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Abstract

Reaction rates of chemical reactions under
nonequilibrium conditions can be determined
through the construction of the normally hy-
perbolic invariant manifold (NHIM) [and mov-
ing dividing surface (DS)] associated with the
transition state trajectory.

Here, we extend our recent methods by con-
structing points on the NHIM accurately even
for multidimensional cases. We also advance
the implementation of machine learning ap-
proaches to construct smooth versions of the
NHIM from a known high-accuracy set of its
points. That is, we expand on our earlier use
of neural nets, and introduce the use of Gaus-
sian process regression for the determination
of the NHIM. Finally, we compare and con-
trast all of these methods for a challenging two-
dimensional model barrier case so as to illus-
trate their accuracy and general applicability.

1 Introduction

The framework of transition state theory (TST)
provides a powerful basis for the qualitative
and quantitative description of chemical reac-
tions. When their dynamics can be described

by a Born-Oppenheimer potential driven by a
classical equation of motion, then TST reduces
the dynamical calculation to a geometric one
involving the identification of a barrier region
that separates reactants and products. The po-
sition of the barrier is typically marked by a
saddle point of rank 1 that has exactly one un-
stable direction which coincides with the reac-
tion coordinate at that point. The remaining
degrees of freedom are locally stable and are
associated with the bath coordinates. In this
paper, we aim to address activated processes
with arbitrary dimensionality but restricted to
reactions that can be characterized by a one-
dimensional reaction coordinate. We do not
solve this class of problems in fullest generality,
but do make progress in treating systems with
bath coordinates of dimensions higher than one,
addressing both theoretical and numerical chal-
lenges to the computation of the dividing sur-
face.

TST rests on the identification of a dividing
surface (DS) in the barrier region which sepa-
rates reactants from products.1–5 It is exact, if
the DS is crossed once and only once by each
reactive trajectory. Recrossings of the DS lead
to an overestimation of the rate. Advances in
the determination of a recrossing-free DS will
therefore impact a broad range of problems be-
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yond those of chemical reactions in which the
overall process can be described as an acti-
vated process that is primarily characterized
by a single, albeit curved, reaction coordinate
in the presence of a bath. Examples abound
in atomic physics,6 solid state physics,7 clus-
ter formation,8,9 diffusion dynamics,10,11 cos-
mology,12 celestial mechanics,13,14 and Bose-
Einstein condensates,15–19 to name a few.

Of course, the primary aim for the current
work is the construction of accurate rates in
chemical reactions that take place in solution,
perhaps under nonequilibrium conditions, and
for which we ultimately want to achieve some
level of control. The basic (or naive) theory
uses a planar dividing surface to determine the
flux, but it is approximate because it is invari-
ably recrossed by trajectories that go from reac-
tants to products.1–4 It is also an upper bound,
and leads to a variational transition state the-
ory20,21 which optimizes the dividing surface
by way of minimizing recrossings. The de-
velopment of semiclassical transition state the-
ory22–26 taking advantage of Keck’s phase space
representation of TST27 hinged on the develop-
ment of good action-angle variables associated
with the DS. The use of perturbation theory
to construct these objects was found in parallel
to work in dynamical systems theory address-
ing activated escape.28,29 The theory was then
generalized for chemical reactions under time-
dependent conditions —arising from driving,
noise, or both.30,31 Applications to chemical re-
actions have included H + H2,

32,33 LiCN,34 and
ketene isomerization.35 While these are inter-
esting cases, they do not represent the bulk of
chemical reactions which are generally higher
dimensional and which take place in more com-
plex environments. This work is thus focused
on advancing the theoretical and computational
machinery that have the potential of addressing
such challenging systems.

