454 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    DyExplainer: Explainable Dynamic Graph Neural Networks

    Full text link
    Graph Neural Networks (GNNs) resurge as a trending research subject owing to their impressive ability to capture representations from graph-structured data. However, the black-box nature of GNNs presents a significant challenge in terms of comprehending and trusting these models, thereby limiting their practical applications in mission-critical scenarios. Although there has been substantial progress in the field of explaining GNNs in recent years, the majority of these studies are centered on static graphs, leaving the explanation of dynamic GNNs largely unexplored. Dynamic GNNs, with their ever-evolving graph structures, pose a unique challenge and require additional efforts to effectively capture temporal dependencies and structural relationships. To address this challenge, we present DyExplainer, a novel approach to explaining dynamic GNNs on the fly. DyExplainer trains a dynamic GNN backbone to extract representations of the graph at each snapshot, while simultaneously exploring structural relationships and temporal dependencies through a sparse attention technique. To preserve the desired properties of the explanation, such as structural consistency and temporal continuity, we augment our approach with contrastive learning techniques to provide priori-guided regularization. To model longer-term temporal dependencies, we develop a buffer-based live-updating scheme for training. The results of our extensive experiments on various datasets demonstrate the superiority of DyExplainer, not only providing faithful explainability of the model predictions but also significantly improving the model prediction accuracy, as evidenced in the link prediction task.Comment: 9 page

    Analyzing and Interpreting Neural Networks for NLP: A Report on the First BlackboxNLP Workshop

    Full text link
    The EMNLP 2018 workshop BlackboxNLP was dedicated to resources and techniques specifically developed for analyzing and understanding the inner-workings and representations acquired by neural models of language. Approaches included: systematic manipulation of input to neural networks and investigating the impact on their performance, testing whether interpretable knowledge can be decoded from intermediate representations acquired by neural networks, proposing modifications to neural network architectures to make their knowledge state or generated output more explainable, and examining the performance of networks on simplified or formal languages. Here we review a number of representative studies in each category

    Explainable Neural Attention Recommender Systems

    Get PDF
    Recommender systems, predictive models that provide lists of personalized suggestions, have become increasingly popular in many web-based businesses. By presenting potential items that may interest a user, these systems are able to better monetize and improve users’ satisfaction. In recent years, the most successful approaches rely on capturing what best define users and items in the form of latent vectors, a numeric representation that assumes all instances can be described by their respective affiliation towards a set of hidden features. However, recommendation methods based on latent features still face some realworld limitations. The data sparsity problem originates from the unprecedented variety of available items, making generated suggestions irrelevant to many users. Furthermore, many systems have been recently expected to accompany their suggestions with corresponding reasoning. Users who receive unjustified recommendations they do not agree with are susceptible to stop using the system or ignore its suggestions. In this work we investigate the current trends in the field of recommender systems and focus on two rising areas, deep recommendation and explainable recommender systems. First we present Textual and Contextual Embedding-based Neural Recommender (TCENR), a model that mitigates the data sparsity problem in the area of point-of-interest (POI) recommendation. This method employs different types of deep neural networks to learn varied perspectives of the same user-location interaction, using textual reviews, geographical data and social networks

    Deep learning techniques for computer audition

    Get PDF
    Automatically recognising audio signals plays a crucial role in the development of intelligent computer audition systems. Particularly, audio signal classification, which aims to predict a label for an audio wave, has promoted many real-life applications. Amounts of efforts have been made to develop effective audio signal classification systems in the real world. However, several challenges in deep learning techniques for audio signal classification remain to be addressed. For instance, training a deep neural network (DNN) from scratch is time-consuming to extracting high-level deep representations. Furthermore, DNNs have not been well explained to construct the trust between humans and machines, and facilitate developing realistic intelligent systems. Moreover, most DNNs are vulnerable to adversarial attacks, resulting in many misclassifications. To deal with these challenges, this thesis proposes and presents a set of deep-learning-based approaches for audio signal classification. In particular, to tackle the challenge of extracting high-level deep representations, the transfer learning frameworks, benefiting from pre-trained models on large-scale image datasets, are introduced to produce effective deep spectrum representations. Furthermore, the attention mechanisms at both the frame level and the time-frequency level are proposed to explain the DNNs by respectively estimating the contributions of each frame and each time-frequency bin to the predictions. Likewise, the convolutional neural networks (CNNs) with an attention mechanism at the time-frequency level is extended to atrous CNNs with attention, aiming to explain the CNNs by visualising high-resolution attention tensors. Additionally, to interpret the CNNs evaluated on multi-device datasets, the atrous CNNs with attention are trained in the conditional training frameworks. Moreover, to improve the robustness of the DNNs against adversarial attacks, models are trained in the adversarial training frameworks. Besides, the transferability of adversarial attacks is enhanced by a lifelong learning framework. Finally, the experiments conducted with various datasets demonstrate that these presented approaches are effective to address the challenges

