spread of visible light in a turbid phosphor.  

A first-order, steady state solution to the Boltzmann transport equation is a diffusion 

equation of the form11 

 2 2( ) ( ) ( )S    r r r ,                                                           (2.1) 

where (r) is the product of the density of the secondary carriers (i.e., the optical 

photons) with the diffusion constant, σ is the reciprocal of the mean diffusion length of 

the secondary carriers, and S(r) is the source function.  The diffusion equation is a useful 

approximation to the Boltzmann transport equation provided that three criteria are met: 
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(1) solutions for (r) are determined far from the x-ray source S(r) relative to the mean 

free path of optical scatter; (2) the optical properties of the phosphor possess no 

discontinuities; and (3) the probability of optical absorption is small compared against the 

probability of optical scatter.12  This model has been used by Swank for normal 

incidence9 and has shown good agreement with experimental data.12, 13 

 

 

Figure 2.1: Illustration of oblique x-ray incidence in a phosphor.  In terms of delta 
functions, the source function S(r) at the depth z0 of the phosphor is found from 
trigonometry to be 0 0( tan ) ( ) ( )x z y z z     , where θ is the angle of x-ray incidence 

relative to the normal.  The figure assumes a front-screen configuration in which x rays 
are incident on the backing at z = 0 before striking the photocathode at z = T.  Reversing 
the direction of the arrowhead of the x-ray beam converts the front-screen configuration 
to a back-screen configuration. 
 

 As shown in Figure 2.1, the source function S(r) in Eq. (2.1) may be modeled as 

the point (z0tanθ, 0, z0) along the x-ray path length, where z0 is depth within the 

scintillator of total thickness T and where θ is the angle of incidence relative to the 

normal.  In terms of delta functions, S(r) can be written as 

 0 0( ) ( tan ) ( ) ( )S x z y z z     r .                                                                  (2.2) 
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Using the Fourier representation of the delta function,14 the source function can 

equivalently be expressed as the integral 

 02 [( tan ) ]

0( ) ( ) x yi x z y

x yS z z e d d     
   

 
   r .                                                (2.3) 

Defining ν as the 2D spatial frequency vector with components νx and νy, solutions to   

Eq. (2.1) can be written in the form 

 2 ( )( , , ) ( ) x yi x y

x yx y z z e d d     
  

 
   k .                                                        (2.4) 

Substituting Eqs. (2.3)-(2.4) into Eq. (2.1), it can be shown that 

 0

2
tan2

02
( )xik zd

q e z z
dz

     k
k ,                     (2.5) 

where 

 2 2 2 2
x yq k k   ,                                        (2.6) 

 2k ν .                        (2.7) 

To solve Eq. (2.5) for k(z), one can apply integral transform techniques.15, 16  Denoting 

the Laplace transform of k(z) as k(p), the transform of the differential equation is 

 0 0tan2 2
1 2( ) ( ) xik z pzp q p C p C e e       k ,                                                 (2.8) 

where C1 and C2 are the constants of integration.  Solving for k(p) and taking the 

inverse transform generates the following piece-wise expression for k(z). 
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The constants C1 and C2 can now be determined from boundary conditions concerning 

secondary carrier currents directed toward the planes at z = 0 and z = T.  In terms of the 

inverse relaxation length τ, the secondary carrier currents across any plane of constant z 

are 

 left

1
( )

2

d
j z

dz

    
,         (2.10) 

 right

1
( )
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d
j z
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    
 .                                          (2.11) 

In the right-hand side of the two equations, the first term models the effusion current, 

while the second term comes from Fick’s law.  The first boundary condition is 

determined by the reflectivity r0 of the plane at z = 0.  Noting that jright(0) = r0 jleft(0), one 

finds 
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 ,          (2.12) 

where      
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.                                                       (2.13) 

The second boundary condition is determined from the reflectivity r1 of the boundary at  

z = T, as stipulated by the expression jleft(T) = r1 jright(T).  Defining ρ1 similar to ρ0 and 

noting that the boundary conditions hold for each Fourier component k of , it can be 

shown that 
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 2 0 1C C  .                                                          (2.15) 

Consistent with Swank’s approach, the photocathode is defined by the plane z = T and the 

backing is defined by the plane z = 0, as diagrammed schematically in Figure 2.1.  The 

OTF of the scattering process, G(ν, z0), is then determined for a point source from the 

expression 

 1
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kν .                                               (2.16) 

Hence, 
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ν .            (2.17) 

To calculate the OTF of the entire phosphor, one multiplies Eq. (2.17) by the relative     

x-ray signal as a function of the depth z0 
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where μ is the linear attenuation coefficient of the phosphor, and then integrates over the 

phosphor thickness.  Assuming a front-screen (F) configuration in which x rays are first 

incident on the backing at z = 0 before striking the photocathode at z = T, the OTF is thus 

 0 0 00
( ) ( ) ( , )
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F FG N z G z dz ν ν         (2.19) 

 
( tan ) ( tan )

0 0
sec

sec ( )( 1) ( )( 1)
          

1 tan tan

x xik T ik T

T
x x

q e q e

e ik ik

   

 

   
   

   


 

    
     

,(2.20) 

where 
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 secq     .                  (2.22) 

The MTF is found from the normalized modulus of the OTF.17 

 In the absence of outside noise sources, the quantum NPS or WF(ν) is calculated 

by integrating the product of NF(z0) with |G(ν, z0)|
2 from z0 = 0 to z0 = T. 
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   (2.24) 

With the OTF and quantum NPS known, it is now possible to determine the DQE.  From 

the work of Nishikawa, DQE can be formulated as the product of four terms12 

 DQE( ) ( ) ( )Q S C NA A R Rν ν ν ,                                          (2.25) 

where AQ is the x-ray quantum detection efficiency (QDE) determined by the Lambert-

Beer Law as 

 sec1 T
QA e    ,           (2.26) 

AS is the Swank information factor 
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RC(ν) is the Lubberts fraction  
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,         (2.28) 

and RN(ν) is the ratio of the x-ray quantum noise power to the total noise power.  

Assuming a quantum-limited imaging system, RN(ν) is taken to be unity in this work. 
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2.2.  Transfer Functions for Back-Screen Configuration 

 In a similar fashion, the transfer functions for a back-screen (B) configuration can 

be calculated.  Unlike the front-screen configuration, x rays first strike the photocathode 

at z = T before passing through the backing at z = 0.  This modification reverses the 

direction of the x-ray beam in Figure 2.1 without further altering the diagram.  Hence 
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so that the OTF and quantum NPS are found to be 

 
( tan ) ( tan )

0 0
sec

sec ( )( 1) ( )( 1)
( )

1 tan tan

x xik T ik T

B T
x x

q e q e
G

e ik ik

   

 

   
   

   

 

    
     

ν ,  (2.30) 

 

( )2 2 2 2 sec
0 0

2

sec ( )2
0

( ) ( 1) 2( )( 1)

secsec
( )

1 ( ) (1 )

q T T

B T q T

q e q e

q
W

e q e

q

  

  

  
    












 



    
  

   
  

ν .       (2.31) 

Eqs. (2.30) and (2.31) follow from Eqs. (2.19) and (2.23); the subscript “B” is used to 

denote a back-screen. 

  

3.  RESULTS FOR A MODEL DETECTOR 

3.1.  Transfer Functions for Front- and Back-Screen Configurations 

 The OTF, NPS, and DQE calculations are now illustrated for a phosphor with a 

reflective backing (r0 = 1), a non-reflective photocathode (r1 = 0), and optical scatter at 

the diffusion limit (τ → ∞).  In view of the limitations of Swank’s model, a large value of 

τ has been chosen.  As Swank demonstrated in his original paper,9 the MTF of a 

scattering phosphor (τ > 0) is always higher than the MTF a non-scattering phosphor      
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(τ = 0) at low frequencies, but the opposite trend arises at high frequencies.  The 

crossover point of the scattering and non-scattering MTF curves corresponds to the 

frequency beyond which Swank’s model becomes inaccurate.  For very small values of τ, 

the crossover point occurs at relatively low frequencies.  However, for infinite τ, the 

scattering MTF curve never crosses the non-scattering MTF curve between 0 and          

10 lp/mm.  Hence, Swank’s model is increasingly accurate in approaching the diffusion 

limit. 

 In calculating the transfer functions, we assume 20 keV monoenergetic x rays4-6 

and a porous, 100 μm thick Gd2O2S:Tb phosphor with 50% packing density.  The 

attenuation coefficient μ for the porous phosphor is determined by halving the value for a 

crystalline phosphor.12  Since crystalline Gd2O2S has a mass density of 7.34 g/cm3 and a 

mass attenuation coefficient of 36.9 cm2/g for 20 keV x rays,18 the attenuation coefficient 

for porous Gd2O2S is 13.5 mm-1. 

 In Figure 2.2, cross sections of the MTF surface are plotted versus frequency at 

two polar angles (α) of the frequency vector (0° and 90°) for multiple angles of incidence 

and two optical absorption parameters.  The value of the high optical absorption 

parameter   (σ = 20 mm-1) was chosen to match Swank’s example9 in which σT = 2.  In 

practice, the optical absorption can be increased by adding an optical dye to the phosphor.  

Following convention, the polar angle is defined as the angle of the frequency vector 

relative to the x axis, so that the 0° polar angle is only perpendicular to the x-ray beam for 

normal incidence and the 90° polar angle is always perpendicular to the x-ray beam 

(Figure 2.1). 
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 Consistent with Swank’s work at normal incidence, Figure 2.2 demonstrates that 

increasing the optical absorption increases the MTF.  Figure 2.2(a) indicates that 

increasing the angle of incidence decreases the MTF, giving rise to poorer spatial 

resolution in the front-screen configuration.  For example, comparing 30° incidence to 

normal incidence at 5.0 lp/mm (α = 0°), the MTF decreases by 17% in a phosphor with 

no optical absorption and by 15% in a phosphor with high optical absorption.  As 

expected, the MTF has minimal angular dependence orthogonal to the ray of incidence 

[Figure 2.2(c)]. 

 Figures 2.2(b) and 2.2(d) demonstrate that the back-screen configuration has 

superior MTF to the front-screen configuration for all projection angles.  This result has 

been well-established for normal incidence.19, 20  More significantly, Figures 2.2(b) and 

2.2(d) further show that the angular dependence of the MTF is much less pronounced in 

the back-screen configuration than in the front-screen configuration.  For example, 

comparing 30° incidence to normal incidence at 5.0 lp/mm along a 0° polar angle, the 

back-screen MTF decreases by a mere 3%.  Unlike the front-screen, the back-screen 

MTF increases slightly with projection angle for measurements orthogonal to the incident 

ray. 
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Figure 2.2: Modulation transfer function (MTF) at various incident angles.  The 
modulation transfer function (MTF) of a porous Gd2O2S:Tb phosphor is plotted versus 
frequency measured along 0° and 90° polar angles for multiple incident angles (θ = 0°, 
10°, 20°, 30°) and two optical absorption parameters (σ = 0, 20 mm-1).  The scintillator 
possesses a reflective backing, a non-reflective photocathode, optical scatter at the 
diffusion limit, and quantum-limited noise.  Also, the phosphor thickness is 100 μm, and 
the incident x-ray energy is 20 keV.  As shown, the front-screen configuration has 
considerably more angular dependence than the back-screen configuration. 
 

 In Figure 2.3, normalized NPS (NNPS) is plotted versus frequency for the same 

scintillator.  Like MTF, NNPS increases with increasing optical absorption for all angles 

of incidence.  Unlike MTF, NNPS is independent of the directionality of the frequency 
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vector.  Over projection angles typical of DBT, the angular dependence of the NNPS is 

minimal.  For example, comparing 30° incidence to normal incidence at 5.0 lp/mm in a 

front-screen configuration, NNPS decreases by 8% in a phosphor with no optical 

absorption and by 4% in a phosphor with high optical absorption.  In a back-screen 

configuration, NNPS increases slightly by 5% and 2%, respectively. 

 

 

Figure 2.3: Normalized noise power spectra (NNPS) at various incident angles.  
Normalized noise power spectra (NNPS) is plotted versus frequency.  NNPS is 
independent of the directionality of the frequency vector.  While front-screen NNPS 
decreases with projection angle, back-screen NNPS increases slightly with projection 
angle.  The plots implicitly share a legend with Figure 2.2. 
 

 Figure 2.4 shows DQE versus frequency.  In both a front- and back-screen 

configuration, Figures 2.4(a) and 2.4(b) demonstrate that for measurements made along a 

0° polar angle, DQE increases with projection angle at low frequencies and decreases 

with projection angle at high frequencies.  At low frequencies, the angular dependence of 

the x-ray quantum detection efficiency (AQ) is responsible for the DQE increase.  In 

calculating AQ using Eq. (2.26), the x-ray path length increases from the phosphor 
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thickness T with normal incidence to Tsecθ with oblique incidence; hence a greater 

number of x rays are converted to visible light.  At high frequencies, the degradation in 

DQE with increasing projection angle arises from the combined angular dependencies of 

the OTF and NPS.  The high frequency DQE for the front-screen configuration is lower 

than that of the back-screen configuration, and its degradation with projection angle is 

much more pronounced.  For example, at 5.0 lp/mm in a front-screen irradiated at a 30° 

angle, the DQE decreases by 20% relative to normal incidence.  In the back-screen 

configuration, the relative decrease in DQE is less than 5%. 

 In the direction orthogonal to the incident ray, DQE increases with projection 

angle over a very broad range of frequencies [Figures 2.4(c) and 2.4(d)].  Comparing 30° 

incidence with normal incidence at 5.0 lp/mm in a front-screen configuration, DQE 

increases by 6% in a phosphor with no optical absorption and by 4% in a phosphor with 

high optical absorption.  Using a back-screen configuration, the relative increase in DQE 

is approximately twice as high. 
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Figure 2.4: Detective quantum efficiency (DQE) at various incident angles.  
Detective quantum efficiency (DQE) is plotted versus frequency.  Along a 0° polar angle, 
DQE increases with projection angle at low frequencies and only decreases with 
projection angle at high frequencies.  The front-screen has much more angular 
dependence than the back-screen at very high frequencies.  For measurements orthogonal 
to the incident ray (90° polar angle), DQE increases with projection angle over a very 
broad range of frequencies in both configurations.  The plots implicitly share a legend 
with Figure 2.2. 
 

 In Figure 2.5, the angular dependence of the Swank factor (AS) used for 

calculating the DQE is studied.  Swank has shown that AS provides a measure of the 

fluctuation in signal generated from each x-ray photon due to variability in the absorbed 



 37  

energy of each interacting x ray and in the number of secondary carriers generated from 

each interacting x ray.21  Figure 2.5 demonstrates that in a phosphor with no optical 

absorption, the Swank factor is unity at all projection angles for either the front- or back-

screen configuration.  By contrast, in a phosphor with high optical absorption, the Swank 

factor has slight angular dependence over projection angles typical of DBT.  For 

example, comparing 30° incidence to normal incidence, AS increases by 0.3% in a front-

screen configuration and by 0.5% in a back-screen configuration.  At very oblique angles 

approaching shearing incidence (θ = 90°), the Swank factor increases sharply to unity. 

 

 

Figure 2.5: Variation in Swank factor and DQE(0) with incident angle.  The Swank 
information factor (AS) has no angular dependence in a phosphor lacking optical 
absorption and slight angular dependence over typical incident angles in a phosphor with 
high optical absorption.  DQE(0) has greater relative variation with incident angle.  Both 
AS and DQE(0) increase sharply to unity at angles approaching shearing incidence          
(θ = 90°). 
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 Unlike AS, DQE(0) is projection angle dependent for all possible optical 

absorption parameters.  For both configurations, the relative increase in DQE(0) 

comparing 30° incidence to normal incidence is 6% in a phosphor with no optical 

absorption and 7% in a phosphor with high optical absorption.  The angular dependence 

of DQE(0) is therefore more pronounced than the Swank factor. 

 

3.2.  Anisotropy of the Transfer Functions over the Detector Area 

 Because the focal spot of a DBT system emits x rays in all directions, the angle of 

incidence is spatially variant at each point on the detector.  Assuming a stationary 

detector whose center-of-rotation (COR) coincides with the midpoint of the chest wall, 

the angle of incidence relative to the normal at each point (x, y) on the detector may be 

determined from the expression 
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where h is the source-to-COR distance and Δ is the nominal projection angle (i.e., the 

angle of the x-ray tube arc relative to the normal at the COR).  In deriving this result, the 

phosphor thickness (T) is taken to be negligible compared against the source-to-COR 

distance (h).  Also, the chest wall defines the x axis of the detector and its midpoint the 

origin.  For a 24 cm × 30 cm field-of-view (FOV) and a source-to-COR distance of       

70 cm, the angle θ is plotted versus the length (x) and the width (y) of the detector for the 

central projection (Δ = 0°) and an oblique projection (Δ = 20°) in Figure 2.6.  In the 

central projection [Figure 2.6(a)], the angle of incidence relative to the normal varies 
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between 0° and 25°, and in the oblique projection [Figure 2.6(b)], it varies between 10° 

and 35°.  For either case, the maximum angle is found at a corner of the FOV opposite 

the chest wall. 

 

 

Figure 2.6: Variation in the incident angle over the detector area.  The angle of 
incidence relative to the normal is plotted versus position along the detector for (a) the 
central projection and (b) an oblique projection.  The DBT system has a source-to-COR 
distance of 70 cm, and the nominal projection angle in (b) is 20°. 
 

 Like the angle of incidence, the transfer functions of the phosphor are spatially 

variant across the detector area (Figure 2.7).  To illustrate the spatial anisotropy of one of 

the transfer functions, a surface plot of front-screen DQE versus position along the 

detector is shown for the frequency 5.0 lp/mm in a phosphor with high optical absorption 

assuming a 0° polar angle for the frequency vector.  In the central projection           

[Figure 2.7(a)], the front-screen DQE varies between 0.34 and 0.30 (12% decrease), and 

in the oblique projection [Figure 2.7(b)], it varies between 0.33 and 0.24 (27% decrease).  

Although not plotted in the figure, one can show that the back-screen DQE has much less 

variation over the detector area in either projection (< 4% decrease). 
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Figure 2.7: Variation in DQE over the detector area at a fixed frequency.  The 
anisotropy of the transfer functions over the detector is illustrated by plotting the front-
screen DQE at a fixed spatial frequency (5.0 lp/mm) versus areal position, assuming high 
optical absorption (σ = 20 mm-1) and frequency measurements along a 0° polar angle.  
The oblique projection has greater variation in DQE over the detector area than the 
central projection.  The directionalities of the x and y axes are flipped relative to      
Figure 2.6 to improve visualization of the surfaces. 
 

3.3.  Optimization of Phosphor Thickness for Oblique Incidence 

 In addition to illustrating the impact of oblique incidence on the transfer functions 

of a phosphor, the analytical models developed in this work can be used as a platform for 

optimizing detector design over the range of projection angles used in DBT.  One 

important element in the design of a phosphor is its x-ray quantum detection efficiency 

(QDE).  In Figures 2.8-2.9, DQE at a fixed frequency is plotted versus QDE at normal 

incidence to investigate whether DQE can be maximized by varying QDE.  Both figures 

have been generated using the same phosphor parameters analyzed in Figures 2.2-2.5, 

except the phosphor thickness T is now left as a variable which allows QDE at normal 

incidence to vary. 
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In Eq. (2.33), AQ0 denotes the QDE at normal incidence. 

 

 

Figure 2.8: Effect of phosphor thickness on DQE(0).  For four angles of incidence and 
two optical absorption parameters, the dependency of DQE(0) on QDE at normal 
incidence is analyzed.  With no optical absorption, DQE(0) for both front- and back-
screen configurations is optimized by large QDE.  With high optical absorption, the 
maximum DQE(0) for the front-screen occurs at intermediate QDE, while relatively high 
DQE(0) for the back-screen occurs over a broad range of large QDE.  The optimal QDE 
for the front-screen is angularly dependent. 
 

 Figure 2.8 illustrates that in a front- or back-screen configuration with no optical 

absorption, DQE(0) can be optimized by manufacturing a phosphor with a very large 

thickness (100% QDE).  By contrast, in a phosphor with high optical absorption, the 

dependency of DQE(0) on QDE is quite different for the two configurations.  In a front-

screen, DQE(0) is maximized by an intermediate QDE which is projection angle 

dependent, favoring smaller thicknesses at larger angles.  For example, in the 0° and 30° 
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projections, the optimal QDE at normal incidence are 0.73 and 0.72 corresponding to    

97 μm and 94 μm thicknesses, respectively.  By contrast, the back-screen DQE(0) attains 

relatively high values over a broader range of QDE.  With 100% QDE, DQE(0) plateaus 

to 0.64 and 0.68 for the 0° and 30° projections, respectively. 

 In Figure 2.9, the dependency of DQE on QDE is analyzed at a higher frequency 

(5.0 lp/mm).  The high frequency DQE for the front-screen is maximized at an 

intermediate QDE for both optical absorption parameters.  For measurements made along 

the 0° polar angle in a front-screen with no optical absorption, the optimal QDE values at 

normal incidence are 0.60 for the 0° projection and 0.54 for the 30° projection, 

corresponding to 68 μm and 58 μm thicknesses, respectively [Figure 2.9(a)].  With high 

optical absorption, the respective QDE optima are 0.55 and 0.51 (59 μm and 52 μm 

thicknesses).  In the direction orthogonal to the incident ray, the optimal QDE have less 

projection angle dependence [Figure 2.9(c)]. 

 Unlike the front-screen configuration, the back-screen configuration supports 

relatively high DQE over large QDE values at 5.0 lp/mm.  For measurements made along 

the 0° polar angle [Figure 2.9(b)], the back-screen DQE plateaus to 0.51 and 0.48 for the 

0° and 30° projections, respectively, in a phosphor with no optical absorption (0.46 and 

0.45 with high optical absorption).  For measurements made along the orthogonal 

direction, the back-screen DQE attains a higher plateau; also, the asymptote actually 

increases slightly with projection angle [Figure 2.9(d)]. 
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Figure 2.9: Effect of phosphor thickness on the high-frequency DQE.  At 5.0 lp/mm, 
DQE is plotted versus QDE at normal incidence.  In the front-screen configuration, DQE 
is optimized by an intermediate QDE.  The optimal QDE is projection angle dependent, 
shifting to lower values (thinner phosphors) at larger angles.  By contrast, in the back-
screen configuration, relatively high DQE is supported over large QDE values for all 
projection angles.  The plots implicitly share a legend with Figure 2.8. 
 

 To illustrate the dependence of DQE on both frequency and QDE, a surface plot 

is shown in Figure 2.10 assuming 30° incidence, high optical absorption, and frequency 

measurements along the 0° polar angle.  The curvature of the front-screen surface 

demonstrates that the value of QDE which maximizes DQE decreases with frequency.  



 44  

By contrast, the back-screen surface shows that DQE is not optimized by a single QDE 

value.  Instead, at all frequencies, the back-screen supports relatively high DQE over very 

large QDE. 

 

 

Figure 2.10: Optimization of phosphor thickness at various frequencies.  A surface 
plot shows the dependence of DQE on both frequency and QDE at normal incidence, 
assuming θ = 30°, σ = 20 mm-1, and a 0° polar angle for the frequency vector.  At all 
frequencies, the front-screen DQE is optimized by an intermediate QDE.  By contrast, the 
back-screen DQE attains relatively high values over a broad range of large QDE (thick 
phosphors). 
 

 Figures 2.8-2.10 demonstrate that the optimal thickness of a front-screen is both 

projection angle dependent and frequency dependent.  In Figure 2.11, the combined 

dependence is shown explicitly in a surface plot, assuming a 0° polar angle and high 

optical absorption.  The graph was generated in MATLAB R2010b by discretizing a grid 

(60 × 60) of incident angles and frequencies from 0° to 45° and 0 lp/mm to 10 lp/mm, 

respectively.  The optimal thickness which maximizes DQE was determined by the zero 

of the first partial derivative of DQE with respect to phosphor thickness.  Because the 
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zeros of the first DQE derivative cannot be easily solved in closed form, Newton’s 

method was implemented to find the zeros numerically 
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where DF is the symbolic abbreviation for front-screen DQE.  For all projection angles 

and frequencies investigated in the plot, the initial guess (25 μm) and the number of 

iterations (9) provided convergence exceeding ten decimal places.  Figure 2.11 

demonstrates that the optimal phosphor thickness for the front-screen configuration is a 

decreasing function of both incident angle and frequency, ranging from 97 μm (0° 

incidence, 0 lp/mm) to 25 μm (45° incidence, 10 lp/mm). 

 

 

Figure 2.11: Generalization of the optimal phosphor thickness to various incident 
angles and frequencies.  For a front-screen configuration, the dependence of the optimal 
phosphor thickness on both the angle of incidence and frequency is analyzed, assuming  
σ = 20 mm-1 and a 0° polar angle for the frequency vector. 
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4.  COMPARISON WITH RESULTS IN THE LITERATURE 

 This chapter extends Swank’s calculations9 of the transfer functions of turbid 

phosphors to oblique x-ray incidence.  In the limiting case of normal incidence, the 

formulas presented in this chapter exactly reduce to Swank’s results.  Our work is unique 

in modeling the transfer functions for oblique incidence in closed form without making 

the assumption that the PSF of normal incidence is a delta function.1  One benefit of this 

approach is unifying many prior results on oblique incidence under one model.  For 

example, in a front-screen configuration, we demonstrate that oblique incidence degrades 

the MTF, and that the resultant loss in resolution becomes more pronounced with 

increasing frequency and increasing angle.  Although these findings are derived for a 

turbid phosphor such as Gd2O2S:Tb, they are consistent with experimental data on CsI:Tl 

presented by Mainprize et al.8 as well as analytical modeling of a-Se proposed by Que 

and Rowlands.1  On a similar note, we have observed that NPS is degraded with 

increasing projection angle, though to a lesser degree than MTF.  This finding is 

concordant with the prior work of Hajdok and Cunningham,3 who performed Monte 

Carlo simulations of a-Se.  As a final point, we have shown that DQE increases with 

incident angle at low frequencies but only decreases with incident angle at high 

frequencies.  Consistent with the findings of Hajdok and Cunningham, the DQE 

degradation with projection angle at high frequencies is more pronounced than the MTF 

degradation, reflecting the dependency of DQE on the square of MTF. 

 In this work, it has been observed that the Swank factor is angularly dependent, 

but that its variation is small over projection angles typical of DBT.  In particular, it has 
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been shown that the Swank factor changes by no more than 0.5% comparing 0° and 30° 

incidence.  This observation is consistent with Monte Carlo simulations of CsI:Tl 

phosphors conducted by Badano et al., who demonstrated that the variation in the Swank 

factor over projection angles typical of DBT is minimal.22  While the relative change in 

the Swank factor with projection angle is small, the relative increase in DQE(0) is more 

substantial, as it includes the effect of increasing x-ray quantum detection efficiency with 

increasing projection angle. 

 Although our work demonstrates consistency with other studies on oblique 

incidence, it is important to identify fundamental differences between the detectors 

addressed in the comparison.  This work models a turbid phosphor in which visible light 

spreads by optical scatter.  By contrast, prior studies on CsI:Tl8, 22 assume a structured 

phosphor in which needlelike crystals approximately 10 μm in diameter transmit the 

optical photons to the photocathode by total internal reflection, thereby minimizing the 

lateral spread of visible light.19, 23  At a given incident angle, structured phosphors should 

have higher MTF than turbid phosphors for this reason.  Although the transfer functions 

of turbid phosphors are different from structured phosphors, this work demonstrates that 

their angular dependence follows comparable trends.  On a similar note, our model has 

shown concordance with prior studies on oblique incidence in a-Se.1, 3  In a-Se, an 

absorbed x ray ionizes a Se atom, freeing an electron and a hole which migrate to 

different ends of the detector due to an applied electric field.19  In drift mode, the electric 

field is small enough so that the electron and hole do not have sufficient kinetic energy to 

ionize Se atoms and create an avalanche of electron-hole pairs.  Because the electron and 
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hole migrate in a nearly perfect orthogonal path to opposite ends of the detector, the MTF 

of a-Se at normal incidence is approximately unity for all frequencies.2  At higher 

incident angles, the MTF of a-Se decreases with frequency, but is expected to be superior 

to a turbid phosphor since there is no lateral spread of visible light.  The analytical model 

of a-Se developed by Que and Rowlands1 can effectively be derived by using Eq. (2.2) 

for the source function but by eliminating Eq. (2.1) for the diffusion of secondary 

carriers. 

 To our knowledge, this work is the first to investigate the angular dependence of 

the transfer functions of the back-screen configuration.  The consistency of our back-

screen model with expected trends at normal incidence helps to suggest its validity.  For 

example, in accord with experimental data in turbid phosphors,20 we demonstrate that the 

back-screen has higher MTF than the front-screen.  Because optical photons are 

predominately generated near the x-ray entrance surface of the phosphor, visible light 

exhibits less lateral spread before reaching the photocathode if the back-screen 

configuration is used. 