In a multidimensional autonomous Hamilto-
nian system, a recrossing-free DS is attached
to the normally hyperbolic invariant mani-
fold (NHIM). The latter contains all trajec-
tories that are trapped in the saddle region
both forward and backward in time. It can
be constructed using a normal form expan-

sion.13,24,32,36–42 For a multidimensional time-
dependent system that is driven by an external
field or subject to thermal noise, the question
arises whether the NHIM can be generalized in
such a way that it can still be used to con-
struct a recrossing-free DS. Recent successful
constructions43–45 of such a DS suggests that it
is indeed possible to do so. The purpose of this
paper is to clarify the geometry that underlies
this construction, and to present a readily ap-
plicable procedure to calculate rate constants of
time-dependent, driven and multidimensional
systems with a rank-1 saddle and an arbitrary
number of bath modes. As this work is focused
on advancing the methods so as to ultimately
treat higher dimensional chemical reactions, nu-
merical results are restricted to model systems
—inspired by chemical systems— useful for ver-
ifying the theory.

The computational task is challenging be-
cause of the dimensionality of the objects: In an
n-dimensional system with one reaction coordi-
nate and n−1 bath coordinates, the phase space
has dimension 2n. The DS is a time-dependent
and non-trivially curved hypersurface of dimen-
sion 2n − 1, and the NHIM is a surface of di-
mension 2n− 2. Previous work has shown that
attaching a DS to the NHIM, whose dimension
is lower, can yield a recrossing-free DS if the
reaction coordinate is unbound.44,45

An individual point on the NHIM can be
computed with the algorithm discussed in Ref.
46. However, to construct a DS that cov-
ers a sufficiently large region in phase space
and time, a vast number of points is required.
Even with an efficient algorithm, computing
the required number of points on the NHIM
is a daunting task. Consequently, a continu-
ous interpolation between the finite collection
of high-accuracy —and therefore computation-
ally expensive— points on the DS in space and
time is needed to determine the reactivity of a
given trajectory. We present two tools devel-
oped in the context of machine learning to ap-
proximate any function between isolated points
in arbitrary high dimensions. It is notable that
Pozun et al.47 earlier implemented a support-
vector machine to identify a DS between re-
actants and products on a time-independent
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potential energy surface. Here, we focus on
time-dependent potentials, often coupled to a
bath, in which the associated NHIM is conse-
quently time-dependent. First, a neural net-
work (NN)48 can be trained on an arbitrary
set of points located on the NHIM. Once
trained, these networks provide fast access to
any point needed for calculating rates in time-
dependent driven systems.45 We also present an
alternative machine learning algorithm based
on Gaussian process regression (GPR).49,50 We
compare these two algorithms and discuss the
relative advantages and disadvantages in their
application to TST.

Perturbative51–55 and nonperturbative35,43,56–58

constructions of a recrossing-free DS in time-
dependent systems rely on the concept of the
transition state (TS) trajectory:30,59 a unique
trajectory bound to the vicinity of the sad-
dle for all time. In systems with more than
one degree of freedom, such a TS trajectory is
unique only if the system is dissipative with the
oscillations of the bath modes damped asymp-
totically. If the reactive system is Hamiltonian
—that is, when in the absence of damping,— all
trajectories on the NHIM are trapped near the
barrier for all time and can therefore serve as
TS trajectories. The consequences of the non-
uniqueness of the TS trajectory were avoided
in Ref. 60 by an arbitrary choice of one of the
trapped trajectories as “the” TS trajectory.
The DS constructed there and in Refs. 44,45
also avoids such arbitrary choices because it
considers the NHIM itself, rather than a par-
ticular trajectory on it. For multidimensional
time-periodically driven Hamiltonian systems,
we suggest identification of the TS trajectory
to be restricted to the one trajectory, among
all the bound trajectories on the NHIM, that
is periodic. This reduces to the usual result
in one dimension, and is no longer arbitrary
in higher dimensions as it is now selected by a
characteristic property of the system.

The outline of the paper is as follows: In
Sec. 2, we start with a brief overview describ-
ing how rates in time-dependent systems with
a rank-1 saddle are calculated using the NHIM
and the associated DS. This suggests a re-
stricted definition of the TS trajectory stated

above. In Sec. 3, we present a fast and robust
algorithm for calculating single points on the
NHIM. Sec. 4 summarizes two interpolation al-
gorithms based on machine learning, and pro-
vides an analysis of the respective advantages
and disadvantages. In Sec. 5, we apply both
methods to calculate rate constants for a two-
dimensional system.