    Oil and Gas flow Anomaly Detection on offshore naturally flowing wells using Deep Neural Networks

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceThe Oil and Gas industry, as never before, faces multiple challenges. It is being impugned for being dirty, a pollutant, and hence the more demand for green alternatives. Nevertheless, the world still has to rely heavily on hydrocarbons, since it is the most traditional and stable source of energy, as opposed to extensively promoted hydro, solar or wind power. Major operators are challenged to produce the oil more efficiently, to counteract the newly arising energy sources, with less of a climate footprint, more scrutinized expenditure, thus facing high skepticism regarding its future. It has to become greener, and hence to act in a manner not required previously. While most of the tools used by the Hydrocarbon E&P industry is expensive and has been used for many years, it is paramount for the industry’s survival and prosperity to apply predictive maintenance technologies, that would foresee potential failures, making production safer, lowering downtime, increasing productivity and diminishing maintenance costs. Many efforts were applied in order to define the most accurate and effective predictive methods, however data scarcity affects the speed and capacity for further experimentations. Whilst it would be highly beneficial for the industry to invest in Artificial Intelligence, this research aims at exploring, in depth, the subject of Anomaly Detection, using the open public data from Petrobras, that was developed by experts. For this research the Deep Learning Neural Networks, such as Recurrent Neural Networks with LSTM and GRU backbones, were implemented for multi-class classification of undesirable events on naturally flowing wells. Further, several hyperparameter optimization tools were explored, mainly focusing on Genetic Algorithms as being the most advanced methods for such kind of tasks. The research concluded with the best performing algorithm with 2 stacked GRU and the following vector of hyperparameters weights: [1, 47, 40, 14], which stand for timestep 1, number of hidden units 47, number of epochs 40 and batch size 14, producing F1 equal to 0.97%. As the world faces many issues, one of which is the detrimental effect of heavy industries to the environment and as result adverse global climate change, this project is an attempt to contribute to the field of applying Artificial Intelligence in the Oil and Gas industry, with the intention to make it more efficient, transparent and sustainable

    Explainable Neural Attention Recommender Systems

    Get PDF
    Recommender systems, predictive models that provide lists of personalized suggestions, have become increasingly popular in many web-based businesses. By presenting potential items that may interest a user, these systems are able to better monetize and improve users’ satisfaction. In recent years, the most successful approaches rely on capturing what best define users and items in the form of latent vectors, a numeric representation that assumes all instances can be described by their respective affiliation towards a set of hidden features. However, recommendation methods based on latent features still face some realworld limitations. The data sparsity problem originates from the unprecedented variety of available items, making generated suggestions irrelevant to many users. Furthermore, many systems have been recently expected to accompany their suggestions with corresponding reasoning. Users who receive unjustified recommendations they do not agree with are susceptible to stop using the system or ignore its suggestions. In this work we investigate the current trends in the field of recommender systems and focus on two rising areas, deep recommendation and explainable recommender systems. First we present Textual and Contextual Embedding-based Neural Recommender (TCENR), a model that mitigates the data sparsity problem in the area of point-of-interest (POI) recommendation. This method employs different types of deep neural networks to learn varied perspectives of the same user-location interaction, using textual reviews, geographical data and social networks
    • …
    corecore