 Consistent with prior authors, this chapter demonstrates that the Swank factor of 

the back-screen is greater than the front-screen.  In experimental measurements on 

Gd2O2S:Tb phosphors at 20 keV, Trauernicht and Van Metter demonstrated that a back-

screen has approximately 5% higher Swank factor than a comparable front-screen.24  

Such a relative change in AS with screen configuration matches the results presented in 

Figure 2.5.  It is evident from Figure 2.5 that the benefits of the back-screen over the 

front-screen should hold with higher incident angles. 
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5.  DISCUSSION 

 This chapter develops an analytical model of the transfer functions of turbid 

phosphors for oblique x-ray incidence.  The results of the model are consistent with prior 

observations on oblique incidence in a range of detector types.  Having an analytical 

model of the transfer functions has in turn led to the development of optimization 

strategies for improving detector design in DBT. 

 One area for optimizing detector design is the choice of a front- or back-screen 

configuration.  Although it is well known that the back-screen has greater MTF than the 

front-screen at normal incidence, back-screen transfer functions have not yet been 

analyzed for oblique incidence.  In this work, it is suggested that the back-screen transfer 

functions should have much less angular dependence than the front-screen, and 

consequently, exhibit less variation with position along the detector.  As a result, a back-

screen configuration may be chosen to optimize the design of a phosphor for oblique 

incidence.  Initially, this result would seem to have no practical impact, since back-

screens are not currently used clinically due to the glass substrate of the thin-film 

transistor (TFT) array for digital signal readout.25-27  If these detectors were operated as 

back-screens, the high attenuation of glass (~ 0.7 mm thick) would prevent a large 

percentage of x rays from reaching the phosphor itself,19 and hence both QDE and DQE 

would be compromised.  Based on new research on flexible organic light-emitting diode 

(OLED) displays, however, TFT arrays may soon be manufactured on a plastic 

substrate.28-34  Because plastic is much less attenuating than glass, operating such a 

detector in a back-screen configuration would not be prohibitive.  Detectors 
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manufactured with plastic have many benefits such as being bendable, light-weight, and 

easy to transport.  These future phosphor-based detectors should preferentially be 

operated as back-screens in order to optimize detector performance for oblique incidence. 

 The analytical model of the transfer functions was ultimately used as a platform 

for optimizing the QDE of the detector for oblique incidence.  This work provides a 

method for determining the QDE that maximizes DQE at any frequency of interest, such 

as the frequency of small microcalcifications or fine cancerous lesions within the breast.  

To our knowledge, this work is the first to show that the optimal QDE is projection angle 

dependent in a front-screen, tending toward lower values (thinner phosphors) with 

increasing projection angle.  Because the incident angle is greatest at the periphery of the 

detector opposite the chest wall, a corollary of this finding is that one beneficial design 

feature would be to reduce thickness at the edges and corners of the phosphor.  Although 

it is beyond the scope of this work to determine a single value for the optimum thickness 

at each point on a DBT detector, future work should be directed at modeling the transfer 

functions of the reconstruction35 and optimizing thickness to maximize the 3D DQE for a 

fixed frequency of interest.  In experimental practice, the optimal thickness should be 

calculated on a case-by-case basis for each detector under consideration, taking into 

account the unique characteristics of the imaging system. 

 In this chapter, it was demonstrated that the back-screen DQE is not optimized by 

a single QDE but instead attains reasonably high values over a broad range of phosphor 

thicknesses.  Hence, the back-screen configuration has an important benefit over the 

front-screen configuration: future detectors with a plastic TFT substrate can be 
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manufactured with very large thickness without degradation in high frequency DQE at 

any projection angle. 

 A discussion of the limitations of this work and directions for future modeling are 

now noted.  One assumption made in the Section 3 is that the incident x-ray beam is 

monoenergetic.  Since the phosphor attenuation coefficient μ is energy-dependent, it is 

important to model polyenergetic x-ray spectra36-38 when studying the phosphor thickness 

which maximizes DQE in a front-screen (Figure 2.11).  Future work should be aimed at 

determining if the angular dependence of the optimal thickness becomes more or less 

pronounced upon varying the kVp and the target-filter combination.  Since Figure 2.11 

was generated assuming a monoenergetic x-ray beam, the reader should take caution 

against directly applying the optimal thickness calculations to any real imaging system. 

 Although a relatively low energy (~ 20 keV) is conventionally chosen to 

maximize contrast between glandular tissue and cancer,4-6 it would be useful to simulate 

higher energies found in dual-energy contrast-enhanced DBT (DE CE-DBT).39-44  In    

DE CE-DBT, low and high energy images are acquired below and above the K edge of 

iodine (33.2 keV) after iodinated contrast is injected into the blood stream,45, 46 and 

contrast uptake is determined using weighted logarithmic subtraction.  Contrast uptake 

can be used to quantify blood flow at the site of a tumor, which exceeds healthy tissue.47 

 Another extension of this work would be to model detector pixelation due to the 

TFT array in which the phosphor is placed in optical contact.25-27  In this setting, the PSF 

is the convolution of the phosphor blurring function with the detector element sampling 

function.48-50  An additional subtlety that may be modeled is the blurring of the focal spot.  
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The MTF of the focal spot is degraded with increasing focal spot size,51 as well as with 

increasing focal spot motion during a continuous DBT scan.35, 52  Our model can also be 

refined by taking into account detector lag and ghosting.53-55  In addition, one can 

incorporate the possibility for an NPS that is not quantum-limited but possesses outside 

noise sources.13 

 A final point of investigation would be to extend this work to a structured 

phosphor, such as CsI:Tl.  In structured phosphors, needlelike crystals transmit the 

optical photons to the photocathode by total internal reflection to minimize the lateral 

spread of visible light.  Structured phosphors have superior spatial resolution to non-

structured phosphors for this reason.19, 23  To model a structured phosphor, the boundary 

conditions for the secondary carrier currents would no longer be determined exclusively 

by the reflectivities of the backing and the photocathode.  Instead, boundary conditions 

would also exist for the reflectivities of the walls of the needlelike crystals.  Recently, 

Freed et al. have proposed an analytical model56, 57 of the PSF of CsI:Tl using a 

competing approach; their model was later generalized to direct-converting detectors.58  

A key step in the derivation of their PSF formula is considering three different functional 

forms (Gaussian, exponential, Lorentzian) to quantify the spread of secondary carriers or 

electron-hole pairs at each depth of the detector material.  Empirically, the authors find 

that the Lorentzian provides the best match to data generated from Monte Carlo 

simulations.  The authors then determine optimal values for the parameters in their model 

by minimizing the normalized differences between the analytical technique and Monte 

Carlo simulations.  Although useful in providing a closed form solution for the PSF, their 
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model is limited in not being derived from first principles.  By contrast, in our current 

work, all results are derived from first principles, and the value of each parameter has 

physical significance.  It would be intriguing to determine whether this chapter could be 

generalized to model the boundary conditions of a structured phosphor and have 

agreement with Freed et al. 

 

6.  CONCLUSION 

 This work develops analytical models of OTF, NPS, and DQE for a turbid 

phosphor irradiated obliquely.  Our analysis differs from much of the previous work on 

oblique incidence in that closed form solutions are obtained from first principles, thereby 

providing greater insight into the underlying detector physics. 

 Ultimately, the model provides a platform for optimizing the design of DBT 

detectors.  For example, in a conventional front-screen configuration, the model is a 

useful tool for optimizing phosphor thickness at various angles of incidence.  Because the 

incident angle is spatially variant across the detector area, the potential merit of designing 

a phosphor with reduced thickness near its periphery has been proposed. 

 This work demonstrates that the transfer functions of the back-screen have less 

angular dependence than the front-screen, and that high DQE is supported over a broader 

range of thicknesses for all incident angles.  As a result, future DBT detectors 

manufactured on a plastic substrate instead of glass should preferentially be operated in 

the back-screen configuration. 
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LIST OF SYMBOLS 

Symbol Meaning 

  Partial derivative operator. 

2  Laplacian operator. 

  Set membership. 

  Laplace transform operator. 

  Set of natural numbers. 

  Polar angle of the 2D spatial frequency vector ν. 

  A term defined by Eq. (2.21) to simplify intermediate calculations. 

  A term defined by Eq. (2.22) to simplify intermediate calculations. 

  Nominal projection angle. 

  Delta function. 

  Angle of x-ray incidence relative to the normal to the detector. 

  X-ray linear attenuation coefficient of the phosphor. 

ν  Spatial frequency vector with components νx and νy. 

j  A quantity defined by Eq. (2.13) that is related to surface reflectivity.  The 

subscripts j = 0, 1 correspond to the phosphor backing and photocathode, 

respectively. 

  Reciprocal of the mean diffusion length of optical photons. 

  Inverse relaxation length (the diffusion limit occurs with τ → ∞). 

(r) Product of photon density and the diffusion constant. 

ψk(z) Fourier transform of (r) in a plane of constant z. 
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AQ X-ray quantum detection efficiency. 

AQ0 X-ray quantum detection efficiency at normal incidence. 

AS Swank information factor. 

B Back-screen configuration (often used as a subscript). 

C1, C2 Constants of integration used in intermediate calculations. 

CE Contrast-enhanced. 

COR Center-of-rotation of x-ray tube, corresponding to the midpoint of the chest 

wall side of the detector. 

D Symbolic abbreviation for detective quantum efficiency. 

DBT Digital breast tomosynthesis. 

DE Dual energy. 

DM Digital mammography. 

DQE Detective quantum efficiency. 

F Front-screen configuration (often used as a subscript). 

FOV Field-of-view. 

G(ν) Optical transfer function found by summing the contributions of each depth z0 

of the phosphor. 

G(ν, z0) Optical transfer function associated with the depth 0 ≤ z0 ≤ T of the phosphor. 

h  Source-to-COR distance for rotating x-ray tube. 

i  Imaginary unit given as 1 . 

j(z) Photon current across plane of constant z. 

k  A quantity equivalent to 2πν. 
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MTF Modulation Transfer Function. 

n  Iteration number for Newton’s Method. 

NPS Noise power spectra. 

N(z0) Relative x-ray signal at the depth z0 of the phosphor. 

OLED Organic light-emitting diode. 

OTF Optical transfer function. 

p  Independent variable of the Laplace transform of a function. 

PSF Point spread function. 

q  A quantity defined in Eq. (2.6) to simplify intermediate calculations. 

QDE Quantum detection efficiency. 

rj Reflectivity of a surface, where j = 0, 1 correspond to the phosphor backing 

and photocathode, respectively. 

RC(ν) Lubberts fraction. 

RN(ν) Ratio of the quantum noise power to the total noise power. 

S(r) Source function, modeled as point-like. 

T Phosphor thickness. 

TFT Thin-film transistor. 

W(ν) Noise power spectra. 

x  Position along the chest wall side of the detector. 

y  Position perpendicular to the chest wall side of the detector. 

0z  Depth within a phosphor (with or without the subscript). 
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CHAPTER 3 

 

Observation of Super-Resolution in Digital Breast Tomosynthesis 

 

This chapter is based on a peer-reviewed article published in Medical Physics 39(12), 

7518-39 (2012). 
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1.  INTRODUCTION 

 Digital breast tomosynthesis (DBT) is a 3D imaging modality in which low dose 

x-ray projections are acquired over a limited angular range about the breast.  Using 

digital image reconstruction techniques, tomographic sections at all depths of the breast 

volume are subsequently generated.  Unlike 2D digital mammography (DM), DBT can 

filter out overlapping anatomical structures which may hide a tumor.  Preliminary studies 

indicate that DBT has greater sensitivity and specificity for cancer detection relative to 

DM.1, 2 

 In conventional practice, the reconstructed slices are generated on planes parallel 

to the breast support.  In order to have the same in-plane resolution in the reconstruction 

as the detector, the pixel size in each reconstructed slice should match that of the detector 

elements.  Using this approach, the highest frequency that can be resolved in the plane of 

reconstruction is the alias frequency of the detector.  This chapter considers the 

possibility for reconstruction grids with much smaller pixelation so that higher 

frequencies can be visualized.  Because non-normal x-ray incidence causes the image of 

an object to be translated in sub-pixel detector element increments with each increasing 

projection angle, it is demonstrated in this work that DBT is capable of super-resolution 

(i.e., sub-pixel resolution). 

 Super-resolution has been well-described in a number of applications involving 

reconstruction from projections,3 including forensics, satellite imaging, computed 

tomography (CT), and magnetic resonance imaging (MRI); however, to our knowledge, 

its potential in DBT has not yet been demonstrated.  An understanding of super-
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resolution and an analysis of how to optimize its presence may prove to be useful for 

designing the highest quality DBT systems.  Although it is possible to improve spatial 

resolution simply by reducing the pixel size of the detector, there are practical lower 

limits on the sizes that can be manufactured.  In addition, one drawback of reducing the 

pixel size is decreasing the mean number of photons incident on each detector element 

and hence decreasing the signal-to-noise ratio (SNR) per pixel according to Poisson 

statistics4 for x-ray distributions.  Clinically, super-resolution should be beneficial to 

diagnostic radiologists by improving the visibility of microcalcifications and other subtle 

signs of breast cancer with no increased radiation dose to the patient. 

 In this chapter, a theoretical framework for investigating super-resolution in DBT 

is developed by calculating the reconstruction of a sine input whose frequency is greater 

than the alias frequency of the detector.  For optimal visualization of high frequencies in 

the 3D image, an infinitesimally fine (i.e., non-pixelated) reconstruction grid is 

considered.  The reconstruction techniques include both simple backprojection (SBP) and 

filtered backprojection (FBP).  In order to investigate the experimental feasibility of 

super-resolution using a commercial DBT system, images of a bar pattern phantom with 

frequencies higher than the alias frequency of the detector were acquired and 

subsequently reconstructed. 
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2.  METHODS 

2.1.  Input Object and Acquisition Geometry 

 An analytical framework for investigating the potential for super-resolution in 

DBT is now developed by calculating the reconstruction of a high frequency sinusoidal 

input.  Accordingly, suppose that a rectangular prism with infinite extent in the x and y 

directions has a linear attenuation coefficient μ(x, y, z) which varies sinusoidally along 

the x direction with frequency f0.  Throughout the remainder of this manuscript, the input 

object will be termed a “sine plate”.  With the xz plane defining the chest wall, the 

frequency vector is therefore oriented parallel to the chest wall side of the breast support.  

Figure 3.1 illustrates a cross section of the sine plate in the xz plane.  As shown, the 

rectangular prism is positioned between z = z0 + ε/2 and z = z0 – ε/2, where z0 is the 

central height of the prism and ε is the prism’s thickness.  Defining the origin O as the 

midpoint of the chest wall side of the detector, the attenuation coefficient may be written 

as 

   0
0 0( , , ) cos 2 ( ) rect

z z
x y z C f x x 


      

 
,                   (3.1) 

where C is a constant denoting the amplitude of the waveform, x0 is a translational shift 

in the waveform relative to the origin, and the rect function is defined by the expression 

 
1   , | | 1/ 2

rect( )
0   , | | 1/ 2

u
u

u


  

.           (3.2) 

By setting the amplitude C to 1/ε, μ(x, y, z) may be normalized5 so that the total 

attenuation found by integrating along the z direction is simply cos[2πf0(x – x0)] for all ε.  
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Provided that |z – z0| ≤ ε, the 1D Fourier transform (1) of Eq. (3.1) along the x direction 

peaks at the frequencies fx = ±f0, and vanishes at all other frequencies.6 

 2
1 ( , , ) ( , , ) xif x

xf y z x y z e dx 
 


           (3.3) 

 0 0 0 02 2 0
0 0                    ( ) ( ) rect

2
if x if x

x x

C z z
e f f e f f  


            

             (3.4) 

Typically, only the positive frequency fx = +f0 is of interest in a physical measurement.  

Thus, although it is non-physical for an attenuation coefficient to vary between negative 

and positive values, formulating μ(x, y, z) by Eq. (3.1) is helpful for a thought experiment 

in interrogating the reconstruction of a single input frequency.  An analysis of the case for 

which the input frequency is oriented along the y direction (i.e., perpendicular to the chest 

wall) is considered separately in the appendix (Section 7). 

 The most general DBT acquisition geometry with a divergent x-ray beam and a 

rotating detector is now modeled.  In acquiring the nth projection, the focal spot emits      

x rays at the nominal projection angle ψn relative to the center-of-rotation (COR) of the 

DBT system.  The COR and the focal spot lie in the plane of the chest wall.  In addition, 

the detector rotates about the y axis at the angle γn relative to the x direction.  The two 

parameters ψn and γn are determined from the nominal angular spacing Δψ and the 

detector gear ratio g by the relations 

 n n                                      (3.5) 

 n
n g

  .             (3.6) 
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For an odd number of N total projections, the index n varies between –(N – 1)/2 and      

(N – 1)/2, and the special case n = 0 defines the central projection. 

 

 

Figure 3.1: Diagram of a sine plate for tomosynthesis reconstruction.  The 3D input 
object is a rectangular prism whose linear attenuation coefficient varies sinusoidally with 
position x parallel to the chest wall side of the breast support.  A 2D cross section of the 
input object through the plane of the chest wall is shown (figure not to scale).  In 
acquiring projection images, the x-ray tube rotates within the xz plane about point B, and 

the detector simultaneously rotates about the y axis.  The primed unit vectors n
i  and n

j  

define the coordinate axes of the plane of the detector for the nth projection. 
 

 As a final step in this section, it is useful to calculate the incident angle at each 

point on the detector.  Following Figure 3.2, the vector from O to an arbitrary point C on 

the detector for the nth projection is 

 1 2OC n nu u  i j


            (3.7)

 1 2 1     ( cos ) ( sin )n nu u u   i j k .          (3.8) 
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The matrix transformation between the primed and unprimed coordinate systems supports 

the transition from Eq. (3.7) to Eq. (3.8). 

 

cos 0 sin

0 1 0

sin 0 cos

n n n

n

n n n

 

 

    
         
         

i i

j j

k k

          (3.9) 

Additional vectors from O to the COR at point B and from the COR to the focal spot at 

point A are 

 OB l k


           (3.10) 

 BA ( sin ) ( cos )n nh h   i k


,        (3.11) 

where l is the COR-to-origin distance and where h is the source-to-COR distance.  In   

Eq. (3.11), it is assumed that for positive values of ψn, the x coordinate of the focal spot at 

A is negative.  This sign convention is chosen so that positive values of ψn cause the x 

component of the trajectory from A to C to be positive for positive values of u1      

(Figure 3.2).  By the summation rules for vectors, the net vector from point C on the 

detector to the focal spot at A is 

 CA OC OB BA   
   

         (3.12) 

 1 2 1      ( cos sin ) ( cos sin )n n n nu h u l h u         i j k .    (3.13) 

Thus the angle of incidence is found from the expression 

 
CA

cos
CA

n
n

n







k

k


 ,          (3.14) 

giving 
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2 2 2

1 2 1

cos( ) cos
arccos

( cos sin ) ( cos sin )
n n n

n

n n n n

h l

u h u l h u

  
   

  
  

      
.   (3.15) 

The dot product in Eq. (3.14) has been computed using Eq. (3.9) to write nk  in terms of 

the unprimed unit vectors. 

 

 

Figure 3.2: Diagram of backprojection angles for tomosynthesis reconstruction.  A 
schematic diagram of the DBT acquisition geometry is shown (figure not to scale).  The 
x-ray beam strikes point C at the angle θn relative to the normal to the detector.  In FBP 
reconstruction, signal at C is backprojected to an arbitrary point E along the incident ray.  
Within the plane of the detector, backprojection is directed toward point F along the 

angle Γn relative to the n
i  axis. 
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2.2.  Detector Signal 

 To calculate the detector signal for each projection, it is useful to perform ray 

tracing through the input object.  We begin by defining the line from the focal spot at A 

to the incident point on the detector at C for the nth projection.  This line can be expressed 

as the parametric equation 

 
1

2

1

cos sin sin

0

sin cos cos

n n n

n n n

x u h h

y w u

z u l h l h

  

  

      
           
            

,                 (3.16) 

where (x, y, z) is a point in 3  and w is a free parameter.  The focal spot at A has been 

defined to correspond with w = 0, while the incident point at C has been defined to 

correspond with w = 1.  The x-ray path length n through the input object for the nth 

projection image is determined from the intersection of Eq. (3.16) with the planes            

z = z0 + ε/2 and z = z0 – ε/2.  The values of w for these two points are 

 0

1

( / 2) cos

sin cos
n

n
n n

z l h
w

u l h

 
 

   


 
        (3.17) 

 0

1

( / 2) cos

sin cos
n

n
n n

z l h
w

u l h

 
 

   


 
,        (3.18) 

where nw  and nw  correspond to the entrance and exit points of the x-ray beam through 

the input, respectively.  For the nth projection image, total x-ray attenuation μ(n) is now 

found by integrating μ(x, y, z) along n. 

 ( )
n

n ds             (3.19) 
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The differential arc length ds along n is 

 
2 2 2

dx dy dz
ds dw

dw dw dw
            
     

                   (3.20) 

 2 2 2
1 2 1    ( cos sin ) ( cos sin )n n n nu h u l h u dw             (3.21) 

      cos( ) cos sec( )n n n nh l dw       .       (3.22) 

Eq. (3.22) follows from Eq. (3.15).  Substituting Eq. (3.22) into Eq. (3.19) yields the total 

x-ray attenuation 

  0 1( ) cos 2 ( cos sin )
n

n

w

n n n nw
n f u h w dw     




                              (3.23)     
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sin 2 ( cos sin )
           

2 ( cos sin )
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n
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f u h w

f u h

   


   

  





     
      


                           (3.24) 

where 

  cos( ) cos secn n n n nC h l                                   (3.25) 

 0 02 ( sin )n nf h x     .                               (3.26) 

Using a sum-to-product trigonometric identity for real numbers b1 and b2 

 1 2 1 2
1 2sin( ) sin( ) 2cos sin

2 2

b b b b
b b

         
   

,                                                (3.27) 

one may rewrite Eq. (3.24) as 

 
0 1

0 1

( ) ( )cos ( cos sin )( )

              sinc ( cos sin )( )

n n n n n n n n

n n n n

n w w f u h w w

f u h w w

     

 

   

 

      
    


                (3.28)  
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 
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         

 
           (3.29) 

where 

 
sin( )

sinc( )
u

u
u




 .                     (3.30) 

The transition from Eq. (3.28) to (3.29) follows from Eqs. (3.17) and (3.18).  Eq. (3.29) 

possesses a singularity at 1 ( cos )cscn nu l h    , the point at which the denominator 

vanishes.  For typical acquisition geometries, this singularity is not expected to 

correspond to a position on the detector, since neither the attenuation coefficient μ(x, y, z) 

nor the path length n should have an infinity. 

 Eq. (3.29) provides an expression for signal intensity versus position along the 

detector, assuming that the detector is non-pixelated and possesses an x-ray converter 

whose modulation transfer function (MTF) is unity at all frequencies.  An amorphous 

selenium (a-Se) photoconductor operated in drift mode is a good approximation for an   

x-ray converter with these properties.7  In a clinical setting, a-Se is placed in contact with 

a plate of amorphous silicon (a-Si) in which a thin-film transistor (TFT) array samples 

detector signal in pixels (i.e., detector elements).8-10  The logarithmically-transformed 

signal in the mth detector element for the nth projection is 

 
( 1) ( 1/ 2)

1 2

( 1/ 2)
( , ) ( )

y y x x

y y x x

a m a m

a m a m
x y

du du
n n

a a
 

 


  m  .                                       (3.31) 
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In Eq. (3.31), mx and my are integers used for labeling detector elements, and ax and ay 

denote detector element lengths in the directions parallel and perpendicular to the chest 

wall, respectively.  In the special case of square detector elements, it is assumed that      

ax = ay = a.  Detector elements are centered on u1 = mxax and u2 = (my + 1/2)ay, where 

xm   and *
ym  . 

 It is important to note that the integrand in Eq. (3.31) is dependent on both u1 and 

u2 due to the dependency of κn [Eq. (3.25)] on the incident angle θn [Eq. (3.15)].  

However, because θn should vary minimally within the area of a single detector element, 

total attenuation can be well approximated by the expression 

 ( ) ( )
n n

n n
 

 



m

  ,          (3.32) 

where θmn is the evaluation of θn at the centroid of the mth detector element 
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so that 
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Because it would be difficult to evaluate Eq. (3.34) in closed form, it is appropriate to 

apply approximate integration techniques.  One such method is the midpoint formula11 
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where 
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The raw signal μ(u1 ,u2) across the detector can now be determined for the nth projection 

as 

 21
1 2

( 1/ 2)
( , ) ( , ) rect rect y yx x

x y

u m au m a
u u n

a a
 
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          

m

m  .   (3.37) 

Using this expression for raw signal, it is now possible to calculate the x-ray transform12 

μ(t1 ,t2). 
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                                        (3.38) 

To justify the transition from Eq. (3.37) to Eq. (3.38), one must determine the affine 

parameters t1 and t2 in terms of u1 and u2 by considering a line segment OD  which is 

orthogonal to AC  and which connects the origin with the x-ray beam (Figure 3.2).  From 

trigonometry, the length 2 2
1 2t t t  of OD  is 

 cos nt u .           (3.39) 

By generalizing Eq. (3.39) to components, one finds t1 = u1cosθn and t2 = u2cosθn.  In   

Eq. (3.38), the incident angle across the area of the mth detector element for the nth 

projection has been approximated by its value at the centroid. 
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2.3.  Filtered Backprojection (FBP) Reconstruction from the Projections 

 The reconstructed attenuation coefficient can now be determined by filtering the 

x-ray transform with the function (t1, t2) and backprojecting the result along the ray of 

incidence.13  It is customary to apply filtering exclusively to frequencies within the plane 

of the x-ray tube motion, so that the filter’s 2D Fourier transform 2 1 2( , )f f  is 

independent of f2 

 2 1 2 1 1( , ) ( )f f f   ,                     (3.40) 

and hence 

 1 2 1 2( , ) ( ) ( )t t t t   .          (3.41) 

The specific formula for (t1) will be addressed in Section 2.4.  Assuming that the 

reconstruction grid is infinitesimally fine (i.e., non-pixelated), the filtered backprojection 

(FBP) reconstruction is 
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    

  
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m m m

m m m

m

m

m

m

, (3.42) 

where μFBP is the reconstructed attenuation coefficient and   is the convolution operator.  

Within the plane of the detector, backprojection of signal in the mth detector element for 

the nth projection is directed azimuthally along the angle Γmn relative to the n
i  axis 

(Figure 3.2).  As shown in Eq. (3.42), backprojection may be performed for each of the N 

projections using the primed coordinate system.  To evaluate Eq. (3.42) at the point       
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(x, y, z) in the unprimed coordinate system, one applies the matrix transformation given 

in Eq. (3.9). 

 It is now important to illustrate how the azimuthal backprojection angle Γmn is 

calculated.  Begin by considering an arbitrary point E along the x-ray beam at which 

signal is backprojected from the incident point C (Figure 3.2).  A line segment along the 

n
k  direction may then be drawn from E to the point F on the detector for the nth 

projection.  As a result, within the plane of the detector, backprojection is directed from C 

to F at the angle Γn relative to the n
i  axis.  Point G may now be defined as the position at 

the chest wall side of the detector which is collinear with points C and F.  A derivation of 

the formula for Γn requires knowledge of the distance dn between G and O, which is now 

calculated. 

 GO n nd  i


                                 (3.43) 

      ( cos ) ( sin )n n n nd d  i k                    (3.44) 

Since ACG and ECF are similar triangles, GA


 is parallel to FE


 and is in turn parallel to 

n
k .  Denoting   as the cross product operator, it follows that 

 GA n
 k 0


,           (3.45) 

where 

 GA GO OA 
  

          (3.46) 

      ( cos sin ) ( sin cos )n n n n n nd h d l h       i k .     (3.47) 
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To calculate OA


 in Eq. (3.46), Eqs. (3.10) and (3.11) have been summed.  Substituting 

Eqs. (3.9) and (3.47) into the cross product of Eq. (3.45) gives 

 GA cos sin 0 sin cos

sin 0 cos
n n n n n n n

n n

d h d l h   
 

    


i j k

k


     (3.48) 

                sin sin( )n n n nd l h       j .       (3.49) 

By combining Eqs. (3.45) and (3.49), one can solve for dn. 

 sin( ) sinn n n nd h l              (3.50) 

Using this result, it follows from trigonometry that 

 1

2 2
1 2

cos
( )

n
n

n

u d

u d u


 

 
                                                                (3.51) 

 2

2 2
1 2

sin
( )

n

n

u

u d u
 

 
.                                                                                (3.52) 

Substituting the coordinates of the detector element centroid into Eqs. (3.51)-(3.52), one 

finds that the azimuthal backprojection angle for the mth detector element in the nth 

projection satisfies the properties 

 
2 2 2
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( ) ( 1/ 2)

x x n
n

x x n y y

m a d

m a d m a


 

  
m                                         (3.53) 

 
2 2 2

( 1/ 2)
sin

( ) ( 1/ 2)

y y
n

x x n y y

m a

m a d m a


 

  
m .                                                       (3.54) 

These relations are the expressions needed for FBP reconstruction in Eq. (3.42).  One 

special case of Eq. (3.42) is simple backprojection (SBP) reconstruction 
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 

,    (3.55) 

where  denotes the backprojection operator.  With SBP, the filter 1 2( , )t t  effectively 

becomes the product 1 2( ) ( )t t  .  According to Eq. (3.55), backprojection in the primed 

coordinate system occurs by translating nx  and ny  by cos( ) tan( )n n nz  m m  and 

sin( ) tan( )n n nz  m m , respectively, where nz  is the height of the backprojected point (E) 

above the plane of the detector.  These translational shifts are illustrated in Figure 3.2. 