2 TST in time-dependent

systems

A possible first step in obtaining the time-
dependent representation of the DS is the de-
termination of individual points on this high-
dimensional object. As outlined in Ref. 44,
in time-dependent systems it suffices to cal-
culate the normally hyperbolic invariant mani-
fold (NHIM) because the DS in time-dependent
systems is attached to it in a prescribed way. In
this section, we describe the former as a funda-
mental geometric object and demonstrate how
it can be used to obtain a DS. We start by
considering a one-dimensional system in which
there are no bath coordinates. We then present
the binary contraction method for finding the
NHIM based on the geometric properties of
phase space in the vicinity of a rank-1 sad-
dle. Furthermore, we describe how the insights
gained in the one-dimensional setting can be
generalized to higher dimension. Finally, we
will discuss how a unique TS trajectory can be
defined in a multidimensional system.

2.1 The role of the NHIM in TST

In a one-dimensional system, a rank-1 saddle is
simply a maximum of the potential. The rele-
vant phase space structures in its neighborhood
are shown in Fig. 1: Trajectories that approach
the energy barrier with sufficiently high energy
(from either side) will cross the barrier, and oth-
ers will not. Its phase space can be separated
into four different regions as characterized by
where particles came from and where they go
to. The dividing lines between these regions
are the stable Ws and unstable Wu manifolds.
They contain trajectories that are trapped near
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Figure 1: Phase space (x, vx) close to the
boundary point (+) of the stable Ws and un-
stable Wu manifold. The areas of non-reactive
trajectories (I) and (III) are separated from the
areas with reactive trajectories (II) and (IV) by
the manifolds. A reaction can either take place
from the reactant side xR to the product side xP
or vice versa. The arrows illustrate the heading
of the trajectories close to the boundary point.

Table 1: Nomenclature of the different
reactive (II, IV) and non-reactive (I, III)
areas in phase space separated by the two
manifolds. The particle leaves the neigh-
borhood of the saddle at the exit point
xb,fexit when propagated in backward (b)
and forward (f) time, respectively.

Area xbexit xfexit

I xP xP
II xR xP
III xR xR
IV xP xR

the saddle in forward (Ws) or backward (Wu)
time, respectively.

A trajectory starting at a given phase space
point is propagated in forward (f) and back-
ward (b) time until it leaves the saddle region
given by xR ≤ x ≤ xP with a suitably chosen
xR at the reactant side and xP at the prod-
uct side of the reaction coordinate. The initial
point is then assigned to a region, depending
on whether it leaves the saddle region at xR or
xP in forward or backward time, as explained
in Table 1. Note that numerically, the trapping
cannot, in general, be observed because the dy-
namics near the saddle is unstable. Small nu-
merical errors cause an otherwise trapped tra-
jectory to leave the saddle region in either time

direction.
The closures of stable and unstable mani-

folds intersect in a point (see black cross in
Fig. 1). When the potential is also time-
independent, this intersection is a fixed point.
In time-dependent (or driven) cases, it becomes
a trajectory that is trapped in both forward
and backward time. This trajectory is re-
ferred to as the TS trajectory.30,51–59 In one-
dimensional systems, it is unique. In multi-
dimensional systems, the initial conditions of
trajectories trapped in both forward and back-
ward time form the time-dependent multidi-
mensional NHIM.61–63 The latter reduces to a
single trajectory in one-dimensional systems,
and so the unique TS trajectory in one dimen-
sion can also be called the NHIM.

For a time-independent, one-dimensional sys-
tem, the NHIM is located exactly at the bar-
rier top. In a time-dependent system, all struc-
tures shown in Fig. 1 depend on the initial time
at which the trajectories are started, i.e., the
stable and unstable manifolds, as well as the
NHIM, are themselves time-dependent. The
NHIM can be expected to reside close to the
saddle, but it will in general not coincide with
it. If the external driving is periodic in time, the
NHIM is a periodically moving manifold with
the same period as the external driving force
(see blue, dashed circle in Fig. 3(d), calculated
for the example of Eq. (3)).

