21,790 research outputs found

    Learning in Reactive Environments with Arbitrary Dependence

    Get PDF
    In reinforcement learning the task for an agent is to attain the best possible asymptotic reward where the true generating environment is unknown but belongs to a known countable family of environments. This task generalises the sequence prediction problem, in which the environment does not react to the behaviour of the agent. Solomonoff induction solves the sequence prediction problem for any countable class of measures; however, it is easy to see that such result is impossible for reinforcement learning - not any countable class of environments can be learnt. We find some sufficient conditions on the class of environments under which an agent exists which attains the best asymptotic reward for any environment in the class. We analyze how tight these conditions are and how they relate to different probabilistic assumptions known in reinforcement learning and related fields, such as Markov Decision Processes and mixing conditions

    On the Possibility of Learning in Reactive Environments with Arbitrary Dependence

    Full text link
    We address the problem of reinforcement learning in which observations may exhibit an arbitrary form of stochastic dependence on past observations and actions, i.e. environments more general than (PO)MDPs. The task for an agent is to attain the best possible asymptotic reward where the true generating environment is unknown but belongs to a known countable family of environments. We find some sufficient conditions on the class of environments under which an agent exists which attains the best asymptotic reward for any environment in the class. We analyze how tight these conditions are and how they relate to different probabilistic assumptions known in reinforcement learning and related fields, such as Markov Decision Processes and mixing conditions.Comment: 20 page

    Invariant Manifolds and Rate Constants in Driven Chemical Reactions

    Get PDF
    Reaction rates of chemical reactions under nonequilibrium conditions can be determined through the construction of the normally hyperbolic invariant manifold (NHIM) [and moving dividing surface (DS)] associated with the transition state trajectory. Here, we extend our recent methods by constructing points on the NHIM accurately even for multidimensional cases. We also advance the implementation of machine learning approaches to construct smooth versions of the NHIM from a known high-accuracy set of its points. That is, we expand on our earlier use of neural nets, and introduce the use of Gaussian process regression for the determination of the NHIM. Finally, we compare and contrast all of these methods for a challenging two-dimensional model barrier case so as to illustrate their accuracy and general applicability.Comment: 28 pages, 13 figures, table of contents figur

    Security Evaluation of Support Vector Machines in Adversarial Environments

    Full text link
    Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. First, we introduce a formal general framework for the empirical evaluation of the security of machine-learning systems. Second, according to our framework, we demonstrate the feasibility of evasion, poisoning and privacy attacks against SVMs in real-world security problems. For each attack technique, we evaluate its impact and discuss whether (and how) it can be countered through an adversary-aware design of SVMs. Our experiments are easily reproducible thanks to open-source code that we have made available, together with all the employed datasets, on a public repository.Comment: 47 pages, 9 figures; chapter accepted into book 'Support Vector Machine Applications

    Evolutionary Tournament-Based Comparison of Learning and Non-Learning Algorithms for Iterated Games

    Get PDF
    Evolutionary tournaments have been used effectively as a tool for comparing game-playing algorithms. For instance, in the late 1970's, Axelrod organized tournaments to compare algorithms for playing the iterated prisoner's dilemma (PD) game. These tournaments capture the dynamics in a population of agents that periodically adopt relatively successful algorithms in the environment. While these tournaments have provided us with a better understanding of the relative merits of algorithms for iterated PD, our understanding is less clear about algorithms for playing iterated versions of arbitrary single-stage games in an environment of heterogeneous agents. While the Nash equilibrium solution concept has been used to recommend using Nash equilibrium strategies for rational players playing general-sum games, learning algorithms like fictitious play may be preferred for playing against sub-rational players. In this paper, we study the relative performance of learning and non-learning algorithms in an evolutionary tournament where agents periodically adopt relatively successful algorithms in the population. The tournament is played over a testbed composed of all possible structurally distinct 2×2 conflicted games with ordinal payoffs: a baseline, neutral testbed for comparing algorithms. Before analyzing results from the evolutionary tournament, we discuss the testbed, our choice of representative learning and non-learning algorithms and relative rankings of these algorithms in a round-robin competition. The results from the tournament highlight the advantage of learning algorithms over players using static equilibrium strategies for repeated plays of arbitrary single-stage games. The results are likely to be of more benefit compared to work on static analysis of equilibrium strategies for choosing decision procedures for open, adapting agent society consisting of a variety of competitors.Repeated Games, Evolution, Simulation

    The Sample-Complexity of General Reinforcement Learning

    Full text link
    We present a new algorithm for general reinforcement learning where the true environment is known to belong to a finite class of N arbitrary models. The algorithm is shown to be near-optimal for all but O(N log^2 N) time-steps with high probability. Infinite classes are also considered where we show that compactness is a key criterion for determining the existence of uniform sample-complexity bounds. A matching lower bound is given for the finite case.Comment: 16 page

    Learning from Scarce Experience

    Full text link
    Searching the space of policies directly for the optimal policy has been one popular method for solving partially observable reinforcement learning problems. Typically, with each change of the target policy, its value is estimated from the results of following that very policy. This requires a large number of interactions with the environment as different polices are considered. We present a family of algorithms based on likelihood ratio estimation that use data gathered when executing one policy (or collection of policies) to estimate the value of a different policy. The algorithms combine estimation and optimization stages. The former utilizes experience to build a non-parametric representation of an optimized function. The latter performs optimization on this estimate. We show positive empirical results and provide the sample complexity bound.Comment: 8 pages 4 figure

    Optimistic Agents are Asymptotically Optimal

    Full text link
    We use optimism to introduce generic asymptotically optimal reinforcement learning agents. They achieve, with an arbitrary finite or compact class of environments, asymptotically optimal behavior. Furthermore, in the finite deterministic case we provide finite error bounds.Comment: 13 LaTeX page

    Chasing Ghosts: Competing with Stateful Policies

    Full text link
    We consider sequential decision making in a setting where regret is measured with respect to a set of stateful reference policies, and feedback is limited to observing the rewards of the actions performed (the so called "bandit" setting). If either the reference policies are stateless rather than stateful, or the feedback includes the rewards of all actions (the so called "expert" setting), previous work shows that the optimal regret grows like Θ(T)\Theta(\sqrt{T}) in terms of the number of decision rounds TT. The difficulty in our setting is that the decision maker unavoidably loses track of the internal states of the reference policies, and thus cannot reliably attribute rewards observed in a certain round to any of the reference policies. In fact, in this setting it is impossible for the algorithm to estimate which policy gives the highest (or even approximately highest) total reward. Nevertheless, we design an algorithm that achieves expected regret that is sublinear in TT, of the form O(T/log1/4T)O( T/\log^{1/4}{T}). Our algorithm is based on a certain local repetition lemma that may be of independent interest. We also show that no algorithm can guarantee expected regret better than O(T/log3/2T)O( T/\log^{3/2} T)
    corecore