 

2.4.  Formulation of the Reconstruction Filter 

 Following Zhao’s linear systems theory for DBT,14 a ramp (RA) filter should be 

applied to the x-ray transform of each projection to reduce the low frequency detector 

response.15  The filter is truncated at the spatial frequencies f1 = –ξ and f1 = +ξ in the 

Fourier domain. 

 1 1
1 RA 1

1

   , | |
( )

0      , | |

f f
f

f





  


                           (3.56)      

The spatial representation RA(t1) of the RA filter is determined by its inverse Fourier 

transform.6 

 1 12
RA 1 1 RA 1 1( ) ( ) it ft f e df 




                                                                  (3.57) 

 2 2
1 1          2sinc(2 ) sinc ( )t t             (3.58) 
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Using this result, the convolution in Eq. (3.42) can be calculated. 
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    (3.59)     

Since noise tends to occur at high frequencies, a spectrum apodization (SA) filter is often 

applied in addition to the RA filter in order to reduce the high frequency detector 

response.  Following Zhao’s approach, a Hanning window function is the SA filter. 
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                                       (3.61)    

According to the convolution theorem,6 the net filter is thus 
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

.(3.62) 

The convolution of the net filter in Eq. (3.62) with the rect function in Eq. (3.42) can be 

performed in closed form similar to Eq. (3.59).  This expression is omitted as it is 

lengthy. 
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2.5.  Fourier Transform of the DBT Images 

 According to Eq. (3.4), the Fourier transform of the input along the x direction 

peaks at the frequencies fx = ±f0.  To determine whether the frequency spectra of the DBT 

images possess this expected dependency on f0, their continuous Fourier transforms may 

be considered.  Within the plane of the detector, the 2D Fourier transform of the nth 

projection is 

 1 1 2 22 ( )
2 1 2 1 2 1 2( )( , ) ( , ) i f u f uf f u u e du du 

   

 
          (3.63) 
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 
m

m
.                           (3.64) 

The 2D Fourier transform of the reconstruction along the x and y directions may now be 

calculated by considering a fixed height z.  Because this chapter only considers input 

frequencies parallel to the xy plane, it is unnecessary to transform along the z direction.  

Although filtered backprojection reconstruction in Eq. (3.42) is performed in the primed 

coordinate system, it is important to take the Fourier transform in the unprimed 

coordinate system.  As such, the reconstructed attenuation coefficient can be written in 

the form 

    
1 1 2 2 3 4 5

FBP 1 1 2 2
,

( , )
( , , ) ( ) ( )

n n n n nt x z t x y z
n

n
x y z t t

N     

  
    
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m m m m m

m

m
,      (3.65) 

where 

 1
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x
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 
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   
 

m        (3.66) 
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 2
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sec ( 1/ 2)
( ) rect n y y
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t m a
t

a




  
   

 

m ,       (3.67) 

and 

 1 cos( )cos( ) cos( )sin( )sin( )n n n n n n      m m m m                                        (3.68) 

 2 sin( )cos( ) cos( )cos( )sin( )n n n n n n      m m m m                             (3.69) 

 3 sin( )sin( )sin( )n n n n    m m m         (3.70) 

 4 cosn n m m            (3.71) 

 5 sin( )cos( )sin( )n n n n   m m m .        (3.72) 

According to the convolution theorem, the Fourier transform of Eq. (3.66) under the 

frequency variable f1 is 

 12 cos
1 1 1 1 1 1( ) ( ) cos( )sinc( cos ) x x nim a f

x n x nf f a a f e        m
m m  .    (3.73) 

In the special case of SBP reconstruction, the filter in Eq. (3.73) is unity.  In a similar 

fashion, the Fourier transform of Eq. (3.67) may be written 

 22 ( 1/ 2) cos
1 2 2 2( ) cos( )sinc( cos ) y y ni m a f

y n y nf a a f e       m

m m .     (3.74) 

The 2D Fourier transform of Eq. (3.65) at the fixed depth z is now determined from the 

expression 
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where Iymn(x) is given by the integral 

 2
2 3 4 5( ) ( ) yif y

y n n n nI x x y z e dy   
 


   m m m m .      (3.76) 
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To evaluate Eq. (3.76), one can make the change of variables 

3 4 5y n n n nx y z     m m m m .  Since 4 0n m , it follows that 
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 ,                                                            (3.79) 

where 1 2  has been previously calculated in Eq. (3.74).  Using Eq. (3.79), Eq. (3.75) 

can now be rewritten as 
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where 
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To evaluate Eq. (3.81), it is helpful to perform the substitution 1 2x n n nx z   m m m , 
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where 1 1  is given by Eq. (3.73).  The final expression for the 2D Fourier transform of 

the reconstruction can now be derived by combining Eqs. (3.80) and (3.84). 
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                (3.85) 

A special case of this result is important to consider. 
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Eq. (3.86) is useful for analyzing the reconstruction of an input frequency oriented along 

the x direction; that is, fy = 0. 

 

3.  THEORETICAL RESULTS 

3.1.  Input Frequency Directed Parallel to the Chest Wall Side of the Breast Support 

 Image acquisition is now simulated for a Selenia Dimensions integrated multi-

mode mammography and tomosynthesis x-ray system (Hologic Inc., Bedford, MA) 

having 15 projections, an angular spacing (Δψ) of 1.07° between projections, a source-to-

COR distance (h) of 70.0 cm, a COR-to-origin distance (l) of 0 cm, and square detector 

element length (ax = ay = a) of 140 μm.  In addition, the sine plate has a thickness (ε) of 

0.5 mm, a translational shift (x0) of 0 mm along the direction of the chest wall side of the 
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breast support, and a frequency (f0) of 0.7a-1 (5.00 lp/mm) parallel to the x axis.  To 

illustrate the potential for super-resolution in DBT, the input frequency is chosen to be 

higher than the detector alias frequency 0.5a-1 (3.57 lp/mm).  The sine plate is placed at a 

depth corresponding to the mid-thickness of a typical breast size (50.0 mm thick) under 

compression.  With the breast support positioned 25.0 mm above the origin of the 

detector, the sine plate is therefore positioned at the depth z0 = 50.0 mm. 

 

 

Figure 3.3: Reconstruction filters from linear systems theory.  Reconstruction is 
performed with either the ramp (RA) filter alone or the RA and spectrum apodization 
(SA) filters together.  The SA filter is a Hanning window function. 
 

 FBP reconstructions are performed with either the RA filter alone or the RA and 

SA filters together, assuming a truncation frequency (ξ) of 2a-1 (14.3 lp/mm).  Although ξ 

is typically chosen to be the detector alias frequency 0.5a-1, it is necessary to choose a 

higher value to achieve super-resolution.  The specified value of ξ corresponds to the 

second zero of the MTF of the detector sampling process for frequency measurements 

along the f1 direction (f2 = 0).16-18 
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 1 2 1 2MTF( , ) sinc( )sinc( )x yf f a f a f         (3.87) 

Figure 3.3 shows a plot of the reconstruction filters versus frequency.  The two filters 

almost perfectly match each other at low frequencies but diverge at high frequencies, 

since the SA filter is intended to suppress high frequency noise. 

 

3.1.1.  Individual Projections 

 At a fixed distance (u2) of 30.0 mm from the chest wall, Figure 3.4(a)-(b) shows a 

cross section of signal versus detector position u1 for the central projection (n = 0) and an 

oblique projection (n = 7) of the sine plate.  The u2 displacement lies between the chest 

wall and nipple of a typical breast.  In the recent development of a physical 3D 

anthropomorphic phantom for image quality assessment in DM and DBT,19, 20 Carton et 

al. modeled a distance of 65.0 mm between the chest wall and nipple for an average 

breast size of 450 ml.  The u2 displacement considered in Figure 3.4(a)-(b) thus 

corresponds to a position approximately halfway between the chest wall and nipple of 

this phantom. 

 Detector signal is a discrete function [Eq. (3.31)] due to detector element 

sampling.  To represent this signal graphically, the presence of each detector element can 

be modeled by a rectangle function, so that the projections appear to be step-like in 

Figure 3.4(a)-(b).  The width of each step matches the detector element length (140 µm). 
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Figure 3.4: Simulated projections of a high-frequency sine plate.  At a distance u2 of 
30.0 mm from the chest wall, cross sections of detector signal in the central projection   
(n = 0) and the most oblique projection (n = 7) are plotted versus position u1.  In addition, 
Fourier transforms are shown versus frequency.  The major Fourier peaks do not occur at 
the input frequency 5.00 lp/mm, illustrating the presence of aliasing.  Reducing the 
source-to-COR distance (h) magnifies the input frequency projected onto the detector. 
 

 In Figure 3.4(c)-(d), the modulus of the Fourier transform of detector signal is 

plotted versus frequency f1, assuming f2 = 0 [Eq. (3.64)].  The central and oblique 

projections are similar in that they both represent a high frequency input as if it were a 
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lower frequency.  The major peak of the Fourier transform of either projection does not 

occur at the input frequency 5.00 lp/mm but instead occurs at a lower frequency as 

evidence of aliasing. 

 The two projections and their frequency spectra are also plotted in Figure 3.4 for 

an infinite source-to-COR distance (h) with no other changes in the acquisition 

parameters.  This limiting case transforms the divergent beam geometry into a parallel 

beam geometry.  Consequently, the x-ray angle relative to the normal to the detector does 

not vary with position (u1, u2) by Eq. (3.15) but instead is always ψn – γn for the nth 

projection. 

 In the parallel beam geometry, the central projection represents the input 

frequency as if it were a-1 – f0, or 0.3a-1.  As a result, the Fourier transform has a major 

peak at 0.3a-1 (2.14 lp/mm), and has minor peaks at 0.7a-1 (5.0 lp/mm), 1.3a-1            

(9.29 lp/mm), and 1.7a-1 (12.14 lp/mm).  Unlike the parallel beam geometry, the 

divergent beam geometry magnifies the input so that it projects onto the x-ray converter 

with the frequency f0/M 

 
0

h
M

h z



,           (3.88) 

where M denotes the magnification.21  With a source-to-COR distance (h) of 70.0 cm and 

an object-to-detector distance (z0) of 50.0 mm, M is 1.077.  As a result of the 

magnification, the peaks in the Fourier transform of detector signal occur at different 

frequencies than the parallel beam geometry.  Accordingly, these Fourier peaks occur at 

a-1 – f0/M (2.50 lp/mm), f0/M (4.64 lp/mm), 2a-1 – f0/M (9.64 lp/mm), and a-1 + f0/M 
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(11.78 lp/mm).  The Fourier transform of the most oblique projection peaks at similar 

frequencies as the central projection. 

 

3.1.2.  SBP Reconstruction 

 Figure 3.5(a) shows SBP reconstruction versus position (x) measured parallel to 

the chest wall side of the breast support, performed at the distance y = 30.0 mm from the 

chest wall and at the height z = z0 = 50.0 mm above the detector.  Unlike an individual 

projection, SBP reconstruction can resolve the input frequency 5.00 lp/mm.  This 

property arises because the oblique projections give information about the input which is 

not present in the central projection alone [Figure 3.4(b)].  Although not explicitly plotted 

in Figure 3.5(a), it can be shown that super-resolution is present across a broad range of x 

and y positions in the reconstructed volume. 

 The SBP Fourier transform [Eq. (3.86)] correctly possesses its major peak at   

5.00 lp/mm.  The major peak of an individual projection, occurring at 2.50 lp/mm, is now 

highly suppressed in magnitude [Figure 3.5(c)]. 

 

3.1.3.  FBP Reconstruction 

 FBP reconstructions are now performed with either the RA filter alone or the RA 

and SA filters together.  In the spatial domain, these reconstructions are plotted versus 

position (x) parallel to the chest wall side of the breast support, assuming y = 30.0 mm 

and z = 50.0 mm [Figure 3.5(b)].  Figure 3.5(b) demonstrates that reconstruction filters 

smoothen pixelation artifacts found in the SBP reconstruction.  In addition, Figure 3.5(b) 
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shows that reconstructing with the RA filter alone yields greater modulation than 

reconstructing with the RA and SA filters together.  The modulation for reconstruction 

with the RA filter alone is 41.0%, yet the modulation for reconstruction with the RA and 

SA filters together is 29.8%.  It is expected that reconstruction with the RA filter alone 

has greater modulation, since the amplitude of this filter exceeds that of the RA and SA 

filters together at the input frequency (Figure 3.3).  Importantly, the modulation of either 

FBP reconstruction technique is well above the limit of resolution for typical imaging 

systems, which is often taken to be 5%.  In addition, the modulation of either FBP 

reconstruction technique is greater than that of SBP reconstruction (18.4%). 

 Although reconstruction with the RA filter alone has the benefit of greater 

modulation than reconstruction with the RA and SA filters together, the trade-off is 

greater spectral leakage at very high frequencies.  In fact, the amplitude of the high 

frequency spectral leakage is greater with the RA filter alone than with SBP.  In 

experimental practice, reconstruction with the RA filter alone also increases the presence 

of noise, which tends to occur at high frequencies. 
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Figure 3.5: Simulated reconstruction of a high-frequency sine plate.  Unlike a single 
projection (Figure 3.4), simple backprojection (SBP) reconstruction can resolve a high 
frequency input oriented along the x direction.  Applying filters to the reconstruction 
smoothens pixelation artifacts in the spatial domain and reduces low frequency spectral 
leakage in the Fourier domain.  Reconstructing with the ramp (RA) filter alone has the 
benefit of greater modulation than reconstructing with the RA and spectrum apodization 
(SA) filters together.  The drawback of reconstructing with the RA filter alone is 
increasing the amplitude of high frequency spectral leakage. 
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3.2.  Input Frequency Directed Perpendicular to the Chest Wall 

 It is now demonstrated that the existence of super-resolution is dependent on the 

directionality of the input frequency.  Super-resolution arises because of sub-pixel 

detector element shifts in the image of an object with each increasing projection angle.  In 

order to investigate the feasibility of super-resolution for frequencies oriented along the y 

direction (i.e., perpendicular to the chest wall), the translational shift in the u2 position of 

the incident x ray is now calculated.  For the nth projection, an x ray passing from the 

focal spot through the point (x, y, z) strikes the detector at the u2 coordinate 
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This expression follows from Eq. (3.16).  The translational shift in the u2 position of the 

object comparing projection numbers n1 and n2 is thus 

 2 1 2 2 2 2 1( , ) ( ) ( )u n n u n u n   .         (3.90) 

Assuming that z = 50.0 mm, Figure 3.6 shows the magnitude of this translational shift 

versus position y within two planes, x = 0 and x = –30.0 mm, comparing the central 

projection and an oblique projection (n1 = 0, n2 = 7) as well as two oblique projections  

(n1 = –7, n2 = 7).  Throughout the remainder of this work, a plane defined by a fixed 

value of x will be termed a PA/SS plane since it has extent in both the posteroanterior 

(PA) and source-to-support (SS) directions.  Although the SS direction technically varies 

with position on the breast support due to the divergence of the x-ray beam, it is assumed 

to be equivalent to the z direction for the purpose of this work.  As such, the SS direction 

lies along the same axis as the source-to-image distance (SID), or the length between the 

focal spot and the origin O for the central projection (Figure 3.1).  In a cranial-caudal 
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(CC) view, a PA/SS plane is thus a sagittal plane through the breast.  By contrast, in a 

mediolateral oblique (MLO) view, the same plane is at an approximately 45° angle 

relative to the sagittal and transverse planes through the breast. 

 

 

Figure 3.6: Translational shift in the image of an object between projections along 
the posteroanterior (PA) direction.  At a reconstruction depth (z) of 50.0 mm, the 
magnitude of the translational shift in the u2 coordinate of the image [Eq. (3.90)] is 
plotted versus position y measured perpendicular to the chest wall.  In the mid PA/SS 
plane (x = 0), translational shifts are minimal comparing the central projection and an 
oblique projection (n1 = 0, n2 = 7), and are zero comparing the two most oblique 
projections (n1 = –7, n2 = 7).  Increasing the magnitude of the distance x relative to the 
mid PA/SS plane yields a noticeable change in the translational shift. 
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Figure 3.7: Simulated reconstruction of a high-frequency sine plate oriented along 
the posteroanterior (PA) direction.  (a) Within the mid PA/SS plane (x = 0), SBP 
reconstruction resembles a single projection over the region y[29.4 mm, 30.6 mm] for 
an input frequency oriented along the y direction perpendicular to the chest wall.  (b) The 
1D Fourier transform of the SBP reconstruction is plotted versus frequency measured 
along the y direction.  Within the mid PA/SS plane of a typical sized breast, the major 
Fourier peak occurs at a frequency lower than the input frequency, 5.00 lp/mm.  (c) With 
x = –30.0 mm, super-resolution in an SBP reconstruction is indeed achievable over the 
region y[29.4 mm, 30.6 mm].  (d) For additional proof of super-resolution at                 
x = –30.0 mm, the major peak of the corresponding Fourier transform occurs at the input 
frequency, 5.00 lp/mm. 
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 In the mid PA/SS plane (x = 0), translational shifts between projections are 

minimal in a typical sized breast.  For example, with x = 0, y = 30.0 mm, and                    

z = 50.0 mm, the translational shift between the central projection and an oblique 

projection is 0.009 mm (6.52% of detector element length), and the translational shift 

between the two most oblique projections is zero.  For this reason, super-resolution along 

the y direction is simply not achievable within the mid PA/SS plane.  As illustrated in 

Figure 3.7(a), SBP reconstruction at x = 0 in the region y[29.4 mm, 30.6 mm] 

resembles a single projection. 

 In Figure 3.6, it is demonstrated that the u2 translational shift between projections 

increases as the magnitude of the distance x increases.  For example, with x = –30.0 mm 

and y = 30.0 mm, the translational shift between the central projection and the oblique 

projection is 0.047 mm (33.4% of detector element length), and the translational shift 

between the two most oblique projections is 0.112 mm (80.0% of detector element 

length).  Because these translational shifts are sufficiently large, SBP reconstruction 

[Figure 3.7(c)] shows super-resolution at x = –30.0 mm over the region                 

y[29.4 mm, 30.6 mm].  Unlike SBP reconstruction for an input frequency oriented 

along the x direction [Figure 3.5(a)], the amplitudes of the peaks in Figure 3.7(c) are 

noticeably different from each other, indicating the presence of reconstruction artifacts.  

It can be shown that these artifacts are minimized by increasing the distance y from the 

chest wall, since the u2 translational shifts between projections increase with y        

(Figure 3.6). 
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 The SBP reconstructions in Figure 3.7 can be analyzed further by computing their 

1D Fourier transform along the y direction.  To show differences in these Fourier 

transforms at fixed values of x, we choose not to transform over both x and y as given by 

Eq. (3.85). 
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    (3.91) 

For additional proof that super-resolution is not achievable within the mid PA/SS plane, 

Figure 3.7(b) shows that the major Fourier peak at x = 0 occurs well below the input 

frequency.  By contrast, the major Fourier peak at x = –30.0 mm [Figure 3.7(d)] matches 

the input frequency, 5.00 lp/mm.  Although not shown in the plot, it can be demonstrated 

that spectral leakage is reduced by increasing the magnitude of the distance x relative to 

the mid PA/SS plane. 

 As a final point in this section, it is important to note that by applying the filters in 

Figure 3.3 to the SBP reconstructions of Figure 3.7, the modulation effectively vanishes 

(graph not shown).  This finding arises because filtering is applied only within the plane 

of the chest wall [Eq. (3.40)].  An input frequency oriented along the y direction 

contributes a component of 0 lp/mm within the plane of the chest wall; since the 

reconstruction filters vanish at 0 lp/mm (Figure 3.3), FBP reconstructions are expected to 

have no modulation.  For this reason, future research on filter optimization is merited as 

described in the Discussion section. 
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3.3.  Dependency of Super-Resolution on Reconstruction Depth 

 Using the Fourier transforms calculated in Sections 3.1 and 3.2, one can introduce 

a metric for assessing the quality of super-resolution in the reconstruction.  This metric is 

the ratio (r) of the amplitude at the highest Fourier peak less than the detector alias 

frequency (3.57 lp/mm) to the amplitude at the input frequency (5.00 lp/mm).  Super-

resolution is present if r < 1 and is absent if r ≥ 1.  For high quality super-resolution, r 

should be as close to zero as possible. 

 To investigate anisotropies in super-resolution along the z direction, r is plotted 

versus the reconstruction depth (z0) in Figure 3.8(a), assuming an input frequency 

oriented along the x direction (Section 3.1).  In the Fourier transforms used for 

calculating r [Eq. (3.86)], the detector field-of-view (FOV) is 56.1 mm × 84.1 mm, and is 

centered on the plane x = 0.  Detector element indices mx and my thus range from –200 to 

200 and 0 to 600, respectively.  By centering the FOV on the region x = 0, anisotropies in 

super-resolution can be assessed within the mid PA/SS plane.  Super-resolution is not 

achievable at depths with sharp peaks in the value of r, including z0 = 28.7, 35.6, 42.2, 

48.8, 55.2, 61.5, 67.6, and 73.7 mm.  The depths considered in the plot span a typical 

50.0 mm breast thickness.  Because the width of each peak in Figure 3.8(a) is very 

narrow, super-resolution is present at most depths in the reconstruction.  Although only 

SBP is simulated, similar anisotropies arise if filters are used. 
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Figure 3.8: Depth-dependency of super-resolution in the reconstruction.  For an 
input frequency oriented along the x direction, the dependency of super-resolution on 
depth (z0) is analyzed.  The existence of super-resolution is determined from the ratio (r) 
of the amplitude at the highest peak in the Fourier transform less than the alias frequency 
of the detector (3.57 lp/mm) to the amplitude at the input frequency (5.00 lp/mm).  Super-
resolution is present if r < 1 and is absent if r ≥ 1.  (a)-(b) Within the mid PA/SS plane   
(x = 0), super-resolution is not achievable at depths with sharp peaks in the value of r, 
such as z0 = 42.2 mm.  (c)-(d) By contrast, within the plane x = 60.0 mm, super-resolution 
is feasible at all depths; r never exceeds unity. 
 

 To illustrate the anisotropy of super-resolution along the z direction, Figure 3.8(b) 

shows an SBP reconstruction at a depth (z0 = 42.2 mm) matching one of the peaks in 



 98

Figure 3.8(a).  The reconstruction is performed at the distance y = 30.0 mm from the 

chest wall and over a region centered on the mid PA/SS plane                        

(i.e., x[–0.6 mm, 0.6 mm]).  Signal varies with position in a step-like manner analogous 

to an individual projection [Figure 3.4(a) and (b)].  Consequently, super-resolution is not 

achievable at this depth, position, and orientation within the mid PA/SS plane. 

 A necessary condition for super-resolution is the presence of translational shifts in 

the image of an object between projections.  This condition is not sufficient for super-

resolution; the translational shifts must be in increments that maximize sub-pixel 

sampling gain.  If the image of a thin input object is translated between projections in 

increments that are approximately integer multiples of detector element length, the signal 

is effectively equivalent in all projections, and super-resolution cannot be achieved.  For 

this reason, anisotropies in super-resolution occur at depths where translational shifts 

between projections have effectively no sub-pixel sampling differences. 

 Figure 3.8(c) investigates whether the depth-dependency of super-resolution also 

exists at positions that are displaced from the mid PA/SS plane (x = 0).  Similar to   

Figure 3.8(a), r is plotted versus depth (z0); however, in the Fourier transforms used for 

calculating r [Eq. (3.86)], the detector FOV (56.1 mm × 84.1 mm) is now centered on the 

plane x = 60.0 mm.  Detector element indices mx and my thus range from 229 to 629 and 0 

to 600, respectively.  In Figure 3.8(c), r never exceeds unity, indicating that super-

resolution is feasible at all depths within the plane x = 60.0 mm.  As a result, although 

Figure 3.8(b) shows that super-resolution is not achievable at the depth z0 = 42.2 mm 

within the plane x = 0, Figure 3.8(d) demonstrates that super-resolution is indeed feasible 
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at the same depth within the plane x = 60.0 mm.  The value of r at the depth z0 = 42.2 mm 

drops from 1.42 to 0.520 in shifting the central axis of the detector FOV from x = 0 to     

x = 60.0 mm. 

 Although Figure 3.8(b) and 3.8(d) are plotted for a fixed value of y (30.0 mm), it 

can be shown that similar plots hold for all values of y.  To explain this finding, it is 

useful to calculate the translational shift in the object position between projections along 

the u1 direction; this direction is chosen because of the orientation of the input frequency 

in Sections 3.1 and 3.3: 
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There is no y dependency in the formula for the translational shift.  Consequently, for an 

input frequency oriented along the x direction, the existence of super-resolution is 

dependent only on the x and z coordinates in the reconstruction. 

 

4.  EXPERIMENTAL RESULTS 

 Using a high contrast bar pattern phantom, we have experimentally verified the 

existence of super-resolution in DBT.  The phantom was taped beneath the compression 

paddle (24 cm × 29 cm) of the Selenia Dimensions system, and placed 2.5 cm above the 

breast support.  With the alternating light and dark bands of the phantom spanning a     

6.0 mm length, the line pairs ranged in frequency from 1.0 lp/mm to 10.0 lp/mm.  To 

match the simulation of Section 3.1, the frequency 5.0 lp/mm was oriented along the x 
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direction parallel to the chest wall side of the breast support.  Also, following the 

simulation, the bar patterns at 5.0 lp/mm covered the region x[–0.6 mm, 0.6 mm], and 

the edge of the bar patterns near the numeral “5” (Figure 3.9) was positioned slightly 

greater than y = 30 mm from the chest wall.  Using the large (0.3 mm nominal) focal spot 

and a CC view, 15 projections were acquired at 30 kVp and 14 mAs with a W/Al target-

filter combination.  The technique for determining the optimal mAs with photo-timing is 

described in our previous work.5 

 

 

Figure 3.9: Experimental projection image of a bar pattern phantom.  The central 
projection of a bar pattern phantom misrepresents frequencies higher than the detector 
alias frequency, 3.57 lp/mm for 140 µm detector elements.  For example, at 4.0 lp/mm, 
Moiré patterns are present.  At 5.0 lp/mm, fewer than 30 line pairs are observed over a 
6.0 mm length. 
 

 Reconstruction was subsequently performed using a backprojection filtering 

(BPF) commercial prototype reconstruction solution (BrionaTM, Real Time Tomography, 

Villanova, PA).22  Although it is possible to reconstruct on a non-pixelated grid using 
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analytical modeling, a pixelated grid was required for the experimental data.  In order to 

ensure that high frequencies can be resolved in the plane of the reconstruction, the pixel 

size of the reconstruction grid (20.44 µm) was chosen to be significantly smaller than that 

of the detector elements (140 µm).  Consequently, the alias frequency of the 

reconstruction grid (24.46 lp/mm) was substantially higher than the alias frequency of the 

detector (3.57 lp/mm). 

 Figure 3.9 shows that the central projection correctly resolves frequencies below 

the detector alias frequency, 3.57 lp/mm.  At the next highest frequency (4.0 lp/mm), one 

would expect to see 24 line pairs spanning a 6.0 mm length.  Instead, less than 24 line 

pairs are visible, and Moiré patterns23 are present.  Finally, at 5.0 lp/mm, only 16 line 

pairs are evident within a 6.0 mm length, indicating that the pattern is incorrectly 

represented as a frequency between 2.0 and 3.0 lp/mm. 

 Unlike the central projection, BPF reconstruction can resolve frequencies higher 

than the detector alias frequency (Figure 3.10).  In fact, up to 6.0 lp/mm (36 line pairs 

spanning 6.0 mm) can be observed at the correct orientation with no Moiré patterns.  At 

7.0 lp/mm, the signal becomes too faint to distinguish bar patterns.  This finding arises 

because the MTF of the reconstruction is reduced with increasing frequency; recall from 

Eq. (3.87) that the MTF of the detector sampling process vanishes at the frequency          

f1 = a-1 (7.14 lp/mm), assuming f2 = 0.  As expected from the analytical modeling, it 

should be noted that super-resolution along the x direction was observed over many 

different x-ray acquisitions in which the bar pattern phantom was placed at various 

positions in the imaging volume. 
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Figure 3.10: Experimental reconstruction of a bar pattern phantom showing super-
resolution.  Unlike the central projection (Figure 3.9), BPF reconstruction can clearly 
resolve high frequencies along the x direction parallel to the chest wall side of the breast 
support.  Frequencies up to 6.0 lp/mm are resolved with no Moiré patterns or other 
evidence of aliasing. 
 