So far, we have assumed open reactant and
product basins. In the more typical case of
closed basins —as in e. g. the model poten-
tial of Ref. 64, or potentials of real systems,
for instance LiCN34,65,66 or ketene35,67–69— the
requirement for trajectories to be recrossing-
free often needs to be restricted to mean lo-
cally recrossing-free, i.e., a particle that enters
the neighborhood of the saddle will cross the
DS no more than once before it leaves the sad-
dle region. It may, however, reenter this region
and recross the DS at a later time. For fur-
ther information about these global recrossings
and the degree to which TST can remain exact
despite them, see Ref. 64.
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2.2 Recrossing-free DS in time-
dependent systems

For a system with n degrees of freedom, the sep-
aration of the 2n-dimensional phase space into
reactant and product regions requires a surface
of dimension 2n − 1. To distinguish reactant
and product regions for any rank-1 saddle in
an n-dimensional energy surface we use an ap-
propriate coordinate system where x approxi-
mates the reaction coordinate, i.e., the unsta-
ble direction of the saddle, and y the n− 1 re-
maining (bath) coordinates, given by the stable
directions of the saddle. The corresponding ve-
locities are denoted by vx and vy, respectively.
We will construct a dividing surface at an in-
stantaneous reaction coordinate xDS(yp,vy

p, t)
that depends on the bath coordinates, their
velocities, and on time. A phase space point
(x,y, vx,vy) is classified as lying on the reac-
tant or product side of the barrier at time t
depending on whether it fulfills

x < xDS(yp,vy
p, t)→ reactant, or

x > xDS(yp,vy
p, t)→ product .

(1)

While propagating an ensemble of particles,
each particle can be classified as reactant or
product at any time according to Eq. (1). When
it crosses the moving DS, it reacts and con-
tributes to the reaction of the time-dependent
system.

To satisfy the recrossing-free requirement,
this high-dimensional DS is generally non-
trivially curved in a manner that depends on
the details of the dynamics. The representa-
tion (1) of the DS assumes that no curvature in
the vx direction is required. This assumption
is inspired by the phase space plot in Fig. 3,
where such choice of a DS appears as a ver-
tical line going up from the NHIM. Reactive
trajectories cross the DS transversely and ex-
actly once, whereas non-reactive trajectories do
not cross it. This statement is trivially true in
a harmonic system. It describes a qualitative
property that is robust under perturbations of
either the system or the dividing surface. Many
other surfaces that are sufficiently close to the
vertical line will also be recrossing-free; the ex-

act choice of DS is therefore not critical. We
take advantage of this non-uniqueness by pos-
tulating that the DS has the form (1) and that
its location xDS = xNHIM coincides with that
of the NHIM. These assumptions single out a
unique DS and also provide a means to compute
it because the NHIM is amenable to numerical
computation, as discussed below in Sec. 3.

With this simplification, our choice of a
recrossing-free DS, independent on the reac-
tive velocity vx, can be justified via a confir-
mation of the absence of unwanted recrossings
in dynamical simulations, as shown in Sec. 5
for a particular two-dimensional model system.
However, in more general cases when particles
cross the DS far away from the NHIM, this sim-
plification might lead to unwanted recrossings
(see, e. g. Refs. 40,70–72), as the assumption
embodied in Eq. (1) has its limits. There is
no general proof that a recrossing-free DS of
the form (1) should exist, and exceptions are
known.70 If the invariant manifolds are strongly
deformed, e. g. such that they cross the cho-
sen DS, then the fate of a trajectory starting
on the DS x = xDS(y,vy, t) will depend on vx,
and the representation (1) becomes impossible.
However, this is expected only for strongly non-
linear systems or very high velocities, so that
the representation (1) is adequate for many sys-
tems of practical relevance. For a given system,
one can always numerically confirm whether a
DS is truly recrossing-free. This may be done
by propagating a large number of trajectories
with initial conditions in the vicinity of the
moving saddle, and subsequent monitoring of
the crossings across the constructed DS, as has
been done successfully for the model system dis-
cussed in Refs. 44,45.