 By rotating the bar pattern phantom 90°, the potential for super-resolution 

orthogonal to the chest wall was also analyzed (Figure 3.11).  To orient the reader with 

the positioning of the phantom, it is important to note that the left edges of the even 

numerals “4” and “6” were aligned on the mid PA/SS plane (x = 0), and that the 

separation between 4.0 and 5.0 lp/mm was positioned at a displacement y = 30 mm from 

the chest wall.  As expected from the analytical modeling (Section 3.2), the extreme left 

regions of the bar patterns show aliasing of high frequencies due to their proximity to the 

mid PA/SS plane.  Super-resolution is only present at the extreme right of the bar patterns 

(5.0 and 6.0 lp/mm), where the magnitude of the distance x relative to the mid PA/SS 

plane is approximately 30 mm or greater. 
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Figure 3.11: Experimental reconstruction of a bar pattern phantom oriented along 
the posteroanterior (PA) direction.  Super-resolution along the y direction is analyzed 
with bar patterns using a BPF reconstruction.  The left edges of the even numerals (“4” 
and “6”) were aligned on the mid PA/SS plane (x = 0), and the separation between 4.0 
and 5.0 lp/mm was positioned 30 mm from the chest wall.  At the extreme left of the bar 
patterns, less line pairs are visible than expected, illustrating that super-resolution is not 
achievable near the plane x = 0.  In addition, Moiré patterns at 4.0 lp/mm indicate that 
super-resolution is not possible too close to the chest wall (y = 0).  Super-resolution is 
evident only at positions sufficiently displaced from the planes x = 0 and y = 0; see the 
extreme right of the bar patterns at 5.0 and 6.0 lp/mm. 
  

 It is important to note that the extreme right of the bar patterns at 4.0 lp/mm does 

not display super-resolution as cleanly as the extreme right of the bar patterns at 5.0 and 

6.0 lp/mm due to the presence of Moiré patterns.  Recall that the phantom is positioned so 

that lower frequencies are closer to the chest wall.  Because the u2 translational shift 

between projections is minimized with decreasing distance from the chest wall       
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(Figure 3.6), it is expected that super-resolution along the y direction should not be 

achievable at positions too close to the chest wall. 

 

 

Figure 3.12: A clinical image of microcalcifications with super-resolution.  Clinical 
images of microcalcifications are shown.  In (a), BPF reconstruction is performed with 
pixels matching the detector element size (140 µm), and the result is magnified four-fold 
to give the image that is shown.  In (b), BPF reconstruction is performed using pixels that 
are much smaller than the detector elements.  Image (b) supports super-resolution. 
 

 In clinical images, super-resolution should improve the visibility of fine structural 

details in the breast.  This concept is illustrated in Figure 3.12 showing 

microcalcifications, which are early indicators of breast cancer in many women.24  In the 

figure, the left image [Figure 3.12(a)] is created by magnifying a BPF reconstruction 

performed with pixels matching the size of the detector elements (140 μm).  The final 

result has 35 μm pixels (i.e., a four-fold magnification).  By contrast, the right image 

[Figure 3.12(b)] is generated by performing a BPF reconstruction using pixels that are 

much smaller than the detector elements.  As expected from our analysis of bar patterns, 

the image is sharper in Figure 3.12(b) than in Figure 3.12(a), since Figure 3.12(b) is 
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capable of resolving high frequency information exceeding the detector alias frequency.  

Quantifying the clinical impact of this finding is beyond the scope of this work. 

 

5.  DISCUSSION 

 In DBT reconstructions using grids with the same pixel size as the detector 

elements, the highest frequency that can be resolved in each reconstructed slice is the 

detector alias frequency.  This chapter demonstrates that reconstruction grids with much 

smaller pixelation display super-resolution, or visibility of higher frequencies.  Super-

resolution arises because the image of the object is shifted in sub-pixel detector element 

increments with each increasing projection angle. 

 Super-resolution was first demonstrated analytically by calculating the 

reconstruction of a sinusoidal input whose frequency was oriented along the x direction 

parallel to the chest wall side of the breast support.  Using an infinitesimally fine 

reconstruction grid, it was shown that both SBP and FBP can resolve higher frequencies 

than a single projection.  FBP reconstructions were performed either with the RA filter 

alone or with the RA and SA filters together.  Although reconstruction with the RA filter 

alone has the benefit of greater modulation in the spatial domain, it presents the trade-off 

of increased noise and spectral leakage at high frequencies. 

 In rotating the sine plate by 90°, super-resolution was found to exist at fewer 

positions in the reconstruction.  For an input frequency oriented along the chest wall-to-

nipple direction, it was shown that positions with super-resolution must be displaced 

relative to the chest wall (y = 0) and to the mid PA/SS plane (x = 0).  At these positions, 
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the translational shifts in the image between projections are sufficiently large to achieve 

super-resolution.  Because increasing the angular range of the scan inherently increases 

the translational shifts between projections, the exact positions at which super-resolution 

is feasible are dependent upon the design of the acquisition geometry. 

 This chapter also demonstrates that the existence of super-resolution is depth-

dependent.  Considering an input frequency oriented along the x direction for illustration, 

it was shown that super-resolution is not feasible at certain depths (z) within the mid 

PA/SS plane.  By contrast, super-resolution is achievable at all depths within PA/SS 

planes that are sufficiently displaced relative to the mid PA/SS plane.  The anisotropies in 

super-resolution along the z direction are dependent upon the number of projections and 

the angular spacing between projections. 

 We have experimentally observed super-resolution in images of bar patterns.  A 

single projection showed classical signs of aliasing, including Moiré patterns and the 

visibility of fewer line pairs than expected.  By contrast, reconstructions using very fine 

grids resolved frequencies higher than the alias frequency of the detector.  For the two 

orientations of the bar patterns, the presence of super-resolution was verified at positions 

predicted from analytical modeling.  The effects observed in the experimental images are 

not necessarily unique attributes of the commercial DBT system or the commercial 

reconstruction algorithm used.  Super-resolution should be feasible provided the detector 

has measurable modulation above the alias frequency and the reconstruction algorithm 

supports finer sampling than the detector in each reconstructed slice. 
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 Super-resolution appears to produce a sharper image of microcalcifications 

showing more detail.  This finding is complementary to prior work on computer breast 

phantoms demonstrating that fiducial markers can be located with higher precision in a 

super-sampled reconstruction.25  It is important to determine the effect of super-resolution 

on noise, and to evaluate the potential benefits of super-resolution using a task-based 

approach.  A future clinical study is also merited to assess the clinical impact of super-

resolution in DBT. 

 Super-resolution is a particularly useful property for x-ray systems that employ 

binning when switching from 2D to 3D imaging modes.  For example, in the Selenia 

Dimensions system, the DM detector element dimensions are 70 µm × 70 µm, whereas 

the DBT detector element dimensions are 140 µm × 140 µm.  Binning has the benefit of 

lowering the readout time, but presents the drawback of reducing the alias frequency of 

the detector.  Initially, it would seem that binning should make DBT less capable of 

resolving high frequency information, such as microcalcifications.  However, the 

existence of super-resolution in the reconstruction may counter the trade-offs of binning. 

 Some of the limitations of this study and directions for future modeling are now 

noted.  In calculating detector signal, this chapter assumes that the MTF of a-Se in drift 

mode is unity.  While this assumption is valid for normal x-ray incidence, it is less 

justifiable with oblique x-ray incidence.26-33  Que and Rowlands proposed the first 

analytical model of the optical transfer function (OTF) of a-Se in drift mode for all 

incident angles.26  Their work was later validated by Hajdok and Cunningham with 
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Monte Carlo simulations.27  Denoting μSe as the attenuation coefficient of Se and L as the 

thickness of the photoconductor, the OTF at each frequency f is 
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The MTF is the normalized modulus of the OTF.  For more thorough modeling, signal in 

the x-ray converter should be convolved with the point spread function (PSF) of a-Se 

before detector element sampling is performed, where the PSF is determined from the 

OTF using Fourier theory.  It is important to model MTF degradation for measurements 

near the edge of the detector opposite the chest wall, as the incident angle deviates 

considerably from the normal.  Upon examining θn across multiple projections in the 

Selenia Dimensions detector, it can be shown that the maximum incident angle is 

approximately 25°.  Assuming 200 μm thick a-Se and 20 keV x rays34-36 for which μSe is 

20.5 mm-1,37 the corresponding MTF at 5.0 lp/mm is 85.8%. 

 While it is important to consider MTF degradation at positions distal to the chest 

wall, it is less critical for positions close to the chest wall.  For example, in the central 

projection at the position u1 = u2 = 30.0 mm, the incident angle is 3.47°, and the MTF at 

5.0 lp/mm is 99.7%.  Consequently, for the purpose of this work, an x-ray converter with 

MTF of unity was assumed. 

 In addition to modeling the MTF of the x-ray converter, the analytical model of 

the sine plate can be refined by modeling the MTF of the focal spot.  Although this 

chapter assumes a point-like focal spot that is stationary during each projection, future 

studies should model MTF degradation with increasing focal spot size38 and increasing 
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focal spot motion during a continuous scan of the projections.14, 39, 40  Our earlier work 

has shown that continuous x-ray tube motion yields a loss of modulation in the 

reconstruction.41  Despite this increase in blurring, super-resolution should still be 

achievable in the reconstruction of the sine plate (Figures 3.5, 3.7, 3.8).  This claim is 

supported by the presence of super-resolution in bar pattern images (Figures 3.10-3.11), 

which were acquired on a DBT system with continuous tube motion. 

 In future studies, detector lag and ghosting42-44 should also be simulated, and the 

presence of shot noise45 should be modeled at various dose levels.  Because this work 

considers a high contrast input frequency either with the analytical simulation or with the 

experimental bar patterns, it was not necessary to model the presence of noise at different 

dose levels.  Future studies on super-resolution with low contrast input frequencies will 

require a noise simulation, as the visibility of the patterns should be influenced by dose.  

Finally, because the linear attenuation coefficient of an input object is energy dependent, 

polyenergetic x-ray spectra46-48 should also be simulated in the analytical model.  This 

work implicitly assumes a monoenergetic x-ray beam. 

 In CT, the conventional low frequency filter is the RA filter14, 15 which increases 

linearly with frequency from zero (Figure 3.3).  Assuming that filtering is only applied 

within the plane of the x-ray tube motion, this work demonstrates that the RA filter is not 

suited for imaging frequencies perpendicular to the chest wall, since the modulation of 

the reconstruction vanishes (Section 3.2).  The filters used in the experimental 

reconstructions of bar patterns oriented perpendicular to the chest wall (Figure 3.11) have 

a nonzero offset at 0 lp/mm, unlike the RA filter used in the analytical modeling.  Future 
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work should consider filters with nonzero offset for analytical modeling of super-

resolution, since modulation would not be zero for any orientation of the input frequency. 

 Because super-resolution has important clinical applications in improving the 

visibility of microcalcifications, future work should ultimately transition from modeling a 

sinusoidal input to simulating microcalcifications in a breast background.49  Using model 

observers, improvements in the visibility of microcalcifications should be assessed with 

image reconstructions at varying grid sizes.  It would be useful to determine the coarsest 

grid size at which the benefits of super-resolution are achieved among observers, as 

reconstructions on coarser grids require less memory for data storage. 

 

6.  CONCLUSION 

 This work demonstrates the existence of super-resolution in DBT.  An analytical 

model of super-resolution was developed by calculating the reconstruction of a high 

frequency sinusoidal input.  While a single projection cannot resolve frequencies higher 

than the alias frequency of the detector, a reconstruction on a very fine grid can resolve 

these frequencies.  Super-resolution is made possible by the sub-pixel detector element 

shifts in the image of the object between projections. 

 Using a bar pattern phantom, we have experimentally verified the existence of 

super-resolution in DBT.  In considering an input frequency that was oriented either 

parallel to the chest wall side of the breast support or perpendicular to the chest wall, the 

experimental images confirmed the presence of super-resolution at positions predicted by 
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analytical modeling.  Super-resolution has the potential to impact the visualization of 

microcalcifications and other subtle signs of breast cancer. 

 

7.  APPENDIX: DETECTOR SIGNAL FOR AN INPUT FREQUENCY 

DIRECTED PERPENDICULAR TO THE CHEST WALL 

 This appendix calculates detector signal for an input frequency perpendicular to 

the chest wall.  Under this assumption, the input rectangular prism of thickness ε has a 

linear attenuation coefficient μ(x, y, z) which varies sinusoidally along the y direction 

with frequency f0 

   0
0 0( , , ) cos 2 ( ) rect

z z
x y z C f y y 
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,          [(3.A1): cf. (3.1)] 

where y0 is a translational shift in the waveform relative to the origin.  The amplitude C 

of the waveform is equivalent to 1/ε upon normalizing total attenuation along the z 

direction.  The 1D Fourier transform of Eq. (3.A1) along the y direction peaks at the 

frequencies fy = ±f0 and vanishes at all other frequencies, following a formula similar to 

Eq. (3.4) with the exchange of x0 for y0 and fx for fy.  Using Eqs. (3.17)-(3.19) and         

Eq. (3.22), total x-ray attenuation versus position (u1, u2) along the plane of the rotated 

detector is calculated for the nth projection as 
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where 
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 0 02 f y   .                       [(3.A4): cf. (3.26)] 

Following the sum-to-product trigonometric identity given in Eq. (3.27), one may rewrite 

Eq. (3.A3) as 
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The logarithmically-transformed signal in the mth detector element for the nth projection 

is now determined from Eq. (3.31).  The midpoint formula50 for approximating this 

double integral is 
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FBP reconstruction now follows from Eq. (3.42). 
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CHAPTER 4 

 

Oblique Reconstructions in Tomosynthesis: 

I. Proof-of-Principle Justification 

 

This chapter expands upon a conference proceedings manuscript published in Lecture 

Notes in Computer Science 7361, 737-744 (2012), and is planned for submission to a 

peer-reviewed journal. 
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1.  INTRODUCTION 

 In computed tomography (CT), axial slices of the body are reconstructed 

successively as the patient is translated in the longitudinal direction.  Due to the near 

isotropic resolution of modern CT scanners, the stack of axial slices can be reformatted to 

display a multiplanar reconstruction (MPR), or an image of any planar or curved surface 

in the volume.  One application of MPR is visualizing stenosis in coronary arteries with a 

curved surface following the contour of the vessel.  Another example is dental CT, in 

which an oblique plane can be used to display the jaw and teeth in the same view.1 

 In tomosynthesis, projection images are acquired over a small angular range 

instead of the full 180° arc used in CT.  It has been conventionally assumed that 

tomosynthesis reconstructions should only be created with planes parallel to the detector, 

since Fourier space is not sampled isotropically.2  The sampling of Fourier space is 

determined from the Central Slice Theorem.  As shown in Figure 4.1 using a 2D parallel 

beam geometry for illustration, the sampled region of Fourier space resembles a double 

cone whose opening angle matches the angular range of the tomosynthesis scan.  This 

region is termed the “Fourier double cone” (FDC) throughout the remainder of this work, 

even though the region is not 3D in the strict sense of a cone. 
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Figure 4.1: Thought experiments in the reconstruction of a thick object along 
oblique planes.  (a) A parallel x-ray beam acquires a projection image for tomosynthesis.  
(b) According to the Central Slice Theorem, Fourier space is sampled along the direction 
perpendicular to the x-ray beam of each projection.  Thus, the sampled area resembles a 
double cone whose opening angle matches the angular range (Θ) of the scan.  This 
sampled area is termed the “Fourier double cone” (FDC) in this work.  (c) A test 
frequency is oriented along a pitch angle outside the FDC.  Since the object is very thick, 
its Fourier transform consists of two delta functions along the pitch axis.  This object is 
occult to tomosynthesis.  (d) The same object is oriented along a pitch within the opening 
angle of the FDC.  This object is sampled perfectly in Fourier space.  Since a 0° pitch is 
always contained within the FDC, this thought experiment supports the use of 
conventional slices along a 0° pitch in the reconstruction of a thick object. 
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 To gain insight into a reason for using reconstruction planes parallel to the 

detector, it is useful to perform a thought experiment with objects that are occult to 

tomosynthesis.  Based on the Central Slice theorem, an object is occult to tomosynthesis 

if its Fourier transform is zero at all points inside the FDC.  It can be demonstrated from 

standard properties concerning the Fourier transform that this condition is satisfied by a 

very thick object.  Figure 4.1 illustrates this concept by considering a very thick object 

whose attenuation coefficient varies sinusoidally along an angle (i.e., “pitch”).  The 

Fourier transform of the object consists of two delta functions along the pitch axis.  One 

can use this object to assess whether individual frequencies are resolvable along various 

directions in the reconstruction.  If one first considers the case in which the pitch is 

outside the opening angle of the FDC, it follows from the Central Slice Theorem that the 

reconstruction is zero everywhere [Figure 4.1(c)].  Consequently, a slice that is 

reconstructed along the pitch of the object cannot resolve the input frequency.  By 

contrast, if the same object has a pitch within the opening angle of the FDC, the test 

frequency is sampled perfectly in Fourier space [Figure 4.1(d)].  By demonstrating that 

the object is resolved at pitches within the opening angle of the FDC, this thought 

experiment supports the use of conventional slices oriented along a 0° pitch.  The 0° pitch 

is always contained within the opening angle of the FDC regardless of the angular range 

of the scanner. 

 

 

 



 

 121

 

Figure 4.2: Illustration of the effect of thickness on the Fourier transform of a 
pitched sine plate.  To illustrate that a thin object can be visualized in an oblique 
reconstruction, a test frequency is analyzed at a non-zero pitch.  As shown, the Fourier 
transform of the object consists of two lines modulated by a “sinc” function along the 
direction perpendicular to the pitch axis.  Because the Fourier transform is non-zero 
within the FDC, a slice that is reconstructed along the pitch of the input frequency is 
expected to have information that would not otherwise be present for a thick object 
[Figure 4.1(c)].  The amplitude of the portion of the “sinc” function that intersects the 
FDC increases as the object thickness is reduced; hence, the modulation in an oblique 
reconstruction is expected to be largest at small thicknesses. 
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 It is now useful to investigate the effect of reducing the object thickness in the 

same thought experiment.  As shown in Figure 4.2, the Fourier transform of a thin 

sinusoidal object consists of two lines modulated by a “sinc” function along the direction 

perpendicular to the pitch axis.  Because the Fourier transform has reasonably large 

modulation within the FDC, a slice along the pitch of the input frequency should not be 

trivial like the corresponding slice for a thick object. 

 To investigate whether an oblique reconstruction can indeed resolve a thin object, 

experimental images of a bar pattern phantom were acquired with a Selenia Dimensions 

digital breast tomosynthesis system (Hologic, Inc., Bedford, MA).  A goniometry stand 

was used to vary the pitch of frequencies ranging from 1.0 line pair per millimeter 

(lp/mm) to 10.0 lp/mm in 1.0 lp/mm increments.  The technique factors of the scan 

matched the ones given in our previous work.3, 4  Reconstruction was performed in the 

oblique plane of the bar patterns using a commercial prototype backprojection filtering 

(BPF) algorithm (BrionaTM, Real Time Tomography, Villanova, PA).5  Our previous 

work showed that frequencies up to 6.0 lp/mm can be resolved if the bar pattern phantom 

is parallel to the breast support (i.e., 0° pitch).  Upon tilting the plane of the bar patterns, 

reconstructions showed that frequencies up to 5.0 lp/mm and 3.0 lp/mm can be resolved 

at 30° and 60° pitches, respectively (Figure 4.3).  These experimental results indicate that 

slices in a tomosynthesis reconstruction do not have to be parallel to the breast support as 

stipulated by convention. 
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Figure 4.3: Experimental reconstructions of a bar pattern phantom along oblique 
planes.  To investigate the experimental feasibility of oblique reconstructions in a 
commercial breast tomosynthesis system, a bar pattern phantom was oriented along 
various pitches using a goniometry stand.  The frequencies were pitched at 30° and 60° 
angles relative to the breast support.  BPF reconstructions in the oblique plane of the bar 
patterns show frequencies up to 5.0 lp/mm and 3.0 lp/mm at the two respective pitches. 
 

 In breast tomosynthesis applications,6-8 the objects in the American College of 

Radiology (ACR) Mammography Accreditation Phantom9 give insight into the thickness 

of clinically important structures.  One common attribute of all three objects in the ACR 

phantom (spheres, rods, and specks) is that they are thin.  These objects are designed to 

simulate masses, spiculations, and calcifications, respectively, in breast images.  The 
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thickness of these objects is comparable to the bar pattern phantom considered in    

Figure 4.3.  For this reason, oblique reconstructions should have clinical applicability in 

tomosynthesis. 

 Although the experimental results indicate that thin objects can be resolved in 

oblique reconstructions, they also demonstrate that high frequency information is lost as 

the pitch is increased from 0°.  To gain more insight into this finding, it is necessary to 

develop an analytical model of oblique reconstructions in tomosynthesis.  To this end, the 

reconstruction of a pitched sine plate is calculated to determine the visibility of test 

frequencies in all directions of the reconstruction.  From first principles, the optical 

transfer function (OTF) is also determined by comparing the signal in the image against 

the attenuation coefficient of the test object at each frequency.  The normalized modulus 

of the OTF yields the modulation transfer function (MTF), which is used to investigate 

whether modulation is within detectable limits at various pitches and frequencies.  A 

second test object that is simulated in this work is a pitched rod.  This object is used to 

assess whether the length of an object can be correctly estimated along various directions 

in the reconstruction. 

 

2.  METHODS 

2.1.  Reconstruction Formula for Incomplete Angular Data 

 From first principles, a general filtered backprojection (FBP) reconstruction 

formula is now derived for an idealized tomosynthesis system with a parallel-beam 

geometry.  This formula will be used to calculate the reconstruction of a pitched sine 
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plate and a rod.  Although clinical features are 3D, a 2D simulation is developed for a 

proof-of-principle justification for oblique reconstructions in tomosynthesis. 

 It is useful to begin this derivation with a review of the Radon Transform.  In a 

parallel beam geometry, the Radon transform is defined by considering the integral of the 

linear attenuation coefficient of an object over all possible lines ( , )t   in 2 .  As shown 

in Figure 4.4, ( , )t   denotes the line that passes through the point ( cos , sin )t t   and 

that is perpendicular to the unit vector (cos ) (sin )  p i k , where i  and k  are unit 

vectors in the x and z directions, respectively, and where t     and 90 90     .  

Following Hsieh10 and others, the matrix transformation 

 
cos sin

sin cos

x t

z s

 
 

    
    

    
                      (4.1) 

provides a parametric representation of the line ( , )t  , assuming that ( , )x z  is a point in 

2  and that s is a free parameter ranging from –∞ to ∞.  Denoting μ as the linear 

attenuation coefficient of the input object, the Radon transform can thus be written 

 
( , )

( , )
t

t ds


   


 .                                                                                           (4.2) 

A fundamental relationship between the 1D Fourier transform of μ(t, θ) and the 2D 

Fourier transform of ( , )x z  is established by the Central Slice Theorem10, 11 

 1 2( )( , ) ( cos , sin )r r rf f f       ,                                          (4.3) 

where fr is radial frequency ranging from –∞ to ∞.  According to Eq. (4.3), each 

projection samples Fourier space along the angle θ perpendicular to the incident x-ray 

beam.  In tomosynthesis applications for which projections are acquired over a limited 
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angular range, Figure 4.1(b) shows the corresponding region of Fourier space that is 

sampled.  This region has been termed the FDC in Section 1. 

 

 

Figure 4.4: Illustration of two test objects and their Radon transforms.  In a parallel 
beam geometry, the Radon transform is defined as the integral of an attenuation 
coefficient over the line ( , )t  .  This line intercepts the point ( cos , sin )t t   and is 
perpendicular to the unit vector (cos ) (sin )  p i k .  At a fixed projection angle  , 
the dependency of the Radon transform on the parameter t is illustrated for two test 
objects.  (a) The first object is an infinitely long rectangular prism (thickness ε) whose 
attenuation coefficient varies sinusoidally along the pitch angle, y .  (b) The second 

object is a rod (length  ) that is similarly pitched. 
 

 The Central Slice Theorem is now used to derive a formula for the FBP 

reconstruction of an object in a DBT system with incomplete angular data ranging from 

/ 2    to / 2   .  For the purpose of this derivation, the system is taken to be 
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noiseless and the angular spacing between projections is infinitesimally small.  The FBP 

reconstruction11 of μ(x, z) is 

 
/ 2

FBP 1/ 2
( , ) ( )( cos sin , )x z x z d      




                       (4.4) 

 
/ 2

/ 2
               ( cos sin ) ( , )x z d d        

 

 
      ,       (4.5) 

where  is the filter and 1  is the 1D convolution operator.  Backprojection of ( , )t   

to the point (x, z) corresponds to evaluation of the Radon transform at 

cos sint x z   , as can be deduced from the inverse of the matrix transformation in 

Eq. (4.1).  The transition from Eq. (4.4) to Eq. (4.5) follows directly from the definition 

of convolution.  The 2D Fourier transform12 of μFBP(x, z) is thus 

 

/ 2

2 FBP / 2

2 ( cos sin )

( cos , sin ) ( cos sin ) ( , )

                                            r

r r

if x z

f f x z

e d d dxdz  

         

 

   

   

 

   



    
     (4.6) 

where   is the polar angle of the 2D frequency vector ( 90 90 )     .  Eq. (4.6) can 

be evaluated by changing variables from the ( , )x z  coordinate system to the ( , )t s  

coordinate system.  The differential area element dxdz in Eq. (4.6) should be replaced by 

dsdt, since the Jacobian of the coordinate transformation in Eq. (4.1) is unity. 

  
 

/ 2

2 FBP / 2

2 cos( )

2 sin( )

( cos , sin ) ( , )

                                           ( )

                                           

r

r

r r

if t

if s

f f

t e dt

e ds d d

  

  

     

 

 

 

 

  



 





  



 





 

                                  (4.7) 

In Eq. (4.7), the integral over t can be calculated using the Fourier shift theorem12 

  2 cos( ) 2 cos( )
1( ) cos( )r rif t if

rt e dt e f          
    


      ,      (4.8) 
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and the integral over s can be written in terms of a Dirac delta function.13 

  2 sin( ) sin( )rif s
re ds f     

 


            (4.9) 

Eq. (4.9) can be simplified further by noting the composition identity for delta 

functions.13, 14  Assuming that u(θ) is a function with a finite number of zeros and with no 

repeated zeros, the identity for the delta function of a composition is 

   0

0

( )
( )

( )
k

k k

u
u

   




 ,                               (4.10) 

where θ0k is the kth zero of u(θ).  In evaluating Eq. (4.9), we let ( ) sin( )ru f     and 

hence 0k k    , where k  .  Because the only zero of u(θ) that falls within the 

integration limits on θ in Eq. (4.7) is 00 , the summation in Eq. (4.10) reduces to the 

single term for which k = 0.  Noting that ( ) cos( )ru f     , it follows that 00( ) ru f   

and Eq. (4.9) simplifies to 

   ( )
sin( )r

r

f
f

     
  .                   (4.11) 

Combining Eqs. (4.7)-(4.11), the 2D Fourier transform of μFBP(x, z) can now be written 

 
 
 

/ 2 2 cos( )
2 FBP / 2

1

( cos , sin ) ( , )

( )
                                            cos( )

rif
r r

r
r

f f e d

f d
f

         

     

   

 
 


  

  


.                     (4.12) 

In Eq. (4.12), the integral over τ can be evaluated using the Central Slice theorem        

[Eq. (4.3)]. 
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 

 

/ 2

2 FBP 2/ 2

1

( cos , sin ) cos( )cos , cos( )sin

( )
                                            cos( )

r r r r

r
r

f f f f

f d
f

         

     




  


  

 


 (4.13) 

Due to the delta function in Eq. (4.13), this integration is non-trivial only if   is between 

–Θ/2 and +Θ/2; otherwise, the integral vanishes.  For this reason, it is important to 

introduce the function rect( / )   in the evaluation of Eq. (4.13), so that 

 2 FBP 2 1

1
( cos , sin ) ( cos , sin ) ( ) rectr r r r r

r

f f f f f
f

              
   ,   (4.14) 

where 

 
1   , | | 1/ 2

rect( )
0   , | | 1/ 2

u
u

u


  

.         (4.15) 

In Eq. (4.14), the function rect( / )   perfectly recovers the FDC whose opening angle is 

the scan range Θ (Figure 4.1).  This result completes the derivation of the general 

tomosynthesis reconstruction formula. 

 If one considers the case of complete angular data (Θ = 180°), all of Fourier space 

is sampled by the projections, and the rectangle function in Eq. (4.14) can be replaced 

with a constant (unity).  By choosing the filter   with the property that 1 ( )r rf f  , it 

follows directly from Eq. (4.14) that the input object can be reconstructed perfectly.  This 

formula for   is termed the “ramp” filter; it has been previously derived by Hsieh10 and 

others for CT applications with complete angular data.  This agreement with CT 

reconstruction theory provides a built-in check on the validity of Eq. (4.14). 
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 With incomplete angular data (0 < Θ < 180°), it is no longer possible to choose a 

filter   such that there is always agreement between 2 FBP  and 2  in Eq. (4.14).  In 

Sections 2.2 and 2.3 of this chapter, Eq. (4.14) is used to calculate the reconstruction of a 

pitched sine plate and rod in tomosynthesis applications with incomplete angular data. 

 In determining the reconstruction of the two test objects, an important property to 

simplify calculations is that the spatial representation of the reconstruction is real-valued.  

Following the convolution theorem, the spatial representation is 

 1
FBP 2 2 1

1
( , ) ( , ) ( ) rect ( , )r

r

x z x z f x z
f

            
  ,     (4.16) 

where 2  denotes the 2D convolution operator.  From standard properties, the 2D inverse 

Fourier transform to the right of the convolution operator must be real-valued if the 

argument in the rectangular brackets is an even function.  Since 1/ rf  and rect( / )   

are even functions, it follows that the reconstruction is real-valued provided that 1 ( )rf  

is also even.  This work is limited to filters that satisfy this evenness property. 

 

2.2.  Reconstruction of a Pitched Sine Plate 

 A framework for investigating the reconstruction of a sine plate is now developed 

by modeling an infinitely long rectangular prism whose attenuation coefficient varies 

sinusoidally along the pitch y .  To illustrate that reconstructions are feasible along a 

broad range of pitches, the angle y  is taken to be larger than / 2 , so that the pitch is 

outside the opening angle of the FDC (Figure 4.1) 
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 0( , ) cos(2 ) rect
z

x z C f x 

       

 
,       (4.17) 

where 

 
cos sin

sin cos
y y

y y

x x

z z

 
 

     
         

.        (4.18) 

In this formulation, C denotes the maximum value of the attenuation coefficient of the 

material, f0 is the input frequency, x  indicates position along the pitch y , and z  

measures position along the thickness (ε) of the sine plate [Figure 4.4(a)].  The 

transformation matrix given in Eq. (4.18) changes variables between the ( , )x z  

coordinate system and a rotated reference frame whose coordinate axes match the long 

and short axes of the pitched sine plate, respectively.  The subscript y on the variable y  

emphasizes that changing the pitch is equivalent to rotating the x and z axes about the y 

axis perpendicular to the plane of the parallel projections.  For the purpose of this work, it 

is assumed that 0 90y   . 

 To illustrate the calculation of ( , )t  , the Radon transform of this object is 

plotted versus t in Figure 4.4(a) at a fixed projection angle (θ).  Appendix A demonstrates 

from first principles that this plot is sinusoidal with frequency 0 sec( )yf   , as shown 

in the figure. 

 To calculate the tomosynthesis reconstruction of the sine plate [Eq. (4.14)], it is 

first necessary to determine the Fourier transform of the sine plate 

 2 ( )
2 ( , ) ( , ) x zi f x f z

x zf f x z e dxdz 
   

 
          (4.19) 
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 2 ( )                  ( , ) x zi f x f zx z e dx dz
     

 
      .      (4.20) 

In Eq. (4.20), the frequency variables ( , )x zf f   are defined by a rotated reference frame 

analogous to the ( , )x z   coordinate system 

 
cos sin

sin cos
y yx x

y y z
z

f f

ff

 
 

              
.        (4.21) 

Substituting Eq. (4.17) into Eq. (4.20) yields 

 2 0 0( , ) ( ) ( ) sinc( )
2x z x x z

C
f f f f f f f

           
 

 ,     (4.22) 

where 

 
sin( )

sinc( )
u

u
u




 .          (4.23) 

Using Eq. (4.22) in conjunction with Eq. (4.14), the FBP reconstruction can now be 

written as the inverse 2D Fourier transform 

 2 ( )2
FBP 12 2

( ) rect x zi xf zf
r x z

x z

f e df df
f f

  
  

 

       


                            (4.24) 

    2
12 2

       rect cos 2 ( )r x z x z

x z

f xf zf df df
f f

  
 

 

        


 .         (4.25) 

The transition from Eq. (4.24) to Eq. (4.25) is justified from a priori knowledge that the 

reconstruction is real-valued.  Eq. (4.25) can now be evaluated by changing variables into 

the ( , )x zf f   and ( , )x z   coordinate systems.  Combining Eqs. (4.18), (4.21), (4.22) and 

(4.25) gives 
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.                                        (4.26) 

In evaluating this expression, the inner integrals over xf   can be simplified by 

substituting the constraints 0xf f    and 0xf f    into the terms to the right of the 

delta function in each respective integrand.  This step follows directly from the definition 

of the delta function.  Because of the term rect( / )  , the outer integral over zf   must 

then be evaluated along integration limits given from the intersection of the FDC with the 

lines 0xf f   .  Figure 4.5(a) shows a pitch for which this intersection consists of two 

line segments.  At larger pitches approaching 90°, the intersection consists of infinitely 

long rays [Figure 4.5(b)].  FBP reconstruction is now calculated separately for these two 

cases. 
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Figure 4.5: Illustration of the sampling of Fourier space for a pitched sine plate.    
(a) By rotating the coordinate axes of Fourier space by the pitch of the test object, it can 
be shown that the Fourier transform of a sine plate with frequency f0 [Figure 4.4(a)] 

consists of the two lines 0xf f   .  As shown, these lines intersect the FDC along two 

line segments.  This property holds if 0 90 / 2y    .  (b) At larger pitches for 

which 90 / 2 90y     , it can be demonstrated that the Fourier transform of the 

sine plate intersects the FDC along four rays. 
 

2.2.1.  Case 1 

Figure 4.5(a) illustrates a pitch for which the FDC intersects the lines 0xf f    along 

two line segments.  The coordinates of the two lines segments are now derived.  It is 

shown in Figure 4.5(a) that, along the line 0xf f   , the first line segment lies along the 

zf   direction with extent between PQ


 and PR


.  In applying trigonometry to the right 

triangle OPQ, it follows that 

 PQ OP tan( / 2)y   
 

                               (4.27) 
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 0       tan( / 2)yf   .         (4.28) 

Similarly, in considering the right triangle OPR, 

 PR OP tan( / 2)y   
 

                               (4.29) 

 0       tan( / 2)yf   .         (4.30) 

In Eq. (4.30), the tangent function tends to infinity if 90 / 2y    .  For this reason, if 

the pitch falls between the limits 90 / 2 90y     , it is no longer true that the FDC 

intersects the lines 0xf f    along line segments.  Instead, the intersection consists of 

infinitely long rays.  This case is considered in Section 2.2.2.  To simplify Eqs. (4.28) and 

(4.30), one can introduce the term   

 0 tan( / 2)yf     ,         (4.31) 

so that Eq. (4.26) can be evaluated as 
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                           (4.32) 
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           (4.33) 

In deriving Eq. (4.32), a symmetry property has been used to determine the integration 

limits along the line 0xf f    from knowledge of the analogous limits along the line 

0xf f   .  The transition from Eq. (4.32) to (4.33) is justified by the angle-sum identity 

 1 2 1 2 1 2cos( ) cos( )cos( ) sin( )sin( )b b b b b b          (4.34) 

for the real numbers b1 and b2.  Eq. (4.33) can now be simplified by noting that that the 

first and second integrals are equivalent, despite the different integration limits.  This 

result holds because the integrands are an even function of zf  , and the two integration 

intervals are at equivalent distances from 0zf   .  It can also be shown that the third and 

fourth integrals in Eq. (4.33) have the same magnitude but opposite sign.  This claim 

follows from the fact that each integrand is an odd function of zf  , and the two 

integration intervals are at the same distance from 0zf   .  The negative sign preceding 

the fourth integral yields net equivalence with the third integral, so that 
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   (4.35) 

It would be difficult to evaluate the two integrals analytically in Eq. (4.35).  Instead, they 

can be determined numerically using the midpoint formula for integration.15 
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(4.36) 

In applying the midpoint formula to Eq. (4.35), the interval  ,   , which corresponds 

to the integration limits, is evenly partitioned into sub-intervals.  The midpoint of the jth 

sub-interval is 

 
( 1/ 2)( )

zj

j
f

J

   


    ,                   (4.37) 

where J is the total number of sub-intervals (J → ∞).  The midpoint formula is a valid 

approximation method provided that the integration limits are finite.  This property holds 

if 0 90 / 2y     . 
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2.2.2.  Case 2 

In Section 2.2, it was demonstrated that the FDC intersects the lines 0xf f    along 

infinitely long rays if the pitch satisfies the inequality 90 / 2 90y     .           

Figure 4.5(b) shows the four rays of intersection.  It follows that 
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2 2
1 0

2 2
0

0
2 2

1 0

2 2
0

2 2
1 0

0

cos(2 )sinc( )

cos(2 )

cos(2 )sinc( )

      

sin(

sin(2 )

z z z

z

z

z z z

z

z

z

f f z f f
df

f f
x f

f f z f f
df

f f
C

f f

x f





  


  














         
 

  
         
  

  
 













2 2
0

2 2
1 0

2 2
0

2 )sinc( )

sin(2 )sinc( )

z z

z

z

z z z

z

z

z f f
df

f f

f f z f f
df

f f





 

  









 
 
 
 
 
 
 
 
 
 
     

  
  

  
            
    






   (4.39) 



 

 139

One can justify the transition from Eq. (4.38) to (4.39) by applying steps analogous to the 

ones used between Eqs. (4.32) and (4.35).  Since the integration limits are not all finite, it 

is no longer acceptable to evaluate these integrals with the midpoint formula.  For the 

purpose of this work, the integrals are evaluated numerically in MATLAB R2012b using 

the “integral” command. 

 

2.3.  Reconstruction of a Pitched Rod 

 The reconstruction of a pitched rod is now determined by modifying the 

attenuation coefficient of the input object in Eq. (4.17).  The rod is modeled as a 

rectangle function with length (П) aligned along the pitch y  [Figure 4.4(b)]. 

 ( , ) rect rect
x z

x z C


              
        (4.40) 

Similar to the sine plate, the rod thickness is ε, and the maximum value of the attenuation 

coefficient is C.  The pitch y  is assumed to be larger than / 2 , so that the long axis of 

the rod is not within the opening angle of the FDC.  To illustrate the Radon transform of 

this object, its dependency on t is shown in Figure 4.4(b) at a fixed projection angle (θ).  

The Radon transform is calculated in Appendix B from first principles. 

 As discussed in Section 2.2, it is necessary to calculate the Fourier transform of 

the input object in order to derive the reconstruction.  Following Eq. (4.20), this 

transform can be written 

 2 ( , ) sinc( )sinc( )x z x zf f C f f         .                  (4.41) 

The reconstruction can now be determined by substituting Eq. (4.41) into Eq. (4.25). 
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To transition from Eq. (4.42) to Eq. (4.43), the arguments of the sinc functions are 

transformed into the ( , )x zf f  coordinate system using Eq. (4.21).  Also, the limits of the 

inner integral over fz are modified to model the FDC.  Because it would be difficult to 

evaluate the inner integrals over fz in closed form, the midpoint formula15 can now be 

used as an approximation technique.  Similar to Eq. (4.35), the two intervals of 

integration in Eq. (4.43) should be evenly partitioned into sub-intervals numbered 

between k =1 and K, so that 
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,                            (4.44) 

where 
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The integrals in Eq. (4.44) cannot be evaluated analytically for the most general filter  .  

One special case that can be simplified, however, is simple backprojection (SBP) 

reconstruction for which 1 ( ) 1rf  . 
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Since 
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it follows that 
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where 
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Using a computer algebra system to evaluate Eqs. (4.53)-(4.54), it can be shown that 
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completing the derivation of the SBP reconstruction. 
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3.  RESULTS 

3.1.  Sine Plate 

3.1.1.  Visualization of the Reconstruction 

 Image acquisition is now simulated for a tomosynthesis system comparable to the 

Selenia Dimensions DBT unit (Hologic Inc., Bedford, MA) with an angular range (Θ) of 

15°, assuming that the sine plate has a thickness (ε) of 0.10 mm and a frequency (f0) of 

2.0 lp/mm.  Following our previous work, the attenuation coefficient of the sine plate is 

normalized so that total attenuation is unity for the central projection for which θ = 0°.  

Accordingly, we let 1/( sec )yC   .  The denominator in this expression is the x-ray 

path length through the object for the central projection. 

 In Figure 4.6, SBP reconstruction is displayed as a grayscale image in the xz 

plane, which is analogous to the plane of the chest wall in a breast application.  The two 

subplots (a) and (b) correspond to two pitches for the sine plate; namely, 0° and 45°.  An 

oscillatory pattern with the frequency of the input object is correctly resolved along both 

pitches.  This finding illustrates that an input frequency with a pitch well outside the 

opening angle of the FDC can be resolved in tomosynthesis. 

 Figure 4.6 also shows that the reconstruction greatly overestimates the thickness 

of the sine plate due to backprojection artifacts.  This result is observed at both the 0° and 

45° pitches.  Similar backprojection artifacts would not be present in an FBP 

reconstruction for CT with complete angular data (Θ = 180°). 
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Figure 4.6: Reconstruction of a pitched sine plate in the plane of x-ray tube motion.  
The simple backprojection (SBP) reconstruction of a sine plate [Figure 4.4(a)] is 
displayed as a grayscale image in the xz plane, assuming that Θ = 15°, ε = 0.10 mm, and 
f0 = 2.0 lp/mm.  While it is conventional to display the reconstruction with slices oriented 
along a 0° pitch (that is, with fixed values of z), this figure is useful for showing that an 
oscillatory pattern can be resolved along the two object pitches, 0° and 45°.  The 
oscillatory pattern has the correct frequency along each pitch.  Due to the limited angular 
range of the projections, backprojection artifacts cause the thickness of the object to be 
overestimated. 
 

 In a clinical application of DBT, the reconstruction is not typically viewed in the 

xz plane as it is shown in Figure 4.6.  Instead, the reconstruction is conventionally 

displayed as a series of slices oriented along a 0° pitch.  In order to simulate the clinical 

display of a reconstruction more closely, signal should be plotted versus position (x) 

measured along a 0° pitch, regardless of the pitch of the input object.  Figure 4.7(a)-(c) 

shows this result for a sine plate pitched at a 45° angle similar to Figure 4.6(b).  The three 

plots correspond to three different reconstruction depths (z) given by –3.0, 0, and        

+3.0 mm.  By viewing these three slices, it is difficult to deduce that the input object is 

sinusoidal along a 45° pitch.  Instead, the object appears as if it were a dampened sine 

wave whose maximum shifts along the x direction with increasing depth, z.  The spacing 
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between adjacent peaks near the maximum is approximately 0.34 mm, corresponding to a 

frequency of 2.9 lp/mm.  This frequency does not match the input frequency (f0) of       

2.0 lp/mm.  It should be noted that the sine plate actually spans a length of sec y  , or 

0.14 mm, within each slice in Figure 4.7(a)-(c).  Signal extends across a much broader 

length than 0.14 mm due to backprojection artifacts, causing the dimension of the object 

within the slice to be greatly overestimated. 

 To demonstrate that the same object can be better visualized in an oblique 

reconstruction, the pitch of the slice is changed to 45° in Figure 4.7(d).  This slice is 

generated at the depth ( 0)z   corresponding to the mid-thickness of the sine plate along 

the pitch axis.  Figure 4.7(d) illustrates that signal is sinusoidal with the correct 

frequency, 2.0 lp/mm.  For this reason, the 45° pitch is the preferred orientation for 

displaying slices for this object. 
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Figure 4.7: Tomographic slices for a pitched sine plate.  (a)-(c) Following convention, 
the reconstruction in Figure 4.6(b) is displayed using slices oriented along a 0° pitch.  
Each slice corresponds to a fixed depth z.  It is difficult to deduce that the test object is 
sinusoidal along a 45° pitch.  (d) In viewing a slice through the mid-thickness of the 
object at a 45° pitch ( 0)z  , it becomes clear that the attenuation coefficient is 
sinusoidal along this direction.  For this reason, the 45° pitch is the preferred orientation 
for displaying slices through this object. 
 

 

 

 



 

 147

3.1.2. Modulation Transfer Function (MTF) 

 To give further insight into Figure 4.7(d), we now re-examine the formula for the 

reconstruction derived in the Methods section, and show that signal in a slice along the 

pitch of the object is always sinusoidal with the correct frequency.  According to        

Eqs. (4.35) and (4.39) giving the formula for the reconstruction, the signal is a linear 

combination of sinusoidal functions along the x  direction.  This result can be written in 

terms of one sinusoidal function using the trigonometric identity 

 2 2
1 2 1 2cos( ) sin( ) cos( )A A A A      ,       (4.56) 
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From Eqs. (4.35) and (4.39), it follows that 

 2 2
FBP 1 2 0cos(2 )A A x f     ,        (4.58) 

where 

2 2
1 0

2 2
0

2 2
1 0

1

2 2
0

2 2
1 0

2
0

cos(2 )sinc( )
,          0 90 / 2

cos(2 )sinc( )

cos(2 )sinc( )

z z z

z y

z

z z z

z

z

z z z

f f z f f
df

f f

f f z f f
A C df

f f

f f z f f

f f







  


  


  









    
      



    
  



    
 













2

,    90 / 2 90y

z

z

df













 
 
 
 
       
 
  
   


 (4.59) 



 

 148

2 2
1 0

2 2
0

2 2
1 0

2

2 2
0

2 2
1 0

2
0

sin(2 )sinc( )
,          0 90 / 2

sin(2 )sinc( )

sin(2 )sinc( )

z z z

z y

z

z z z

z

z

z z z

f f z f f
df

f f

f f z f f
A C df

f f

f f z f f

f f







  


  


  









    
      



    
  



    
 













2

,    90 / 2 90y

z

z

df













 

 
 
 
       
 
  
   


 (4.60) 

Eq. (4.58) provides the desired formula for signal in a slice with the same pitch as the 

object.  This formula proves that the signal is sinusoidal with the correct frequency (f0).  

This result holds whether the slice is inside or outside the object. 

 In the pitched slice described by Eq. (4.58), the signal has a phase shift   that 

does not necessarily match the phase of the input object at each reconstruction depth, z .  

If one considers the special case in which the depth of the slice is aligned with the mid-

thickness of the sine plate ( 0)z  , it can be shown that   vanishes.  Hence the phase of 

the signal matches the object 

 FBP 0 00
( ) cos(2 )

z
G f C x f 


  ,                   (4.61) 

where 
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    (4.62) 

Eq. (4.61) demonstrates that signal in the slice along the mid-thickness of the object is 

proportional to the attenuation coefficient of the sine plate.  The proportionality factor, 

0( )G f , is by definition the optical transfer function (OTF).  The OTF compares the 

amplitude of signal in the image against the attenuation coefficient of the test object at all 

frequencies, f0.  Depending on the sign of the OTF, the phase shift relative to the input 

object is either 0° or 180°. 

 To investigate how image quality varies with pitch in an oblique reconstruction, 

the modulation transfer function (MTF) is now derived from the OTF.  The MTF is 

calculated by normalizing the modulus of 0( )G f  to the corresponding limit for which 

0 0f  .16  Appendix C shows that this limit can be evaluated in closed form for Case 1 

of the Methods section.  To demonstrate that modulation is preserved, the MTF should 

approach unity. 
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In Figure 4.8, the MTF is plotted versus frequency (f0) and pitch ( )y  for four 

thicknesses of the sine plate: ε = 0.01, 0.10, 1.0 and 10.0 mm.  The reconstruction 

technique is SBP.  As expected, Figure 4.8 demonstrates that the MTF decreases with 

frequency.  This dependency is not quite monotonic at high frequencies exceeding the 

first zero of the MTF. 

 Figure 4.8 illustrates that the MTF is highly dependent upon the thickness of the 

object.  If the object is very thin [Figure 4.8(a)], the MTF is close to unity over a broad 

range of pitches and frequencies.  As the object thickness is increased, the MTF 

decreases.  This degradation in MTF is pronounced with increasing pitch and frequency.  

In accord with the predictions of the analytical model, experimental reconstructions of 

bar patterns also demonstrate that high frequency information is lost with increasing pitch 

(Figure 4.3). 

 It is useful to explain the thickness dependency of the MTF in terms of Fourier 

theory.  Recall that the Fourier transform of a sine plate consists of two lines modulated 

by a “sinc” function along the direction perpendicular to the pitch axis.  Within the 

sampling cones of Fourier space, it can be shown that the amplitude of the “sinc” 

function increases as the object thickness is reduced (Figure 4.2).  This observation 

explains why the MTF of a thin object is larger than a thick object in Figure 4.8. 
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Figure 4.8: Modulation transfer function (MTF) for oblique reconstructions.  The 
dependency of the in-plane MTF on frequency (f0) and pitch ( y ) is analyzed using 

surface plots at four object thicknesses (ε = 0.01, 0.10, 1.0, and 10.0 mm).  It is 
demonstrated that modulation is preserved over a broad range of pitches and frequencies 
if the object is thin.  As the object thickness is increased, modulation is degraded.  This 
loss of modulation is pronounced with increasing pitch and frequency.  This finding is 
concordant with experimental images of bar patterns presented earlier in this work 
(Figure 4.3), which also show that high frequency information is lost with increasing 
pitch. 
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3.2.  Rod 

 With a similar acquisition geometry, SBP reconstructions of a rod at 0° and 45° 

pitches are now simulated (Figure 4.9), assuming a rod length (Π) of 10.0 mm and a 

thickness (ε) of 0.10 mm.  Grayscale images are displayed in the xz plane analogous to 

Figure 4.6 showing the reconstruction of a sine plate.  Due to backprojection artifacts, it 

is difficult to deduce that the input object is rectangular.  However, it can be shown that 

the rod length is accurately determined from signal along the lines 0z   and z x  for 

the 0° and 45° pitches, respectively. 

 

 

Figure 4.9: Reconstruction of a pitched rod in the plane of x-ray tube motion.  The 
SBP reconstruction of a rod [Figure 4.4(b)] is displayed as a grayscale image in the xz 
plane, assuming that Θ = 15°, ε = 0.10 mm, and Π = 10.0 mm.  One can show that the rod 
length of 10.0 mm is correctly determined along the two object pitches, 0° and 45°, by 
measuring signal along the lines 0z   and z x , respectively.  Because projections are 
acquired over a limited angular range, there are backprojection artifacts that cause the 
thickness of the rod to be overestimated.  In addition, the object does not appear to be 
rectangular in the reconstruction. 
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 In conventional practice, the reconstruction is not displayed as a grayscale image 

in the xz plane, but instead, as a series of slices with a 0° pitch.  To simulate this 

convention, signal is plotted versus x in Figure 4.10(a)-(c), assuming that the rod is 

pitched at a 45° angle.  The three plots correspond to three depths within the rod; namely, 

z = –3.0, 0, and +3.0 mm.  In a perfect reconstruction, each slice should be a rectangle 

function with length sec y  , or 0.14 mm.  Due to backprojection artifacts, the 

reconstruction actually appears trapezoidal, and the extent of the rod within each slice is 

greatly overestimated.  At all three depths, the plateau length of the trapezoid is 6.0 mm 

and the full width at half maximum (FWHM) is 7.0 mm.  Consequently, the conventional 

display of slices is not useful for this object. 

 The reconstruction more clearly resembles the input object if slices are generated 

along a 45° pitch, as shown in Figure 4.10(d).  In this plot, we simulate a slice at the 

depth 0z  , corresponding to the mid-thickness of the rod.  As expected, signal is a 

rectangle function with a plateau length of 10.0 mm.  This length matches known ground 

truth for the rod. 
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Figure 4.10: Tomographic slices for a pitched rod.  (a)-(c) By displaying the 
reconstruction in Figure 4.9(b) with conventional slices oriented along a 0° pitch, it is 
difficult to deduce the length of a rod whose long axis is oblique (45° pitch).  Due to 
backprojection artifacts, signal spans a much greater length than expected; signal in each 
slice should be a rectangle function with length 0.14 mm.  (d) The rod length can be 
correctly determined if slices are generated through the mid-thickness of the object at a 
45° pitch ( 0)z  .  Increasing the thickness of the object causes the edges of the rod to 
be blurred. 
 

 Figure 4.10(d) also investigates how the estimate of rod length is influenced by 

rod thickness.  As the thickness is increased, it is demonstrated that signal appears more 
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trapezoidal than rectangular, and thus the edge of the rod is blurred.  To estimate rod 

length, one can calculate the FWHM of the trapezoid.  With rod thicknesses of 0.1 mm, 

3.4 mm, and 6.7 mm, the FWHM is exactly 10.0 mm in agreement with the actual rod 

length.  By contrast, with a rod thickness of 10.0 mm, the FWHM is 10.6 mm.  

Consequently, the rod length at a 45° pitch is slightly overestimated if its thickness is 

comparable to its length. 

 To investigate how the measurement of the size of an object varies along different 

directions in the reconstruction, the estimate of rod length is plotted versus pitch in 

Figure 4.11(a).  We continue to use the FWHM as the metric for estimating rod length in 

a pitched slice.  Figure 4.11(a) shows that the estimate of rod length is accurate          

(10.0 mm) over a broad range of pitches if the object is thin.  Increasing the rod thickness 

causes the length estimate to be accurate over a narrower range of pitches; all 

inaccuracies are overestimates of rod length. 

 Figure 4.11(b) illustrates the thickness dependency of the maximum pitch at 

which rod length can be correctly determined.  As shown, the maximum pitch decreases 

with rod thickness.  In the special case of an extremely thin rod, the rod length can be 

correctly determined up to a 90° pitch. 

 The consequences of permitting error in the estimate of rod length are also 

explored in Figure 4.11.  It is shown that the introduction of error tolerance broadens the 

range of pitches at which the estimate of rod length is acceptable.  For example, if the rod 

is square, the length estimate is exact up to a pitch of 38°, but is acceptable up to a pitch 

of 48° with an error tolerance of 15% (Points A and B, respectively, in Figure 4.11). 
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Figure 4.11: Measurement accuracy in oblique reconstructions.  (a) The length of a 
rod is determined at various pitches using oblique reconstructions.  The FWHM of signal 
in pitched slices [Figure 4.10(d)] is the metric used to estimate rod length; the actual 
length is 10.0 mm.  (b) At various rod thicknesses, one can use Figure 4.11(a) to 
determine the maximum pitch at which rod length can be correctly measured.  This 
maximum pitch is plotted versus rod thickness for different levels of error tolerance in the 
measurement of rod length.  It is demonstrated here that rod length is correctly 
determined over a broad range of pitches if the object is thin, but over a narrower range 
of pitches if the object is thick. 
  

4.  COMPARISON WITH RESULTS IN THE LITERATURE 

 In this chapter, the MTF is calculated by comparing the amplitude of the image 

against the attenuation coefficient of a sinusoidal test object at various frequencies.  

Previous authors such as Zhao2 have proposed a different formulation for MTF in 

tomosynthesis.  Zhao’s work draws a distinction between in-plane MTF and 3D MTF.  In 

Zhao’s formulation, the in-plane MTF is the integral of the 3D MTF along the z direction.  

This approach presumes that the z direction is perpendicular to the slice.2  To generalize 

Zhao’s calculation of in-plane MTF to oblique planes, we now show that the line integral 

should be performed along a more general direction perpendicular to the slice.  To this 
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end, one must first deduce the OTF of the entire reconstruction space using the 

expression for in-plane OTF derived in Eq. (4.62): 
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In Eq. (4.64), the rect function models the FDC whose opening angle matches the angular 

range of the scan [Figure 4.1(b)].  The formula below demonstrates that the in-plane OTF 

[Eq. (4.62)] can be expressed as a line integral of the OTF of the entire reconstruction 

space [Eq. (4.64)]: 
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
.   (4.66) 

Since the line integral in Eq. (4.65) is performed along a general direction ( zf  ) which is 

perpendicular to the pitch of the slice, this result generalizes Zhao’s formulation of        

in-plane OTF to oblique planes. 

 Although Zhao does not model the thickness of an object in the reconstruction, 

this chapter demonstrates that the in-plane MTF is indeed dependent upon the object 

thickness (Figure 4.8).  This property arises from the term sinc( )zf    in the in-plane 

OTF calculation [Eq. (4.65)].  Recall that this term is the Fourier transform of the 

function rect( / )z  , which models the object thickness ε along the direction 
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perpendicular to the slice [Eq. (4.17)].  In summary, this work introduces the object 

thickness as an additional parameter for quantification of in-plane MTF. 

 

5.  DISCUSSION 

 By convention, a tomosynthesis reconstruction is created with slices parallel to 

the detector.  This work demonstrates from first principles that oblique slices are also 

justified.  To assess how individual frequencies in the MTF are preserved in oblique 

reconstructions, a sine plate is simulated along various pitches.  Although this object is 

not properly visualized in conventional slices generated along a 0° pitch, the sinusoidal 

attenuation coefficient is perfectly resolved in slices created along the pitch of the test 

frequency. 

 To determine whether the length of an object can be correctly determined along 

various pitches, the reconstruction of a rod is also simulated.  It is shown that 

backprojection artifacts in conventional slices oriented along a 0° pitch cause the extent 

of the object to be greatly overestimated with SBP reconstruction.  By contrast, 

backprojection artifacts are minimal in a pitched slice oriented along the length of the 

rod. 

 In linear systems theory, the MTF of a single projection image is calculated 

without making reference to the thickness of the test frequency.16  This work 

demonstrates that the in-plane MTF of a reconstruction is indeed dependent upon the 

object thickness.  Previous authors have not introduced the object thickness as a 

parameter in the MTF calculation.2 
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 According to this work, a very thin object can be reconstructed at large pitches 

approaching 90°.  This property does not hold as the thickness of the object is increased; 

in particular, it is shown that the MTF is degraded and that the measurement of rod length 

is inaccurate at large pitches.  Because a clinical image consists of objects with a range of 

thicknesses, a clinical reconstruction is not expected to be valid up to pitches approaching 

90°.  Future work is merited to determine the range of pitches at which clinical 

reconstructions are appropriate in tomosynthesis; however, anecdotal results suggest that 

pitches approaching 45° are viable. 

 In CT, reconstructions can be generated along any planar or curved surface in the 

imaging volume using MPR.1  Although this work on oblique reconstructions is 

implicitly limited to planar slices, it is reasonable to posit that tomosynthesis 

reconstructions are also justifiable with curved surfaces.  Displaying a blood vessel or a 

vascular calcification cluster in a single view is a potential application for curved planar 

reformatting in DBT.  It is conceivable that the full extent of these tortuous structures 

cannot be visualized using conventional slices oriented along a 0° pitch.  Justifying the 

feasibility of MPR along any curved surface would be difficult with analytical modeling.  

For this reason, future studies should investigate these reconstructions in computer 

anthropomorphic phantoms and in clinical cases. 

 This study could also be expanded by considering multiple test objects in the 

reconstruction.  Although this work calculates the backprojection artifacts of a single test 

object, it does not investigate whether the backprojection artifacts of one object could 

hide another object.  For example, it would be useful to investigate whether the 
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backprojection artifacts of a mass impact the modulation of a sine plate or the length 

estimate of a rod (e.g., a spiculation). 

 This work shows that a pitched slice is the preferred orientation for viewing some 

test objects in the reconstruction.  In theoretical calculations, choosing the optimal pitch 

for viewing an object is trivial, since the actual pitch of the object is known.  Choosing 

the optimal pitch will be more challenging in clinical cases in which there are              

out-of-focus artifacts and ground truth is lacking.  The development of a framework for 

determining the optimal pitch for viewing a clinical reconstruction remains the subject of 

future work.  Quantifying the precise size of an asymmetric mass prior to surgical 

resection is one application where matching the pitch of the reconstruction to the long 

axis of a lesion is potentially important. 

 While filtering is modeled in the FBP formulas of Section 2, the reconstructions 

that are plotted in Section 3 do not apply filtering (Figures 4.6-4.11).  Instead, the 

reconstructions use simple backprojection.  Recalling  Eq. (4.61), it can be shown that 

filtering is not critical in displaying a slice through the mid-thickness of a pitched sine 

plate [Figure 4.7(d)].  According to this expression, signal is sinusoidal with the correct 

frequency, regardless of filter.  Consequently, introducing a filter would not change the 

relative signal in the pitched slice in Figure 4.7(d). 

 Although the ramp filter is the basis for image reconstruction in CT,2, 17, 18 we now 

explain why this work suggests that the ramp filter is not optimal for tomosynthesis.  In 

the OTF identity that is derived in Appendix C [Eq. (4.C6)], it is important to note that 

G(0) is proportional to 1 (0) , or the filter evaluated at zero frequency.  In normalizing 
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G(f0) by G(0) to calculate the in-plane MTF [Eq. (4.63)], it follows from Appendix C that 

the quotient is infinite if 1 (0) 0  .  Hence, the in-plane MTF is not well-defined if 

ramp filtering is used.  Our previous work on super-resolution in DBT also concluded 

that the ramp filter is not optimal, since modulation is zero in the reconstruction of a test 

frequency perpendicular to the plane of x-ray tube motion.4  Future work on filter 

optimization is merited for these reasons.  Although this work calculates the in-plane 

MTF for SBP reconstruction only, it is expected that the result is dependent on the filter   

[Eq. (4.62)]. 

 Some of the limitations of this work and directions for future analytical modeling 

are now noted.  Although a 2D simulation with a parallel beam geometry was sufficient 

for a proof-of-principle justification for oblique reconstructions, it will be important to 

extend this work to a 3D simulation with a divergent beam geometry.  In addition, future 

studies should model the presence of discrete step angles between projections as well as a 

more general detector that rotates between projections.  Finally, the presence of a thin-

film transistor array,19-21 which samples digital detector signal in pixels, should also be 

simulated.22-24 

 

6.  CONCLUSION 

 Conventional practice is to generate a tomosynthesis reconstruction using slices 

parallel to the detector.  This work demonstrates that slices can also be generated along 

oblique directions through the same volume.  It is shown that the object must be thin in 

order to be displayed with high image quality in an oblique reconstruction.  In the ACR 
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Mammography Accreditation Phantom, this thickness constraint is satisfied by the three 

test objects (spheres, rods, and specks), which have been designed to simulate clinically 

important structures. 

 It should be emphasized that the results presented in this chapter are valid in any 

application of tomosynthesis, not simply breast applications.  In addition, although the 

beam in each projection is presumed to consist of x rays, the calculations in this work are 

applicable to electromagnetic radiation at any energy, as well as to beams consisting of 

particles (e.g., neutron tomosynthesis). 

 

7.  APPENDIX A: RADON TRANSFORM OF PITCHED SINE PLATE 

 In Figure 4.4, plots of the Radon transform are shown versus t at a fixed 

projection angle (θ) for the two test objects.  In order to derive the plot for the sine plate 

[Figure 4.4(a)], we now calculate the Radon transform from first principles.  Recall that 

the 2D Fourier transform of this object is 

0

2
0

( cos sin )
( , ) sinc ( sin cos )

( cos sin )2

x y z y

x z x y z y
x y z y

f f fC
f f f f

f f f

     
  

  
          

 .    (4.A1) 

This result follows from Eq. (4.22) using the transformation between the ( , )x zf f   and 

( , )x zf f  coordinate systems [Eq. (4.21)].  According to the Central Slice Theorem       

[Eq. (4.3)], this 2D Fourier transform can be related to the Radon transform as follows: 

 2
2( , ) ( cos , sin ) rif t

r r rt f f e df    



        (4.A2) 
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f e df

      

  




           

    

 .           (4.A3) 

In order to simplify Eq. (4.A3), one must assume that 90 y    , so that the two delta 

functions can be evaluated with the identity 

 0 0cos( ) sec( ) sec( )r y r y yf f f f                    .   (4.A4) 

Due to an infinity in the secant function, Eq. (4.A4) is undefined if 90 y    .  This 

constraint corresponds to the projection for which each ray is parallel with the long axis 

of the sine plate.  The Radon transform cannot be written in closed form for this 

projection, since the total x-ray attenuation is undefined along an infinite path length. 
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
      (4.A5) 

Although the Radon transform cannot be written in closed form if 90 y    , it can 

indeed be written in closed form for the projection angle illustrated in Figure 4.4(a).  

Combining Eqs. (4.A3) and (4.A4) yields 
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 0 0              sec( )sinc tan( ) cos 2 sec( )y y yC f f t                  .  (4.A7) 

This result proves that the Radon transform has sinusoidal dependence on t, as indicated 

in the figure.  Consistent with Eq. (4.A7), the plot has no phase shift relative to the origin, 

t = 0. 
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8.  APPENDIX B: RADON TRANSFORM OF PITCHED ROD 

 In Figure 4.4(b), the Radon transform of a pitched rod is plotted versus t at a fixed 

projection angle (θ).  To derive this plot, we now calculate the Radon transform from first 

principles.  Using Eqs. (4.21) and (4.41), it can be shown that the 2D Fourier transform of 

this object is 

 
2 ( , ) sinc ( cos sin )
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x z x y z y

x y z y

f f C f f
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   
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      
    


.                                      (4.B1) 

From Eq. (4.A2), it follows that 

 2( , ) sinc cos( ) sinc sin( ) rif t
r y r y rt C f f e df       




             .  (4.B2) 

Similar to Appendix A, one must consider two separate constraints in order to evaluate 

the Radon transform; namely 90 y     and 90 y    .  If one first considers the 

constraint 90 y    , the integral in Eq. (4.B2) simplifies to 
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                          rect
t

C


     
 

.                  (4.B4) 

This result corresponds to the projection for which each ray is parallel to the pitch axis 

( )x .  The Radon transform is a rectangular function of t; the width of this function 

matches the rod thickness (ε).  If one next considers the constraint 90 y    , the 

convolution theorem can be used to simplify Eq. (4.B2). 
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In order to analyze the dependency of the Radon transform on t, it is useful to review the 

equation of an isosceles trapezoid 
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,   (4.B8) 

where B is the height of the plateau, q1 is the length of the plateau, and q2 is the length of 

the base.  The trapezoid is symmetric about the origin, t = 0.  Assuming that 

90 90      and that 0 90y   , as stipulated in the body of this work, Eqs. (4.B6) 

and (4.B7) can be equated to yield 
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This result provides a justification for the trapezoidal plot in Figure 4.4(b) showing the 

Radon transform of the rod at a fixed projection angle (θ). 

 Although not plotted in Figure 4.4(b), two degenerate cases in the formula for the 

trapezoid [Eq. (4.B7)] are noted for completeness.  One degeneracy occurs if the plateau 

and base of the trapezoid have the same length ( 1 2q q ).  Using Eqs. (4.B10) and 

(4.B11), it can be shown that this property occurs if y  . 

 ( , ) recty

t
t C        

                             (4.B12) 

This degeneracy corresponds to the projection in which the rays are perpendicular to the 

pitch axis.  It is also useful to examine a second degenerate case in which the length of 

the plateau of the trapezoid is zero ( 1 0q  ), while the length of the base is non-zero 

( 2 0q  ).  This degeneracy occurs if the lengths of the two rectangle functions in          

Eq. (4.B6) are equivalent. 
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The Radon transform is no longer a trapezoidal function of t but instead is a triangular 

function of t.  Unlike the projection illustrated in Figure 4.4(b), it can be shown that this 

degenerate case corresponds to the projection in which one of the rays intercepts two 

corners of the rod.  In the projection shown in Figure 4.4(b), a ray that intercepts one 

corner of the rod does not strike the other corner. 
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9.  APPENDIX C: OPTICAL TRANSFER FUNCTION IDENTITY 

 In this chapter, the MTF of a pitched reconstruction slice is calculated by 

normalizing the OTF to its value in the limit 0 0f   [Eq. (4.63)].  It is difficult to 

evaluate this limit in closed form using Eq. (4.62), since the integration limits both tend 

toward zero.  For this reason, we now provide a more direct method for evaluating 

(0)G by explicitly calculating the reconstruction of a sine plate with zero frequency.  This 

object is an infinitely long rod whose long axis is oriented along the pitch y  and whose 

thickness is ε. 

 It is first necessary to evaluate the Radon transform of the object by substituting 

0 0f   into Eq. (4.A7). 

 ( , ) sec( )yt C              (4.C1) 

As discussed in Appendix A, this result presumes that 90 y    .  Recalling the 

Methods section, it can be shown that this inequality holds at all projections angles for 

Case 1 of the reconstruction (Section 2.2.1).  Hence 
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The transition from Eq. (4.C2) to Eq. (4.C3) is justified because the Radon transform in 

Eq. (4.C1) is independent of t.  The first term in Eq. (4.C3) is the integral of the filter   

over all space.  From Fourier theory, this integral is equivalent to 1 (0) .  The second 

term in Eq. (4.C3) is 
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Combining Eqs. (4.C3) and (4.C5) yields 
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completing the derivation of the OTF identity.  If one considers the special case of SBP 

reconstruction, the substitution 1 1( ) (0) 1rf     should be made in Eq. (4.C6). 

 It would be difficult to perform an analogous derivation of G(0) in considering 

Case 2 of the Methods section (Section 2.2.2), since the x-ray beam is aligned with the 

pitch axis of the rod in the projection for which 90 y    .  At this projection angle, 

the Radon transform cannot be written in closed form. 
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Because it would be difficult to evaluate a reconstruction using a Radon transform with 

an infinity, we evaluate G(0) numerically in considering Case 2.  This result can be 

derived from the integral in Eq. (4.62) in the limit 0 0f  . 
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CHAPTER 5 

 

Oblique Reconstructions in Tomosynthesis: 

II. Super-Resolution 

 

This chapter expands upon a conference proceedings manuscript published in Lecture 

Notes in Computer Science 7361, 737-744 (2012), and is planned for submission to a 

peer-reviewed journal. 
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1.  INTRODUCTION 

 In tomosynthesis, a volumetric reconstruction is generated from projection images 

acquired over a small angular range.  Our previous studies proposed a conceptual test 

object known as a sine plate for assessing image quality in tomosynthesis.1-6  This object 

is a thin strip whose attenuation coefficient varies sinusoidally.  Increasing the frequency 

of the object simulates small closely-spaced structures such as microcalcifications, which 

are early indicators of cancer.  The sine plate has led to the discovery of super-resolution 

in tomosynthesis (Chapter 3).1, 5  Super-resolution is a term which describes the ability to 

resolve input frequencies higher than the detector alias frequency, or the frequency above 

which high frequency information is represented as if it were low frequency information 

in a single projection.5 

 Super-resolution arises because the image of an object is translated in sub-pixel 

detector element increments between projections.  To observe super-resolution, it is 

necessary to perform the reconstruction with a matrix whose pixel size is much smaller 

than that of the detector elements.  The existence of super-resolution was verified 

experimentally with a bar pattern phantom1, 5 using a commercial digital breast 

tomosynthesis (DBT) x-ray unit and a commercial prototype reconstruction solution7 

(BrionaTM, Real Time Tomography, Villanova, PA). 

 By orienting the long axis of the sine plate along various “pitch” angles relative to 

the plane of the detector, we have also demonstrated the feasibility of oblique 

reconstructions in tomosynthesis (Chapter 4).  At various frequencies, the modulation 

transfer function (MTF) was calculated by comparing the amplitude of the reconstruction 
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against the attenuation coefficient of the sine plate.  It was demonstrated that modulation 

is preserved over a broad range of pitches if the object is thin, but is within detectable 

limits over a narrower range of pitches if the object is thick. 

 The previous chapter on oblique reconstructions does not model detector 

pixelation, and thus does not explicitly show that test frequencies exceeding the detector 

alias frequency can be reconstructed at various pitches.  This current chapter extends our 

analysis of super-resolution to oblique reconstruction planes.  To determine whether the 

thickness of the object places limits on the feasibility of super-resolution, this chapter 

also generalizes the MTF calculation to a digital system.  For experimental proof of both 

resolution and super-resolution in oblique reconstructions, projection images of a bar 

pattern phantom were acquired and subsequently reconstructed. 

 

2.  METHODS 

2.1.  Pitched Sine Plate 

 A framework for investigating super-resolution in oblique reconstructions for 

tomosynthesis is now developed.  Accordingly, we calculate the reconstruction of a 

rectangular prism whose linear attenuation coefficient varies sinusoidally along the pitch 

angle, y .  As shown in Figure 5.1, the pitch angle corresponds to a rotation of the x and 

z axes about the y axis perpendicular to the plane of x-ray tube motion (i.e., the xz plane).  

In DBT, the breast is positioned so that the chest wall lies in the plane of x-ray tube 

motion, and hence, the y axis is the chest wall-to-nipple direction.  The matrix 

transformation corresponding to the pitch rotation about the y axis is 
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Figure 5.1: Diagram of a pitched sine plate for tomosynthesis reconstruction.  A 
pitched sine plate is used to investigate the potential for super-resolution in oblique 
reconstructions for tomosynthesis.  The pitch axis along the angle y  relative to the i  

direction lies within the plane of x-ray tube motion (i.e., the xz plane).  Although a 2D 
cross section of the object is shown, it is assumed that the object has infinite extent in the 
+y direction.  In acquiring the nth projection image, the x-ray tube rotates about point B at 
the angle ψn relative to the z direction.  The detector rotates about the y axis at the angle 
γn relative to the x direction. 
 

 

cos 0 sin
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     
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         

i i

j j

k k

,          (5.1) 

where i , j , and k  are orthogonal unit vectors in the x, y, and z directions, respectively, 

and where i , j , and k  are the transformed unit vectors.  One can introduce a vector to 

model the input frequency (f0) along the pitch angle, y .  To investigate the potential for 

super-resolution, this frequency is taken to be higher than the alias frequency of the 

detector. 
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 0f 0f i                         (5.2) 

 0   (cos ) (sin )y yf     i k           (5.3) 

Figure 5.1 shows a cross section of the input object in the plane of x-ray tube motion.  

The object has infinite extent in the i  and j  directions.  Defining the origin (O) as the 

midpoint of the chest wall side of the detector, the attenuation coefficient of the object 

can thus be written 

     
( , , ) cos 2 rectx y z C 


  

     
 

0
0 0

k r r
f r r


 ,        (5.4) 

where r  is a position vector from O to any point ( , , )x y z  in 3 , 0r  denotes a vector 

from O to a known point 0 0 0( , , )x y z  in the object, C is the maximum value of the 

attenuation coefficient, ε indicates the object thickness along the k  direction, and 

 
1   , | | 1/ 2

rect( )
0   , | | 1/ 2

u
u

u


  

.           (5.5) 

Combining Eqs. (5.1), (5.3), and (5.4) yields 
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  
 

,                             (5.6) 

completing the formalism of the attenuation coefficient. 

 

2.2.  Digital Detector Signal 

 To calculate detector signal for the nth projection, it is useful to perform ray 

tracing between the focal spot at A and the incident point on the detector at C         



 

 176

(Figure 5.1).  The most general tomosynthesis geometry with a divergent x-ray beam and 

a rotating detector is analyzed.  Following our previous work,5 the vector from the origin 

to point C on the detector is written 

 1 2OC n nu u  i j


,                       (5.7) 

where u1 measures detector position within the plane of the x-ray tube motion and u2 

measures position along the perpendicular direction.  The unit vectors ni  and nj  are 

determined from detector rotation about the y axis at the angle n . 
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0 1 0
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n n n

n

n n n

 

 
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i i

j j

k k

          (5.8) 

Each projection angle n  relative to the z axis is calculated from the angular spacing 

between projections (Δψ) as 

 n n   ,                        (5.9) 

so that 

 n
n g

  ,           (5.10) 

where g denotes the gear ratio of the detector and where the projection number n varies 

between ( 1) / 2N   and ( 1) / 2N  .  In Chapter 3, the parametric equations for the ray 

between the focal spot at A and the incident point on the detector at C have been 

determined. 

 1( cos sin ) sinn n nx w u h h             (5.11) 

 2y wu            (5.12) 



 

 177

 1( sin cos ) cosn n nz w u l h l h                (5.13) 

In these expressions, h is the distance between the focal spot and the center-of-rotation 

(COR) of the x-ray tube, l is the COR-to-origin distance (Figure 5.1), and w is a free 

parameter ranging between zero and unity.  The x-ray path length n through the input 

object is now derived from these parametric equations by calculating the points of 

intersection of the x-ray beam with the planar surfaces of the sine plate.  Using Eqs. (5.5) 

and (5.6), it can be shown that the planar surfaces of the object can be modeled by the 

expression 

 0 0( ) tan ( / 2)secy yz x x z       ,       (5.14) 

where the “+” and “–” symbols correspond to the x-ray entrance and exit surfaces, 

respectively.  Denoting nx  and nw  as the values of x and w at these two surfaces, it 

follows from Eq. (5.11) that 
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
         (5.15) 

and from Eqs. (5.13)-(5.14) that 
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.     (5.16) 

Eqs. (5.15)-(5.16) provide a system of two equations in two unknowns ( nx  and nw ).  

Using a computer algebra system (Maple 16, Maplesoft, Waterloo, Ontario) to solve for 

the two unknowns, nw  can be written in a form that does not depend on nx . 
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 178

Total x-ray attenuation μ(n) for the nth projection is now found by integrating μ(x, y, z) 

along n. 

 ( )
n

n ds             (5.18) 

From Chapter 3, the differential arc length ds along n is 

  cos( ) cos sec( )n n n nds h l dw       ,       (5.19) 

where θn is the angle of x-ray incidence relative to nk . 
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By combining Eqs. (5.6), (5.11), (5.13), (5.18), and (5.19), the total x-ray attenuation for 

each projection can now be calculated in closed form 
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where 

  cos( ) cos secn n n n nC h l              (5.23) 

 0 0 02 ( cos )sin ( sin )cosn n y n yf l h z h x            .     (5.24) 
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Using a sum-to-product trigonometric identity for real numbers b1 and b2, 
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,                                                (5.25) 

Eq. (5.22) can be rewritten as 
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where 
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Eq. (5.27) gives the signal recorded by the x-ray converter in a detector with no noise or 

blurring.  An amorphous selenium (a-Se) photoconductor operated in drift mode is a 

good approximation for a material with these characteristics.  The digitized signal is now 

found by sampling the total x-ray attenuation using a thin-film transistor (TFT) array 
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having detector elements with area x ya a .  The logarithmically-transformed signal in 

the mth detector element for the nth projection is 

 
( 1) ( 1/ 2)
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where mx and my are integers used for labeling detector elements.  Detector elements are 

centered on u1 = mxax and u2 = (my + 1/2)ay.  In the case of square detector elements, it is 

assumed that x ya a a  .  Although Eq. (5.29) cannot be evaluated in closed form, this 

integral can be calculated numerically using the midpoint formula, which is addressed in 

Chapter 3.5 

 The attenuation coefficient can now be reconstructed using a filtered 

backprojection (FBP) formula derived in Chapter 3.5  It is important to evaluate the 

reconstruction using pitched slices with extent in the i  and j  directions [Eq. (5.30)]. 
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       (5.30) 

Within this slice, x  measures position along the pitch ( y ) and y  measures position 

perpendicular to the plane of x-ray tube motion.  By contrast, z  denotes position 

perpendicular to the slice.  All three positions in the double primed coordinate system are 

measured relative to the point 0 0 0( , , )x y z  in the input object. 

 Following linear systems theory, the net reconstruction filter should be written as 

the product of ramp (RA) and spectrum apodization (SA) filters in the Fourier domain.  
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The SA filter is conventionally given by a Hanning window function.  The filters are 

truncated at the frequencies   in Fourier space. 

 

2.3.  Fourier Transform of the Pitched Reconstruction Slice 

 To demonstrate that the input object is resolved in the image, the Fourier 

transform of the pitched reconstruction plane should have a major peak at the test 

frequency, f0.  The Fourier transform is now calculated analytically using the FBP 

reconstruction formula that is derived in Chapter 3 [Eq. (3.65), Acciavatti and 

Maidment5]. 
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The variables   and   were defined in Chapter 3 to simplify intermediate calculations.5  

It was demonstrated in that chapter that the 1D Fourier transforms 1( )  of 1  and 2  are 
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where 1 1( )f  is the Fourier representation of the filter and nm  is the evaluation of n  at 

the centroid of the mth detector element.  Thus, the 2D Fourier transform 2( )  of         

Eq. (5.31) within the pitched reconstruction slice at the fixed depth z  is 
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where 
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In Eq. (5.34), the variables xf   and yf   are introduced to measure frequency along the x  

and y  directions, respectively, within the pitched slice.  Eq. (5.35) can be evaluated by 

making the substitution 

 3 4 0 5( )y n n n nx y y z       m m m m .       (5.36) 

Since 4 0n m , one finds 
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Hence, from Eq. (5.34), it follows that 
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where 
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and where 
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 1 0 sin yx x z             (5.43) 

 1 0 cos yz z z   .          (5.44) 

Eq. (5.30) justifies the transition from Eq. (5.41) to Eq. (5.42).  In Eqs. (5.43)-(5.44), the 

variables x1 and z1 are introduced to simplify intermediate calculations.  To evaluate     

Eq. (5.42), it is necessary to perform the change of variables 
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Substituting Eq. (5.48) into Eq. (5.40) yields the final expression for the 2D Fourier 

transform. 
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An important special case of Eq. (5.49) occurs with 0yf   . 
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          (5.50) 

This special case is useful for analyzing an input frequency oriented along the pitch, y , 

such as the input frequency given in Eq. (5.2).  To analyze an input frequency oriented 

along a 0° pitch ( 0y  ), one can introduce the equation 0z z  to define the plane of 

reconstruction.  It follows directly from Eqs. (5.1) and (5.30) that the following properties 

hold for this reconstruction plane: 0 0x z   and x xf f  .  If one makes these 

substitutions in Eq. (5.50), one can recover the Fourier transform of a conventional 

reconstruction plane that was derived in Chapter 3 [Eq. (3.86), Acciavatti and 



 

 185

Maidment5].  This agreement with our previous work provides a built-in check on the 

validity of Eq. (5.50). 

 

3.  THEORETICAL RESULTS 

3.1.  Projection Images 

 Projection images are now simulated for a Selenia Dimensions DBT system 

(Hologic Inc., Bedford, MA), assuming an object thickness (ε) of 0.05 mm, an object 

pitch ( y ) of 20°, and an object displacement (x0) of 0 mm along the direction parallel to 

the chest wall side of the breast support.  The acquisition parameters for this system are 

detailed in Chapter 3.5  The centroid of the sine plate (point D in Figure 5.1) is simulated 

at the depth z0 = 50.0 mm.  This depth corresponds to the mid-thickness of a typical 

breast size (50.0 mm thick), assuming that the breast support is 25.0 mm above the 

detector.  In order to investigate super-resolution in this system with 140 µm detector 

elements, the test frequency (f0) is chosen to be 5.0 lp/mm.  This input frequency is 

higher than the detector alias frequency (3.6 lp/mm). 

 The total attenuation of a zero frequency object is now calculated in order to 

normalize the amplitude C of the attenuation coefficient of the input waveform.  From 

Eqs. (5.23) and (5.27), it follows that 
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This calculation assumes that rays for each projection pass through the point 0 0 0( , , )x y z , 

giving rise to x-ray attenuation.  Concordant with Chapter 3, Eqs. (5.52) and (5.53) are 

derived from the equations [Eqs. (5.11)-(5.13)] for the ray between the focal spot and the 

point 1 2( , )u u  on the detector.  Although 2( )u n  is not a coordinate listed directly in       

Eq. (5.51), it is calculated in Eq. (5.53) as a necessary substitution in the formula for n  

[Eq. (5.20)]. 

 In Figure 5.2(a) and 5.2(b), a cross section of signal is plotted versus detector 

position u1 for the central projection (n = 0) and an oblique projection (n = 7).  The signal 

is calculated at the distance u2 = 30.0 mm from the chest wall side of the breast support.  

Following Chapter 3,5 this u2 displacement is chosen to simulate a position approximately 

halfway between the chest wall and nipple in a typical breast size (450 ml).  To illustrate 

that oblique x-ray incidence introduces a translational shift in the image of the object on 

the detector, Figure 5.2(b) shows the shift in the oblique projection [Eq. (5.52)], assuming 

that h = 70.0 cm as would be characteristic of the Selenia Dimensions system.  The 

analogous shift in the central projection is zero [Figure 5.2(a)]. 
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Figure 5.2: Simulated projections of a pitched sine plate.  (a)-(b) Two projection 
images of a pitched sine plate are shown, assuming 20y   , f0 = 5.0 lp/mm,                   

ε = 0.05 mm, x0 = 0 mm, and z0 = 50.0 mm.  Signal is plotted versus detector position u1 
at the fixed distance (u2) of 30.0 mm from the plane of x-ray tube motion.  The presence 
of each detector element (a = 0.14 mm) is modeled by a rectangle function.  (c)-(d) The 
Fourier transforms of each projection show classical signs of aliasing.  The major Fourier 
peak does not occur at the input frequency (5.0 lp/mm) but instead at a frequency less 
than the detector alias frequency, 3.6 lp/mm. 
 

 Although detector signal is a discrete function in a digital system, it is represented 

graphically as a continuous function in Figure 5.2(a) and 5.2(b).  The presence of each 
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detector element is modeled by a rectangle function whose width matches the detector 

element length (0.14 mm).  The projection images do not have the appearance of the 

input waveform, but instead are step-like due to the detector element sampling. 

 To illustrate the presence of aliasing in the two projection images, the Fourier 

transform of detector signal is also calculated in Figure 5.2.  Chapter 3 has demonstrated 

that this Fourier transform is 

 1 22 ( 1/ 2)2
2 1 2 1 2( )( , ) sinc( )sinc( ) ( , ) x yia m f m f

f f a af af n e
        

m

m   ,         (5.54) 

where   denotes the detector signal, and f1 and f2 measure frequency along the u1 and 

u2 directions, respectively.  Figure 5.2(c) and 5.2(d) show the Fourier transform versus f1, 

assuming f2 = 0.  The major peak of the Fourier transform does not occur at the input 

frequency (5.0 lp/mm), but instead at a frequency less than the detector alias frequency 

(3.6 lp/mm).  This finding is concordant with Chapter 3 studying a similar test frequency 

at a 0° pitch in place of the 20° pitch. 

 Although the source-to-COR distance (h) is 70.0 cm in the Selenia Dimensions 

system, it is useful to consider projections at an infinite value of h.  This limiting case 

corresponds to a parallel beam geometry.  As illustrated in Figure 5.2(c) and 5.2(d), the 

positions of the Fourier peaks for each projection are dependent on h.  For a parallel 

beam geometry (h = ∞), Figure 5.3 illustrates how to calculate the frequencies of the 

Fourier peaks in the central projection.  The period T of the test frequency projects onto 

the x-ray converter as cos yT  .  Hence, the projected frequency is 0 sec yf  , or            

5.3 lp/mm.  This frequency gives the first minor Fourier peak in Figure 5.2(c).  Sampling 

by the thin-film transistor (TFT) array aliases the input frequency to 1.8 lp/mm, yielding 
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the major Fourier peak.  The two largest Fourier peaks in Figure 5.2(c) are equidistant 

from the detector alias frequency 0.5a-1 (3.6 lp/mm).  As shown in the figure, two 

additional Fourier peaks occur at 9.0 lp/mm and 12.5 lp/mm.  These peaks are similarly 

equidistant from the frequency 1.5a-1 (10.7 lp/mm). 

 

 

Figure 5.3: Illustration of the projection of a pitched sine plate onto the detector.  
The projection of a pitched sine plate onto the detector is illustrated using a parallel x-ray 
beam geometry ( )h   .  As shown, the period T of the input waveform is projected onto 

the x-ray converter as cos yT   in the central projection.  Hence, the frequency detected 

by the x-ray converter is 0 sec yf  , or 5.3 lp/mm assuming f0 = 5.0 lp/mm and 20y   .  

This frequency corresponds to the first minor Fourier peak in Figure 5.2(c) in the 
acquisition geometry for which h   . 
 

 Unlike a parallel beam geometry, a divergent beam geometry (h = 70.0 cm) 

magnifies the object that is projected onto the x-ray converter.  Denoting M as the 

magnification 
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h
M
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


,           (5.55) 
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it follows from Figure 5.3 that the test frequency f0 projects onto the x-ray converter as 

1
0 sec yM f   , or 4.9 lp/mm.  This frequency corresponds to the first minor Fourier peak 

in Figure 5.2(c).  The major peak at 2.2 lp/mm and the first minor peak are equidistant 

from the alias frequency, 3.6 lp/mm.  As expected, additional Fourier peaks occur at     

9.3 lp/mm and 12.1 lp/mm with equal distance relative to the frequency 1.5a-1           

(10.7 lp/mm). 

 

3.2.  SBP and FBP Reconstruction 

 In Figure 5.4(a), SBP reconstruction is shown in a slice with signal measured in 

the x  direction along a 20° pitch, assuming that 0y   and 0z   [Eq. (5.30)].  

Although a single projection is not capable of resolving the test frequency, the pitched 

reconstruction is capable of resolving 5.0 lp/mm properly.  The corresponding SBP 

Fourier transform [Eq. (5.50)] shows that the major peak occurs at the input frequency 

[Figure 5.4(c)].  These results generalize our previous work on super-resolution at a 0° 

pitch (Chapter 3) to an oblique pitch. 

 FBP reconstructions and their Fourier transforms are also plotted in Figure 5.4 

using either the RA filter alone or the RA and SA filters together.  Following Chapter 3 

on super-resolution, the filter truncation frequency (ξ) is 14.3 lp/mm, corresponding to 

the second zero of the modulation transfer function (MTF) of the detector sampling 

process 

 1 2 1 2MTF( , ) sinc( )sinc( )f f af af .        (5.56) 
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Figure 5.4: Simulated reconstruction of a pitched sine plate.  SBP and FBP 
reconstructions are performed using a slice with signal measured in the x  direction 
along the 20° pitch of the input object, assuming 0y   and 0z  .  Unlike a single 
projection (Figure 5.2), the reconstructions can resolve the high frequency object.  The 
corresponding Fourier transforms have a major peak at the input frequency (5.0 lp/mm), 
demonstrating that our earlier work on super-resolution at a 0° pitch (Chapter 3) can be 
generalized to oblique reconstructions. 
  

This value of ξ is chosen to correspond with the second zero of the MTF measured along 

the f1 direction, assuming that f2 = 0.  Figure 5.4 demonstrates that like SBP, the Fourier 

transforms of FBP reconstructions possess their major peak at the input frequency,       
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5.0 lp/mm.  Filtering provides an improvement over SBP reconstruction by smoothing 

pixelation artifacts in the spatial domain.  The two FBP reconstructions differ in that 

reconstruction with the RA filter alone has greater modulation than reconstruction with 

the RA and SA filters together.  This finding is expected, since the SA filter places more 

relative weight on low frequencies to reduce high frequency noise.  The drawback of 

reconstructing with the RA filter alone is the increased amplitude of high frequency 

spectral leakage in the Fourier domain.  Figures 5.4(b) and 5.4(d) are qualitatively 

concordant with the results at a 0° pitch in Chapter 3. 

 

3.3.  Effect of Object Thickness on the Modulation Transfer Function (MTF) 

 Section 3.2 has demonstrated the existence of super-resolution in oblique 

reconstructions using a relatively thin input object (ε = 0.05 mm).  Based on Chapter 4 

modeling a non-pixelated detector, one would expect the MTF in an oblique 

reconstruction to be substantially degraded at large object thicknesses.  For this reason, 

we now investigate the thickness dependency of super-resolution in oblique 

reconstructions. 

 In Figure 5.5, the dependency of the MTF on object thickness and frequency is 

investigated with surface plots at two pitches (0° and 20°), assuming SBP reconstruction.  

Following convention, the MTF is found by normalizing the amplitude of the 

reconstruction at each test frequency f0 against the corresponding value for a zero-

frequency object (f0 = 0).  As Figure 5.4 illustrates, the amplitude of the reconstruction 

can be determined by the value at 0x  , corresponding to signal at the point 0 0 0( , , )x y z . 
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Figure 5.5: Dependency of the modulation transfer function (MTF) on frequency 
and object thickness.  Using SBP reconstruction, the dependency of the MTF on 
frequency and object thickness is investigated at two pitches (0° and 20°).  If the object is 
thin, the MTF does not differ considerably between the two pitches.  However, if the 
object is thick, the loss in modulation at high frequencies is much more pronounced at the 
20° pitch than at the 0° pitch. 
  

 In the case of a very thin object (ε = 0.01 mm), Figure 5.5 demonstrates that there 

is minimal difference in MTF between the 0° and 20° pitches.  It is typically assumed that 

the object is detectable if the MTF exceeds 10.0%.  Using this threshold, one can show 

that frequencies up to 5.7 and 5.4 lp/mm are visible at the 0° and 20° pitches, 

respectively.  These frequencies exceed the detector alias frequency, 3.6 lp/mm.  

Consequently, super-resolution is achievable at either pitch. 

 Turning next to the case of a thick object, Figure 5.5 shows that the MTF is more 

sharply degraded with increasing frequency.  The resolution loss at high frequencies is 

much more pronounced at the 20° pitch than at the 0° pitch.  For example, if the object is 

1.0 mm thick, the highest detectable frequencies at the 0° and 20° pitches are 5.4 and   

2.5 lp/mm, respectively, assuming that the limit of resolution is an MTF of 10.0%.  This 
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finding illustrates that super-resolution is only achievable in an oblique reconstruction if 

the object is thin.  Super-resolution is feasible at a 0° pitch over a much broader range of 

object thicknesses. 

 In the reconstruction of a thick object, Figure 5.5 demonstrates that low 

frequencies have detectable modulation over a broader range of pitches than high 

frequencies.  To illustrate this concept, Figure 5.6(a)-(b) shows the reconstruction of a 

relatively thick object (ε = 1.0 mm) at 2.0 and 5.0 lp/mm with either the 0° or 20° pitch.  

Modulation is detectable at both pitches for the low frequency object, but is detectable 

only at the 0° pitch for the high frequency object. 

 In Figure 5.6(b), the reconstruction of the 5.0 lp/mm frequency at a 20° pitch 

shows a 180° phase shift that is not observed in the other plots in the figure.  This result 

can be explained from the fact that the optical transfer function (OTF) is negative.  Recall 

that the MTF is the normalized modulus of the OTF.  The OTF attains negative values at 

frequencies just exceeding the first zero of the MTF (Figure 5.5). 

 

3.4.  Limiting Resolution of an Oblique Reconstruction 

3.4.1.  Loss of Resolution with Increasing Object Thickness 

 Using an MTF of 10.0% as the limit of resolution, Figure 5.6(c) explicitly studies 

the thickness dependence of the highest frequency with detectable modulation.  As 

expected, it is demonstrated that modulation is within detectable limits over a broad range 

of frequencies if the object is thin.  Modulation is detectable over a narrower range of 

frequencies if the object is thick. 
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 It is also shown in Figure 5.6(c) that the highest frequency with detectable 

modulation decreases with pitch.  If the object is very thin (0.01 mm thick), the highest 

frequencies with detectable modulation are 5.7, 5.5, 5.0, 4.0, 2.9, and 1.5 lp/mm at 0°, 

15°, 30°, 45°, 60°, and 75° pitches, respectively.  As expected, the highest frequency with 

detectable modulation does not exceed the frequency corresponding to 10.0% detector 

MTF (6.5 lp/mm), which can be calculated from Eq. (5.56) assuming that 2 0f  .   

Figure 5.6(c) illustrates that super-resolution is not achievable at pitches approaching 90°, 

regardless of object thickness.  However, modulation of lower frequency objects is 

preserved even at high obliquity. 

 

3.4.2.  Aliasing at Large Object Thicknesses 

 In Figure 5.6(c), the thickness range is truncated at an intermediate value         

(3.8 mm) for the 0° pitch.  Unlike the other pitches in the plot, it can be demonstrated that 

frequencies exceeding the detector alias frequency have detectable modulation at 

thicknesses exceeding 3.8 mm.  We now show that these high frequencies are aliased 

based on a metric developed in Chapter 3.5  Using the Fourier transform of the SBP 

reconstruction of a sine plate [Figure 5.4(c)], this metric is the ratio (r) of the amplitude 

of the highest peak less than the detector alias frequency (3.6 lp/mm) to the amplitude at 

the input frequency (5.0 lp/mm).  Super-resolution is present if r < 1, while aliasing is 

present if r ≥ 1.  Figure 5.6(d) shows that the r-factor exceeds unity at thicknesses greater 

than 3.8 mm for a 0° pitch.  Because Figure 5.6(d) demonstrates the existence of aliasing 

at these thicknesses, the corresponding thickness range is truncated in Figure 5.6(c). 
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Figure 5.6: Effect of object thickness on the limit of resolution.  (a) In the SBP 
reconstruction of a 1.0 mm thick object with a 2.0 lp/mm input frequency, modulation is 
detectable at both the 0° and 20° pitches.  (b) In the analogous reconstruction at a         
5.0 lp/mm input frequency, modulation is detectable only at the 0° pitch.  (c) Using an 
MTF threshold of 10.0% as the limit of resolution of SBP reconstruction, the highest 
frequency with detectable modulation is plotted versus object thickness.  At various 
pitches, this figure shows that the object must be thin in order to maximize the range of 
frequencies with detectable modulation.  (d) At a 0° pitch, super-resolution is not 
achievable at thicknesses exceeding 3.8 mm (r ≥ 1). 
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 To further illustrate that aliasing is present at thicknesses exceeding 3.8 mm, the 

SBP reconstruction of a 5.0 mm thick sine plate is shown in Figure 5.7 for the 0° pitch.  

As expected from Figure 5.6(d), this object is not resolved since the peaks and troughs in 

the reconstruction do not properly match the input frequency.  The r-factor is 2.0 at this 

thickness. 

 

 

Figure 5.7: Aliasing in the reconstruction of a thick sine plate.  At a 0° pitch, the SBP 
reconstruction of a very thick object (ε = 5.0 mm) shows aliasing for a 5.0 lp/mm input 
frequency.  This result illustrates that the thickness of the test object places a constraint 
on the feasibility of super-resolution, as expected from Figure 5.6(d) using the r-factor. 
 

3.5.  Depth Dependence of Super-Resolution 

 Using the r-factor, Chapter 3 showed that the existence of super-resolution is 

dependent on depth (z0) in the reconstruction.  For frequency measurements along the x 

direction, it was demonstrated that various depths in the plane x = 0 do not exhibit super-

resolution.  The plane x = 0 was termed the mid PA/SS plane in Chapter 3, since this 
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plane has extent in the posteroanterior (PA) and source-to-support (SS) directions in 

breast applications.  Figure 5.8 investigates whether the depth-dependency of the r-factor 

continues to hold in oblique reconstructions.  The detector field-of-view (FOV) used for 

calculating the Fourier transforms is 42.1 mm × 42.1 mm and is centered on the mid 

PA/SS plane.  The detector element indices mx and my range from –150 to +150 and 0 to 

301, respectively; this range matches the one used in Figure 5.6(d).  At the two smallest 

pitches investigated in Figure 5.8 (0° and 2.5°), r exceeds unity at eight depths, which are 

comparable to the results presented in Chapter 3.5  At these eight peaks, the image of the 

sine plate is translated in approximately integer multiples of detector element length 

between projections.  Super-resolution is not achievable since the translational shifts 

between projections do not maximize sub-pixel sampling gain. 

 Turning next to the 5.0° pitch, Figure 5.8 shows that the r-factor continues to peak 

at eight depths in the reconstruction, but does not exceed unity.  Super-resolution is 

technically achievable at all depths in the reconstruction.  Since r exceeds 0.5 at these 

eight peaks, the quality of super-resolution is not optimal. 

 By increasing the pitch further to 7.5°, 10.0°, or 20.0°, Figure 5.8 shows that the 

peaks in the value of r have much lower amplitude.  Hence, super-resolution with 

reasonably good quality can be achieved at all depths for these pitches. 

 Although the r-factor can be used to analyze the existence of super-resolution, it 

does not demonstrate whether modulation is within detectable limits.  Unpublished 

experimental work has shown that modulation is indeed within detectable limits at all 
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depths in the reconstruction.  Future work will further explore the calculation of 

modulation at various reconstruction depths. 

 

 

Figure 5.8: Depth dependency of super-resolution in oblique reconstructions.  The 
depth dependency of super-resolution is investigated for measurements made in the mid 
PA/SS plane (x = 0) using a 5.0 lp/mm input frequency.  At a 0° or 2.5° pitch, super-
resolution is not achievable at various reconstruction depths for which r ≥ 1.  By 
increasing the pitch, it is demonstrated that the peaks in the value of r have much lower 
amplitude.  For high quality super-resolution, r should approach zero.  All subplots in this 
figure implicitly share a common legend. 
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4.  EXPERIMENTAL RESULTS 

 In order to validate the analytical model, a goniometry stand was used to vary the 

pitch of a relatively thin (ε = 0.05 mm) bar pattern phantom (Model 07-515, Fluke 

Biomedical, Cleveland, OH).  Projection images were acquired on a Selenia Dimensions 

DBT system, and reconstruction was performed in the oblique plane of the bar patterns 

using a commercial prototype backprojection filtering (BPF) algorithm7 (BrionaTM, Real 

Time Tomography, Villanova, PA).  The technique factors of the image acquisition 

matched the ones given in Chapter 3.  The long axis of the phantom, which was centered 

on the mid PA/SS plane, was positioned at a fixed depth, z0 = 10.8 cm above the detector, 

for all pitches.  Although this depth corresponds to a position outside the breast in a 

typical 5.0 cm thickness under compression, it was the only depth supported by the 

goniometry stand and is presented for the purpose of experimental validation of oblique 

reconstructions. 

 To illustrate that a single projection image cannot resolve frequencies exceeding 

the detector alias frequency, the central projection of the bar pattern phantom at a 0° pitch 

is shown in Figure 5.9.  The projection misrepresents frequencies higher than 3.6 lp/mm.  

For example, at 4.0 lp/mm, Moiré patterns are present.  At 5-7 lp/mm, the line pairs have 

an erroneous orientation and are imaged as if they were a lower frequency. 

 As expected from Chapter 3 on super-resolution, a reconstruction at a 0° pitch 

[Figure 5.10(a)] is capable of resolving higher frequencies than a single projection.  

Frequencies up to 5.75 lp/mm can be resolved.  This estimate of the highest detectable 

frequency is approximated to the nearest multiple of 0.25 lp/mm, since it is determined 
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by visual inspection.  The reconstruction grid was specified to have 10-times smaller 

pixelation (14.0 µm) than the detector in order to support super-resolution.  At a 30° 

pitch, the reconstruction in the plane of the bar patterns [Figure 5.10(b)] also shows 

super-resolution, as frequencies up to 4.75 lp/mm have detectable modulation.  This 

experimental result verifies that our earlier work on super-resolution (Chapter 3) can be 

generalized to an oblique reconstruction plane. 

 

 

Figure 5.9: Experimental image of a bar pattern phantom in a plane parallel to the 
breast support.  A bar pattern phantom was positioned parallel to the breast support  
(i.e., at a 0° pitch) of a Selenia Dimensions DBT system.  It is shown here that the central 
projection cannot resolve frequencies higher than the detector alias frequency, 3.6 lp/mm, 
for 140 µm detector elements. 
 

 Concordant with the analytical model, the experimental images demonstrated that 

super-resolution is not achievable at pitches approaching 90°.  To illustrate this concept, 

Figure 5.10(c) shows the reconstruction of the bar pattern phantom at a 60° pitch.  The 

highest frequency with detectable modulation is 3.0 lp/mm. 
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Figure 5.10: Experimental reconstructions of a bar pattern phantom along various 
pitches.  (a) A BPF reconstruction, which is performed on a grid with much smaller 
pixelation than the detector, is capable of resolving higher frequencies than a single 
projection.  As shown here at the 0° pitch, the highest frequency with detectable 
modulation is approximately 5.75 lp/mm.  This frequency is higher than the detector alias 
frequency, 3.6 lp/mm.  (b) A reconstruction in the oblique plane of the bar patterns at a 
30° pitch also shows super-resolution, with visibility of frequencies up to 4.75 lp/mm.  
(c) At a 60° pitch, the highest frequency with detectable modulation is 3.0 lp/mm.  This 
result illustrates that super-resolution is not achievable at pitches approaching 90°. 
 

 Although Figure 5.10 only shows reconstructions at 0°, 30°, and 60° pitches, 

images of bar patterns at additional pitches were also obtained experimentally.  By 
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visually inspecting the reconstruction at each pitch, the highest frequency with detectable 

modulation was determined.  The estimate was approximated to the nearest multiple of 

0.25 lp/mm.  In Figure 5.11, these results are compared against the predictions of the 

analytical model.  Because there is no absolute threshold for detectable modulation, we 

consider MTF thresholds of 5.0%, 10.0%, and 15.0% in the analytical model.          

Figure 5.11 demonstrates that the highest frequency with detectable modulation decreases 

with pitch.  The experimental data are in good agreement with the analytical model. 

 

 

Figure 5.11: Effect of pitch on the limit of resolution.  Using the experimental 
reconstructions, the highest frequency with detectable modulation is plotted versus the 
pitch of the bar pattern phantom.  In addition, the analogous results derived from the 
analytical model are shown using MTF thresholds of 5.0%, 10.0%, and 15.0%.  The 
experimental results show good agreement with the analytical model. 
 

 The highest frequency that can be resolved in a single projection is the alias 

frequency of the detector.  Using Figure 5.11, one can calculate the pitch at which the 

highest frequency with detectable modulation exactly matches the alias frequency of the 

detector (3.6 lp/mm).  For an MTF threshold of 10.0%, this pitch is 51°.  This result 
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suggests that a 51° angle is a practical upper limit for the pitch at which a reconstruction 

should be generated.  Figure 5.11 presumes that the object is relatively thin (0.05 mm 

thick).  Because a clinical reconstruction consists of objects with various thicknesses, 

future work is necessary to determine the range of pitches at which clinical 

reconstructions are appropriate. 

 

5.  CLINICAL RESULTS 

 In breast imaging, super-resolution has application in the visualization of fine 

structural details, such as microcalcifications.  This concept is illustrated in Figure 5.12 

which builds upon a clinical example presented in Chapter 3.5  Figure 5.12(a) is created 

by magnifying a slice at a 0° pitch using 140 µm voxels matching the detector element 

size.  The net result has 35 µm voxels.  By contrast, Figure 5.12(b) is a reconstruction 

using much smaller pixelation than the detector, yielding a sharper image that supports 

super-resolution.  In Figure 5.12(c), a slice is generated at a 30° pitch using the same 

pixelation as Figure 5.12(b).  Figure 5.12(c) demonstrates that the visibility of the lower 

cluster of calcifications is not considerably different from Figure 5.12(b).  The impact of 

super-resolution is evident in the oblique reconstruction plane. 

 The upper left cluster of calcifications is not visible at the 30° pitch in          

Figure 5.12(c), as it is out of the reconstruction plane.  Visualization is improved by 

orthogonally translating the reconstruction plane by 5.0 mm [Figure 5.12(d)].  The 

calcifications are sharper in Figure 5.12(d) than in Figure 5.12(a), reflecting the effect of 

super-resolution. 
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Figure 5.12: An anecdotal clinical image of microcalcifications using oblique 
reconstructions.  In breast imaging, the concepts studied in this chapter have 
applications in the visualization of microcalcifications.  (a) A slice at a 0° pitch in a BPF 
reconstruction is initially created using pixels matching the detector element size        
(140 µm), and the result is magnified to give the image displayed.  (b) A slice at a 0° 
pitch is generated using a reconstruction grid with much smaller pixelation than the 
detector.  (c) Using the same reconstruction grid size as image (b), the pitch of the 
reconstruction plane is changed to 30°.  (d) The oblique reconstruction plane in image (c) 
is orthogonally translated by 5.0 mm to bring the upper left cluster of calcifications into 
focus.  Images (b), (c), and (d) support super-resolution, unlike image (a). 
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 Although the lower cluster of calcifications spans the same area in Figure 5.12(c) 

as in Figure 5.12(b), the upper left cluster spans a larger area in Figure 5.12(d) than in 

Figure 5.12(b).  This result might indicate that the upper cluster is obliquely pitched 

relative to the breast support and is best visualized in an oblique reconstruction plane 

(Figure 5.13).  While it would be reasonable to assume that a reconstruction is optimally 

viewed along the actual pitch of the calcification cluster, it is not possible to determine 

this optimal pitch due to the lack of ground truth in clinical images.  The development of 

a framework for determining the optimal pitch for viewing a clinical reconstruction is 

beyond the scope of this work, but should be the subject of future studies. 

 

 

Figure 5.13: Illustration of microcalcifications oriented along various pitches.  A 
sketch of microcalcification clusters at two orientations is shown.  It is posited that the 
calcification cluster in Figure 5.12(d) is obliquely pitched relative to the breast support, 
unlike the cluster in Figure 5.12(c). 
 

 Oblique reconstructions also have application in quantifying the size of a complex 

cancer.  Figure 5.14 shows the reconstruction of a clinical example using slices at 0° and 

38° angles relative to the breast support.  It appears that the full extent of the lesion can 

be seen more clearly in the oblique plane than in the plane parallel to the breast support.  

It also appears that the tumor margins are defined more precisely in the oblique plane.  A 
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future clinical study is merited to quantify the clinical impact of oblique reconstructions 

in tomosynthesis. 

 

 

Figure 5.14: Visualization of a complex cancer using oblique reconstructions.         
(a) A reconstruction plane at a 0° angle relative to the breast support does not show the 
full extent of a complex cancer in this anecdotal example.  (b) A plane at a 38° relative to 
the breast support appears to show the full extent of the lesion more clearly and to define 
the borders of the tumor more precisely. 
 

6.  DISCUSSION 

 Chapter 4 gave a proof-of-principle justification for oblique reconstructions in 

tomosynthesis.  Because simplifying assumptions about the acquisition geometry were 

made in that chapter, it was not explicitly demonstrated that oblique reconstructions are 

capable of super-resolution.  By modeling detector pixelation and additional features of 

the acquisition geometry, this current chapter shows that input frequencies exceeding the 

detector alias frequency are indeed resolvable in an oblique reconstruction.  The features 
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of the acquisition geometry that are modeled in this chapter, but not in the preceding 

chapter, are summarized in Table 5.1. 

 

 

SUMMARY OF DESIGN FEATURES MODELED IN TWO CHAPTERS ON 
OBLIQUE RECONSTRUCTIONS FOR TOMOSYNTHESIS 

 

Chapter 4  Chapter 5 
Non-pixelated detector Pixelated detector 

Stationary detector  Rotating detector 
2D Reconstruction Space  3D Reconstruction Space 

Parallel X-Ray Beam Geometry  Divergent X-Ray Beam Geometry 
Infinitesimally small angular spacing 

between projections 
Discrete step angles between projections 

 

Table 5.1: Summary of the modeling assumptions in chapters 4 and 5.  In simulating 
the reconstruction of a pitched sine plate (Figure 5.1), this chapter models features of the 
tomosynthesis acquisition geometry that were not modeled in the preceding chapter.  The 
most important feature for demonstrating the existence of super-resolution is detector 
pixelation. 
 

 In order for a test frequency to be visualized in an image, it is necessary for the 

MTF to exceed the detectability limit (10.0%).  This chapter demonstrates that an object 

must be thin for frequencies exceeding the detector alias frequency to have detectable 

MTF in an oblique reconstruction.  This constraint does not hold for low frequency 

objects, which are detectable in oblique reconstructions at larger thicknesses. 

 The r-factor was investigated as a metric for assessing the depth dependency of 

super-resolution.  In oblique reconstruction planes centered about the mid PA/SS plane, it 

was demonstrated that the depth dependency of the r-factor is minimized with increasing 
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pitch.  Thus, one benefit of increasing the pitch of the reconstruction plane is minimizing 

the anisotropies in super-resolution. 

 The existence of super-resolution in oblique reconstructions was validated with a 

commercial DBT system by analyzing a bar pattern phantom.  Super-resolution is 

achievable up to a 51° pitch in the Selenia Dimensions geometry, assuming that the input 

object is thin.  As we noted in Chapter 3,5 the feasibility of super-resolution is not 

necessarily unique to the commercial DBT system analyzed or to the commercial 

reconstruction algorithm used.  A necessary constraint is that the reconstruction algorithm 

supports finer sampling than the detector.  The range of pitches at which super-resolution 

is achievable is dependent upon the design of the acquisition geometry. 

 By using modulation as the metric of detectability, this chapter implicitly assumes 

that noise does not influence the visibility of an object.  This assumption is valid for a 

high contrast bar pattern phantom, as was the case in the experimental images.  If one 

were to consider low contrast signals, the relative signal-to-noise would be a more useful 

metric of detectability.  Future work should expand the analytical model to simulate 

quantum noise at various radiation dose levels, as well as other noise sources.8  The 

highest detectable frequency in an oblique reconstruction plane [Figures 5.6(c), 5.11] 

could then be calculated as a function of the radiation dose. 

 Although the 2D MTF for a slice in the reconstruction is used a metric of image 

quality in this chapter (Figure 5.5), Chapter 4 demonstrated that 3D MTF can also be 

used as a metric of image quality.  In Chapter 4, we showed that the 3D MTF is non-zero 

within a region resembling a double cone in the fx-fz planes of Fourier space (Figure 4.1).  
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The opening angle of the sampling cones matches the angular range of the scan.  Since 

the 0° pitch is contained within the sampling cones in a parallel beam geometry, 

conventional practice is to create slices along this pitch.  It is important to note that the 0° 

pitch is not necessarily contained within the sampling cones in a divergent beam 

geometry.  At the corner of the detector opposite the chest wall, for example, the incident 

angle (θn) varies over 15 projections between 22.9° and 26.3° in the Selenia Dimensions 

system with a 24.0 cm × 29.0 cm detector FOV.  In this example, an important distinction 

must be drawn between the 3D MTF and the in-plane MTF.  Although the 3D MTF is 

zero along the 0° pitch of Fourier space, the 2D MTF of a slice along this pitch is non-

zero.  This property arises because the in-plane MTF is the integral of the 3D MTF along 

the direction perpendicular to the slice. 

 In order to view a reconstruction using an oblique plane, this chapter assumes that 

the conventional reconstruction planes perpendicular to the z axis are rotated about the y 

axis, or the chest wall-to-nipple direction in a breast application.  Oblique reconstruction 

planes can also be generated by a rotation about the x axis, or the direction parallel to the 

chest wall side of the breast support.  Using the conventional definition of Euler angles, 

the latter rotation is termed a “roll” instead of a “pitch”.  Roll rotations were not modeled 

in this chapter, although we have successfully investigated these experimentally (images 

not shown).  Roll rotations should be investigated in future work to generalize the 

calculation of the highest detectable frequency [Figures 5.6(c) and 5.11] to various pitch 

and roll combinations. 
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 A few additional directions for more complete modeling in future work are now 

noted.  Future work should simulate blurring in the x-ray converter, so that total 

attenuation in Eq. (5.27) is convolved with a point spread function (PSF).  Blurring in the 

x-ray converter is most pronounced at the edges and corners of the detector due to 

increasing deviation in the angle of x-ray incidence relative to the normal to the detector.  

Previous studies have calculated the MTF degradation due to oblique x-ray incidence.9-16 

 Detector lag and ghosting are additional concepts that would be useful to model in 

future studies.17-19  Although this chapter implicitly assumes the presence of a 

monoenergetic x-ray beam, polyenergetic x-ray spectra20-22 should also be simulated in 

future work.  Finally, the MTF degradation due to the finite size of the focal spot,23 as 

well as focal spot motion during a continuous scan of x-ray projections,24-26 should be 

simulated.  While these subtleties of the acquisition geometry were not modeled directly 

in this chapter, the simulations showed reasonably good agreement with experimental 

results for the purpose of this work. 

 

7.  CONCLUSION 

 This chapter demonstrates the existence of super-resolution in oblique 

reconstructions for tomosynthesis.  We show that test frequencies exceeding the detector 

alias frequency can be resolved in an oblique plane created with pixelation smaller than 

the detector element size.  The test object must be thin in order for high frequencies to 

have detectable modulation. 
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 Experimental images of a thin bar pattern phantom verified the existence of super-

resolution in oblique reconstructions.  In good agreement with the predictions of the 

analytical model, the range of frequencies with detectable modulation decreased with 

increasing pitch, so that only low frequency objects could be detected at pitches 

approaching 90°.  This limiting case corresponds to a test frequency perpendicular to the 

breast support in the DBT system used for experimental validation.  In breast imaging, 

super-resolution has application in the visualization of microcalcifications and other 

subtle signs of cancer. 
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LIST OF SYMBOLS 

Symbol Meaning 

  Dot product operator. 

  Convolution operator (subscript denotes dimension). 

  Cross product operator. 

  Set membership. 

( )n  Total attenuation for the nth projection. 

( )n  A useful approximation for total attenuation [Eqs. (3.32)-(3.33)]. 

  Backprojection operator. 

( , )n m  Signal in the mth detector element for the nth projection. 

  Fourier transform operator (subscript denotes dimension). 

n  Path length through the input for the nth projection. 

( , )t   Line that intercepts the point ( cos , sin )t t   and that is perpendicular to the 

unit vector (cos ) (sin )  p i k . 

  Radon transform operator. 

2  Euclidean 2-space. 

3  Euclidean 3-space. 

1 2( , )u u  Raw signal at coordinate (u1, u2) on the rotated detector. 

  X-ray transform operator. 

  Set of integers. 

*  Set of non-negative integers. 
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y  Pitch angle, corresponding to a rotation about the y axis. 

  Real number used to illustrate a trigonometric identity [Eq. (4.56)]. 

n  Angle of rotation of the detector relative to the x axis for the nth projection. 

nm
 Angle of backprojection within the plane of the detector 

[Eqs. (3.53)-(3.54)]. 

  Delta function. 

  Angular spacing between projections. 

1 2( , )ju n n  Translational shift in uj coordinate of incident ray comparing projection 

numbers n1 and n2, where j varies between 1 and 2. 

  Thickness of sine plate [Figures 3.1, 4.2(a), 4.2(c), 4.4(a), and 5.1] or rod 

[Figure 4.4(b)]. 

  Polar angle of 2D frequency vector. 

x nm  A term defined by Eq. (5.45) to simplify intermediate calculations. 

y nm  A term defined by Eq. (5.36) to simplify intermediate calculations. 

  Projection angle (defined in Figure 4.4). 

n  Angle of x-ray incidence relative to the normal to the detector ( nm  denotes 

the special case at the centroid of the mth detector element for the nth 

projection). 

  Angular range of tomosynthesis scan. 

n  A quantity defined by Eqs. (3.25) and (5.23). 
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n  A quantity defined by Eq. (3.26) for the pitch angle 0y  ; this result is 

generalized to arbitrary pitch angles in Eq. (5.24). 

  A quantity defined by Eq. (3.A4). 

  X-ray linear attenuation coefficient of test object. 

Se  X-ray linear attenuation coefficient of a-Se photoconductor. 

  A quantity defined by Eq. (4.31) to simplify intermediate calculations 

(Figure 4.5). 

  Truncation frequency of reconstruction filter. 

  Rod length [Figure 4.4(b)]. 

1 , 2  Quantities defined by Eqs. (3.66)-(3.67). 

j n m
 Terms defined by Eqs. (3.68)-(3.72) used to simplify intermediate 

calculations, where j varies from 1 to 5. 

jk
  Terms defined by Eqs. (4.46)-(4.48) used to simplify intermediate 

calculations, where j varies from 1 to 3. 

  Reconstruction filter. 

  A quantity defined by Eq. (4.57) used to simplify intermediate calculations. 

n  Nominal projection angle. 

1A , 2A  Quantities defined by Eqs. (4.59)-(4.60) used to simplify intermediate 

calculations. 

ACR American College of Radiology. 
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xa , ya  Detector element dimensions in the x and y directions; if the x and y 

subscripts are removed, the detector element is square (ax = ay = a). 

B  Height of plateau of trapezoid used for calculating the Radon transform of a 

pitched rod [Eq. (4.B7)]. 

1b , 2b  Real numbers used to illustrate trigonometric identities [Eqs. (3.27), (4.34), 

and (5.25)]. 

BPF Backprojection filtering. 

C Maximum value of attenuation coefficient of sine plate or rod. 

CC Cranial-caudal. 

COR Center-of-rotation of x-ray tube motion. 

CT Computed tomography. 

nd  Distance between points G and O (Figure 3.2) calculated in Eq. (3.50). 

DBT Digital breast tomosynthesis. 

DM Digital mammography. 

f  Spatial frequency (subscript denotes direction of measurement). 

0f  Input frequency of a sine plate. 

zjf   A quantity defined by Eq. (4.37) used to simplify intermediate calculations. 

zkf  A quantity defined by Eq. (4.45) used to simplify intermediate calculations. 

FBP Filtered backprojection. 

FDC Fourier double cone (defined by Figure 4.1). 

FOV Field-of-view. 
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FWHM Full width at half maximum. 

g  Gear ratio of detector. 

(0)G  In-plane OTF evaluated at zero frequency. 

0( )G f  In-plane OTF evaluated at the frequency f0 [Eq. (4.62)]. 

h  Source-to-COR distance for rotating x-ray tube. 

( , )x zH f f  OTF of the reconstruction [Eq. (4.64)]. 

i  Imaginary unit given as 1 . 

,SBPkI   An integral defined by Eqs. (4.53)-(4.54). 

x nI m  An integral defined by Eq. (3.81). 

x nI m  An integral defined by Eq. (5.41). 

( )y nI xm  An integral defined by Eq. (3.76). 

( , )y nI x zm  An integral defined by Eq. (5.35). 

l  Distance between the COR and the midpoint of the chest wall side of the 

detector (Figures 3.1, 3.2, and 5.1). 

L  Thickness of a-Se photoconductor in Eq. (3.94). 

lp  Line pairs. 

m  A doublet with coordinates (mx, my) used for labeling detector elements. 

M Magnification. 

MLO Mediolateral oblique. 

MRI Magnetic resonance imaging. 
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MTF Modulation transfer function. 

n  Projection number. 

N Total number of projections. 

OTF Optical transfer function. 

p  Unit vector given by (cos ) (sin ) i k  (Figure 4.4). 

PA Posteroanterior (in breast x-ray imaging, the direction perpendicular to the 

chest wall). 

PA/SS Descriptive acronym for a plane with extent along the posteroanterior (PA) 

and source-to-support (SS) directions. 

PSF Point spread function. 

1q  Length of plateau of trapezoid used for calculating the Radon transform of a 

pitched rod [Eq. (4.B7)]. 

2q  Length of base of trapezoid used for calculating the Radon transform of a 

pitched rod [Eq. (4.B7)]. 

r  Ratio of the amplitude at the highest Fourier peak less than the detector 

alias frequency (0.5a-1) to the amplitude at the input frequency 

(e.g., 5.00 lp/mm) in reconstructing a high frequency sine plate 

(Figure 3.1, 5.1). 

RA Ramp filter. 

s  Free parameter ranging between –∞ and ∞ used in the parametric 

representation of the line ( , )t   [Eq. (4.1)]. 

SA Spectrum apodization filter. 
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SBP Simple backprojection. 

SID Source-to-image distance (commonly measured between the focal spot and 

the midpoint of the chest wall side of the detector in the central projection). 

SNR Signal-to-noise ratio. 

SS Source-to-support (defined to be synonymous with the z direction). 

t  Affine parameter of Radon transform [Eq. (4.1)]. 

1t , 2t  Affine parameters of the x-ray transform [Eqs. (3.38)-(3.39)]. 

T  Period of input waveform (Figure 5.3). 

TFT Thin-film transistor. 

1u , 2u  Position in the plane of the rotated detector (parallel and perpendicular to 

the chest wall, respectively). 

w  Parameter ranging between 0 and 1 in the equation of the x-ray beam 

between the focal spot and the incident point on the detector [Eq. (3.16) and 

Eqs. (5.11)-(5.13)]. 

nw  Value of w at the entrance ( nw ) and exit ( nw ) points of the x-ray beam 

through the sine plate (Figure 3.1, 5.1) for the nth projection. 

x  Position parallel to the chest wall side of the breast support; rotation by the 

angle 
n  about the y axis yields nx . 

x  Position along the pitch angle y  of an oblique reconstruction plane 

relative to the point 0 0 0( , , )x y z  in Eq. (5.30). 
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0x  Translational shift in the input waveform along the x direction [Eqs. (3.1) 

and (5.6)] or in the centroid of an oblique reconstruction plane [Eq. (5.30)]. 

nx  Value of x  at the entrance ( nx ) and exit ( nx ) points of the x-ray beam 

through the sine plate (Figure 5.1) for the nth projection. 

y  Position perpendicular to the chest wall; it is equivalent to ny . 

y  Position perpendicular to the plane of x-ray tube motion relative to the point 

0 0 0( , , )x y z  in Eq. (5.30). 

0y  Translational shift in the input waveform along the y direction [Eq. (3.A1)] 

or in the centroid of an oblique reconstruction plane [Eq. (5.30)]. 

z  Position perpendicular to the plane of the breast support; rotation by the 

angle 
n  about the y axis yields nz . 

z  Position perpendicular to an oblique reconstruction plane relative to the 

point 0 0 0( , , )x y z  in Eq. (5.30). 

0z  Central height of the input object relative to the midpoint of the chest wall 

side of the detector (Figures 3.1 and 5.1). 
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1.  THESIS SUMMARY 

 In the development of Zhao’s model of image quality for DBT, simplifying 

assumptions about the system were made in order to keep the mathematics tractable.1  In 

the following section, I summarize how each chapter in the body of this thesis has led to a 

more complete model of image quality by addressing the limitations found in Zhao’s 

work. 

 

1.1.  Chapter 2 

 One assumption made in Zhao’s work is that that the transfer functions of each 

projection can be approximated by their value at normal incidence.  In order to model the 

image quality of each projection more carefully, I extended Swank’s calculations of the 

transfer functions of x-ray fluorescent screens to oblique incidence in Chapter 2.  The 

modulation transfer function (MTF) and noise power spectra (NPS) were derived using 

the diffusion approximation to the Boltzmann equation to model optical scatter within the 

phosphor.  The detective quantum efficiency (DQE) was then determined from the 

Nishikawa formulation, where it was written as the product of the x-ray quantum 

detection efficiency, the Swank factor, and the Lubberts fraction.  I calculated the transfer 

functions for both front- and back-screen configurations, which differ by positioning the 

photocathode at the exit or entrance point of the x-ray beam, respectively. 

 In the front-screen configuration, I found that the MTF and DQE have 

considerable angular dependence, while the NPS varies minimally with projection angle.  

The high frequency MTF and DQE are degraded substantially at large angles.  By 
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contrast, all transfer functions for the back-screen configuration have the advantage of 

significantly less angular dependence.  Using these models, I investigated the possibility 

for optimizing the design of DBT detectors.  As an example optimization strategy, the 

phosphor thickness which maximizes the DQE at a fixed frequency was analyzed.  I 

demonstrated that the optimal phosphor thickness for the front-screen is angularly 

dependent, shifting to lower thickness at higher angles.  Conversely, the back-screen is 

not optimized by a single thickness but instead attains reasonably high DQE values over a 

large range of thicknesses.  Although the back-screen configuration is not suited for 

current detectors using a glass substrate, it may prove to be preferred in future detectors 

using newly proposed plastic thin-film transistor (TFT) substrates. 

 

1.2.  Chapter 3 

 An additional assumption made in Zhao’s work is that the pixel size in the 

reconstruction grid is the same as the detector elements.  Under this assumption, the 

highest frequency that can be resolved in the plane of reconstruction is the alias 

frequency of the detector.  In Chapter 3, I investigated the feasibility of reconstruction 

grids with much smaller pixelation in order to visualize higher frequencies.  Although 

Zhao does not model the translational shifts in the image of an object with each 

increasing projection angle, I demonstrated that these translational shifts give rise to 

super-resolution, or higher resolution in the reconstruction than in each 2D projection.  

For analytical proof of super-resolution, I calculated the reconstruction of a conceptual 
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test object known as a “sine plate”.  Increasing the frequency of the sine plate simulates 

small, closely-spaced objects, such as microcalcifications. 

 Using the theoretical model of the sine plate, I showed that a single projection 

cannot resolve frequencies greater than the detector alias frequency.  The Fourier 

transform of each projection is maximized at a lower frequency than the input as 

evidence of aliasing.  By contrast, a reconstruction can resolve the input, and its Fourier 

transform is correctly maximized at the input frequency. 

 I also demonstrated that the existence of super-resolution is dependent on position 

in the reconstruction and on the directionality of the input frequency.  Although super-

resolution is achievable over a broad range of positions if the test frequency is oriented 

along the tube travel direction (x), it is feasible at far fewer positions if the test frequency 

is oriented along the chest wall-to-nipple direction (y).  Consistent with the analytical 

results, experimental reconstructions of bar patterns showed visibility of frequencies 

greater than the detector alias frequency.  Super-resolution was observed at positions 

predicted from analytical modeling. 

 

1.3.  Chapter 4 

 Zhao’s work presumes that slices in a DBT reconstruction should only be created 

on planes parallel to the breast support.  Prior to this thesis, it has not been demonstrated 

that slices can be generated along oblique directions through the same volume, analogous 

to multiplanar reconstructions in CT.  In Chapter 4, I investigated the feasibility of 

oblique reconstructions by calculating the reconstruction of a pitched sine plate in a 2D 
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parallel beam geometry.  I also determined the in-plane MTF for a slice along the pitch of 

the object by comparing signal in the reconstruction against the attenuation coefficient of 

the object at each frequency.  A second test object that I modeled was a rod whose long 

axis is pitched similar to the sinusoidal input.  The rod was used to assess whether the 

length of an object can be correctly estimated in oblique reconstructions. 

 To simulate the conventional display of the reconstruction, I analyzed slices along 

a 0° pitch.  This direction is perpendicular to the rays of the central projection.  I showed 

that the input frequency of a pitched sinusoidal object cannot be determined using these 

slices, but can be properly determined in slices which match the pitch of the object.  In 

addition, I found that the in-plane MTF is within detectable limits over a broad range of 

pitches if the object is thin, but is detectable over a narrower range of pitches if the object 

is thick.  Turning next to the second test object, I showed that that the length of a pitched 

rod can be correctly determined in oblique reconstructions.  Concordant with the 

behavior of the MTF, the length estimate is accurate over a broad range of pitches if the 

object is thin, but is correct over a narrower range of pitches if the object is thick. 

 

1.4.  Chapter 5 

 In Chapter 5, I demonstrated that the feasibility of super-resolution can be 

generalized to oblique reconstruction planes.  Unlike the previous chapter on oblique 

reconstructions, the simulation of the acquisition geometry includes detector pixelation 

and other features which are necessary for investigating super-resolution.  From first 

principles, I calculated the reconstruction of a sine plate and determined the MTF in 
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oblique planes.  For experimental validation of super-resolution, I used a goniometry 

stand to orient a bar pattern phantom along various pitches in a commercial DBT system. 

 With theoretical modeling, I showed that a single projection cannot resolve a sine 

input whose frequency exceeds the detector alias frequency.  By contrast, the high 

frequency input is correctly visualized in an oblique reconstruction plane using a slice 

along the pitch of the test frequency.  Using the MTF to determine if modulation is 

detectable, I demonstrated that the object must be thin in order for super-resolution to be 

achievable in oblique reconstructions. 

 Consistent with the theoretical results, experimental images of a thin bar pattern 

phantom showed super-resolution in oblique reconstructions.  The range of frequencies 

with detectable modulation varied with the pitch of the bar patterns, and exhibited good 

agreement with the predictions of the analytical model.  I demonstrated that super-

resolution is not achievable if the pitch of the object approaches 90°, corresponding to the 

case in which the test frequency is perpendicular to the breast support.  Only low 

frequency objects are detectable at pitches close to 90°. 

 

2.  AREAS FOR FUTURE RESEARCH 

 Although the potential benefits of DBT over DM have been identified, a rigorous 

platform for optimizing the design of DBT systems has not yet been established.  Should 

DBT one day be offered on a large scale as an upgrade or adjunct to DM in screening 

centers across the United States, the development of this optimization platform will be 

critical; otherwise, radiologists run the risk of applying a higher radiation dose than 



 

 230

absolutely necessary to achieve a desired level of image quality.  In this section, I discuss 

areas for future research focusing on the optimization of image quality in DBT. 

 

2.1.  Points of Future Investigation with Super-Resolution 

2.1.1.  Quantifying the Clinical Benefits of Super-Resolution 

 Although DBT has the ability to detect cancers which are mammographically 

occult due to tissue superposition, one hurdle to widespread dissemination of DBT is 

reduced visibility of microcalcifications.  Early clinical trials have shown that the benefits 

of DBT over DM are limited to noncalcification findings.2-5  Based on the results of this 

thesis, I project that super-resolution is the mechanism for improving the visibility of 

microcalcifications.  In a sample clinical case in Chapter 3, super-resolution appeared to 

produce a sharper image of microcalcifications showing more detail (Figure 3.12).  To 

determine whether super-resolution should be translated into clinical practice, the 

diagnostic benefits of super-resolution should be quantified in future work using a 

clinical trial. 

 

2.1.2.  Development of an Acquisition Geometry that Optimizes Super-Resolution 

 In Chapter 3, I showed that super-resolution is achievable over a broad range of 

positions for frequencies along the tube travel direction (x), but is feasible at far fewer 

positions for frequencies along the posteroanterior (PA) direction (y).  To optimize super-

resolution, I propose two strategies for investigation in future studies: (1) translate the 

detector in the PA direction during the scan time; and (2) modify the trajectory of the     
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x-ray tube to have extension in the PA direction.  Either strategy should promote         

sub-pixel sampling gain in the PA direction by increasing translational shifts in the image 

between projections. 

 

 

Figure 6.1: Optimization of super-resolution along the posteroanterior (PA) 
direction using a newly proposed acquisition geometry.  By translating the detector 
between projections, super-resolution is achievable in the chest wall-to-nipple direction. 
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 To illustrate that detector translation during the scan time has the potential to 

optimize super-resolution, a reconstruction of the 5.0 lp/mm input frequency is shown in 

Figure 6.1.6  Detector translations of 25% of detector element length (35 μm) between 

projections are simulated along the chest wall-to-nipple direction.  As expected from 

Chapter 3, the reconstruction in a conventional acquisition geometry resembles a single 

projection in which signal varies with position in a step-like manner [Figure 6.1(a)].  As 

evidence of aliasing, the corresponding Fourier transform [Figure 6.1(b)] has a major 

peak at 2.7 lp/mm, which is clearly less than the input frequency, 5.0 lp/mm.  By contrast, 

the reconstruction with the newly proposed geometry has the overall appearance of a sine 

wave whose peaks and troughs match the input frequency perfectly.  For analytical proof 

of super-resolution, the major peak of the Fourier transform [Figure 6.1(c)] correctly 

occurs at the input frequency, 5.0 lp/mm. 

 Using the Fourier transforms in Figure 6.1, one can calculate the r-factor as a 

metric of the quality of super-resolution.  Recall from Chapters 3 and 5 that this metric is 

the ratio of the amplitude of the Fourier peaks at 2.7 to 5.0 lp/mm.  Super-resolution is 

present if r < 1 and is absent if r ≥ 1.  In Figure 6.1(d), the dependency of r on the 

increment (δ) of detector translation is analyzed.  The symbol δ is simply a parameter 

which expresses the detector translation between projections as a multiple of detector 

element length.  Super-resolution is not feasible (r > 1) if detector translation between 

projections occurs in integer multiples of detector element length.  To maximize sub-

pixel sampling gain between projections, there is a range of δ values over which r is 

sufficiently less than unity for high quality super-resolution.  For example, if the detector 
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translation between each projection lies between 24% and 76% of detector element 

length, the ratio of the amplitude of the Fourier peaks at 2.7 to 5.0 lp/mm is less than 1:5 

(i.e., 20%).  Using the r-factor as a metric for assessing the quality of super-resolution, 

future work should determine precise bounds on the detector translations that yield 

optimal image quality.6 

 A DBT detector may be designed with either discrete or continuous translations 

during the scan time.  Although Figure 6.1 considers discrete translations, continuous 

translations should also show super-resolution, since the detector translation during the 

exposure time of each projection should be significantly smaller than the detector element 

length.  The feasibility of continuous detector translations should be investigated 

rigorously in future studies. 

 In conventional acquisition geometries, the x-ray tube traces a circular arc in the 

plane of the chest wall during the scan time.  To optimize super-resolution in future work, 

one can also consider x-ray tube trajectories with a component of motion along the PA 

direction.  Using the r-factor described previously, one can determine the x-ray tube 

translations along the PA direction that are necessary for high quality super-resolution. 

 After using theoretical modeling to identify the acquisition geometries which 

optimize super-resolution, the benefits of the new geometries can be tested further with a 

virtual clinical trial (VCT).  The Maidment lab has developed a simulation platform for 

anthropomorphic phantoms in DBT.7  Future work should investigate the reconstructions 

of phantoms with realistic microcalcification clusters using current DBT geometries and 

the newly proposed super-resolution geometries.  A VCT can demonstrate the potential 
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clinical benefits of the optimized geometries in a cost-effective manner and provide 

guidance for the design of the next generation of DBT systems. 

 

2.1.3.  Geometric Accuracy Requirements for Super-Resolution 

 Although the acquisition geometry is known exactly in the theoretical model of 

image quality developed in this thesis, this is not necessarily the case in clinical practice.  

The precise positions of the focal spot, center-of-rotation of the x-ray tube, and angle of 

rotation of the detector are not known exactly in a clinical system.  In calculating the 

reconstruction, geometric imprecision yields small errors in the backprojection of rays 

from the detector to the focal spot.  Future work should investigate whether the feasibility 

of super-resolution is limited by such imprecisions.  The r-factor can be used as a metric 

to quantify super-resolution at various levels of imprecision.  This future research can be 

used to inform manufacturers of tolerance limits in the design specifications for a system. 

 In the preceding section, I gave preliminary evidence that detector translations can 

be used to optimize super-resolution along the PA direction (Figure 6.1).  It will be 

important to investigate whether imprecision in the detector translation places limits on 

super-resolution along the PA direction.  The effect of small imprecisions can be tested in 

a VCT with anthropomorphic phantoms using observer studies. 

 

2.1.4.  Effect of Reducing the Detector Element Size 

 As discussed in Chapter 3, the FDA-approved Hologic system employs binning 

when switching between DM and DBT imaging modes.  While the DM detector element 
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dimensions are 70 µm × 70 µm, the DBT detector element dimensions are                    

140 µm × 140 µm.  Hologic is now working toward 70 µm pixelation for DBT.  This 

design modification should improve resolution by increasing the detector alias frequency 

(0.5a-1) from 3.6 lp/mm to 7.1 lp/mm. 

 In Chapters 3 and 5, I found that the first zero of the detector MTF places a limit 

on the frequencies with detectable modulation in a reconstruction with super-resolution.  

Figure 6.2 illustrates this concept by plotting the detector MTF [Eq. (1.7)] versus 

frequency in multiples of a-1 (inverse detector element length).  Since the first zero of the 

detector MTF corresponds to the frequency a-1, the current Hologic geometry is capable 

of super-resolution at frequencies approaching 7.1 lp/mm.  According to Figure 6.2, a 

system with 70 µm pixelation should show super-resolution at frequencies approaching 

14.3 lp/mm.  Future work should determine whether the visibility of microcalcifications 

is improved in a system with 70 µm detector pixelation due to the visibility of higher 

frequencies. 

 Although the benefits of reducing the detector element size are evident in a 

theoretical model, it will be important to determine whether design imprecisions place a 

practical limit on the visibility of frequencies approaching 14.3 lp/mm in a 70 µm system.  

Using the r-factor to quantify super-resolution, future work should investigate how the 

tolerance limits in the system design vary with the detector element size. 

 While Hologic uses an a-Se detector, other manufactures use phosphor-based 

detectors.  Because phosphor-based systems exhibit more blurring, the detector MTF 

shows more degradation at high frequencies.  Figure 6.2 illustrates this concept by 



 

 236

approximating the MTF of the phosphor blur as a Gaussian.  Recent research by Freed et 

al. has verified that the Gaussian is a valid approximation for the MTF of a thick CsI:Tl 

phosphor irradiated at normal incidence.8 

  2 2 2 22
MTF( , ) sinc( )sinc( )x yf f

x y x x x yf f e a f a f
  

         (6.1) 

As shown in Figure 6.2, the modulation at high frequencies is degraded with increased 

blurring in the phosphor, as measured by increased standard deviation (σ) in the 

Gaussian.  This plot assumes that frequency is measured along the x direction ( 0yf  ).  

Future work should investigate whether the MTF of a phosphor places an inherent limit 

on the visibility of high frequencies that cannot be surmounted by reducing the detector 

element size. 

 

 

Figure 6.2: Modulation transfer function (MTF) for various phosphor blurring 
parameters.  The MTF of the detector is plotted versus frequency measured along the x 
direction (fy = 0) for four blurring parameters (σ), assuming that detector elements are 
square with sides of length a.  The first zero of the MTF places a limit on the frequencies 
with detectable modulation. 
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2.2.  Development of Optimal Design Strategies for Continuous X-Ray Tube Motion 

2.2.1.  Optimization of Scan Time 

 Throughout this thesis, I have modeled a system whose focal spot is stationary 

during each projection.  In order to develop a more complete model of image quality, 

future studies should simulate continuous x-ray tube motion during the scan.  Although 

continuous tube motion has the benefit of reducing patient motion by lowering scan time, 

it has the drawback of introducing blurring artifacts due to focal spot motion.  My 

preliminary work on this topic has shown that continuous x-ray tube motion yields a loss 

of modulation in the reconstruction.  These theoretical results were presented in my 

proceedings manuscript for the 2012 SPIE Medical Imaging conference.9 

 In this preliminary work on continuous x-ray tube motion, I investigated the 

trade-offs of long and short scan time in a system with patient motion, and found that an 

intermediate scan time optimizes modulation.  With objects velocities of 30 and 60 µm/s, 

I demonstrated that the optimal scan times for continuous tube motion are 3.3 and 2.4 s, 

respectively, assuming an input frequency of 2.0 lp/mm and an exposure time of 30.0 ms.  

This work assumed that the sine plate is translated with constant velocity during the scan 

time.  Future studies should investigate additional velocity profiles (e.g., pulsatile motion 

of structures lying along blood vessels). 

 In DM, it has been demonstrated that the scan time should be less than 2.0 s to 

minimize patient motion.  Currently, no such guideline for DBT has been developed.  My 

SPIE manuscript considered an object velocity between 30 and 60 µm/s, which was 

chosen to be comparable to the value observed in a clinical case presented in the paper.  



 

 238

Since this case is not necessarily representative of the most significant extent of patient 

motion, additional cases should be analyzed in future work to develop guidelines for scan 

time in DBT. 

 

2.2.2.  Optimization of the X-Ray Tube Velocity 

 In existing systems with continuous tube motion, manufacturers configure the     

x-ray tube with constant angular velocity during the scan time.  In my 2013 SPIE paper, I 

investigated a different angular velocity profile in order to optimize continuous tube 

motion.10  The velocity profile approaches zero during projections and is larger between 

projections.  Importantly, the velocity profile is smooth, so that there is no abrupt start-

and-stop motion that would make a fast acquisition time prohibitive. 

 To assess the improvements in image quality with the newly proposed tube 

velocity, I calculated modulation at various frequencies.  I showed that modulation in the 

newly proposed system differs minimally from a system with step-and-shoot motion.  

This technical innovation should allow a system with continuous tube motion to have 

short scan time and hence less patient motion than a step-and-shoot system, but no longer 

have the trade-off of focal spot blurring during each projection.  In future studies, the 

benefits of the newly proposed design should be validated with a VCT comparing 

calcification visibility in systems with different forms of x-ray tube motion.  In addition, 

the newly proposed design is being investigated as a tool for shortening scan time and 

thus minimizing patient motion. 
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3.  THESIS CONCLUSION 

 DBT is being investigated as a 3D alternative to conventional mammography with 

potentially increased sensitivity and specificity for cancer detection.  Although the 

benefits of DBT over conventional mammography have been identified, DBT is still in its 

early stages of development, and a rigorous platform for optimizing image quality has not 

yet been established.  In this thesis, I developed a more complete model of image quality 

by addressing the limitations found in Zhao’s linear systems model.  One assumption 

made by Zhao is that the image quality in each projection can be approximated from the 

transfer functions at normal incidence.  In order to model the effect of oblique x-ray 

incidence in each projection, I extended Swank’s calculations of the transfer functions of 

x-ray fluorescent screens to a general incident angle.  I demonstrated that the resolution 

loss due to oblique incidence can be modeled in closed form.  In later work, I introduced 

a conceptual test object known as a sine plate to analyze the consequences of oblique     

x-ray incidence in the reconstruction.  Since the image of an object is translated in      

sub-pixel increments with each increasing projection angle, I showed that a 

reconstruction is capable of super-resolution, or sub-pixel resolution.  In addition, by 

orienting the sine plate along various angles relative to the breast support, I demonstrated 

that reconstructions can be performed along oblique planes.  The theoretical results 

derived from the sine plate were verified with experimental images of bar patterns and 

with anecdotal clinical examples.  Quantifying the clinical benefits of super-resolution 

and oblique reconstructions is an exciting area for future research. 
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 DBT appears to have a bright future in medical imaging.  In demonstrating the 

potential benefits of super-resolution and oblique reconstructions, I have shown that DBT 

reconstructions are capable of much higher image quality than previously thought in the 

literature.  In the future, my model of image quality will play a role in optimizing the 

design of DBT systems. 
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