If the underlying potential has open reac-
tant and product basins, a particle that crosses
a recrossing-free DS will never return because
it escapes the saddle region forever. Assum-
ing that our choice of a DS independent on
the reactive velocity vx is sufficiently accurate
The propagation of a reacting particle can be
stopped when a particle crosses a space de-
termined by x = xDS while calculating rates
in open systems. In systems with closed re-
actant or product basins, particles can be re-
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Figure 2: Simplified sketch of the phase space
of a chemical reaction. The blue dots repre-
sent pre-calculated points on the DS. A re-
acting particle crosses the DS, a curved, co-
dimension one manifold separating reactants
(R) and products (P) in phase space. Here,
we illustrate the problem, that such a reacting
trajectory will in general not cross the DS at
the pre-calculated points but somewhere in be-
tween. Note, that these manifolds are generally
high-dimensional objects embedded in phase
space and this figure has to be understood as
highly schematic.

flected globally at the boundaries of the basins
and may therefore cross the space determined
by x = xDS infinitely many times.34,35,64–69 In
this case, the propagation cannot be stopped
and particles can react from one side of the sad-
dle to the other multiple times. Still, the time-
dependent classification in reactant and prod-
uct is always given due to the local recrossing-
free property of the DS presented here (see
Sec. 2.2 for further discussion on how to con-
struct the DS and its properties).

Reacting particles can, in principle, cross the
DS at some previously unknown values of the
bath coordinates and velocities in between the
pre-calculated points, and at a previously un-
known time t (schematically visualized as tra-
jectory in Fig. 2), while the DS itself is a time-
dependently moving object. To obtain a rate
from the simulation of a large number of tra-
jectories, one therefore needs to evaluate the lo-
cation xDS(y,vy, t) of the DS for a wide range
of the parameters y, vy, t, and the parame-
ter space will typically have high dimension.
However, even the calculation of xDS(y,vy, t)
at single points is challenging and numerically

expensive. Indeed, it is hopeless to calculate
xDS(y = yp,vy = vy

p, t) from scratch for every
position (yp,vy

p) on the trajectory of every par-
ticle p at the respective time t, while propagat-
ing a large ensemble. Consequently, it is crit-
ical to obtain a representation of the function
xDS(y,vy, t), that describes the dependence of
the DS on all its arguments over a sufficiently
large range, and which is easy to evaluate.

We obtain a computationally efficient rep-
resentation of the DS in two steps: First, a
high-accuracy algorithm is used to obtain a
small, but incomplete, number of representa-
tive points on the DS. In Sec. 3, we present
an algorithm that is able to efficiently calculate
these points, based on the geometric proper-
ties of phase-space in the saddle region. Sec-
ond, a smooth representation of the function
xDS(y,vy, t) is obtained through an efficient ex-
trapolation of the finite points obtained in the
first step. This requirement can sometimes be
achieved through interpolation and fitting of ex-
pected forms of the potential. To avoid such nu-
merics and to take advantage of the limited data
set presently available, we have recently im-
plemented machine learning approaches which
should, in principle, be applicable to arbitrar-
ily high dimension.45 The use of these methods
to obtain a time-dependent description of the
full DS is summarized, extended and assessed
in Sec. 4.

2.3 Obtaining rate constants
from reactant decay

Through TST one aims to acquire rate con-
stants for a chemical reaction from a reac-
tant state over an energy barrier to a product
state. A typical approach for obtaining rate
constants73 is to propagate an ensemble of par-
ticles, identify only those trajectories from re-
actants to products that cross the DS such as
that illustrated in Fig. 2, sum their flux, and
divide by the population of reactant particles.
In the TST approximation the reacting flux is
obtained by summing the instantaneous flux
across the entire DS. Rates thus obtained are
exact if and only if the DS is free of recrossings.

To obtain rate constants, we monitor the
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number of trajectories that remain reactants
over time Nreact(t) before crossing the moving
DS. For large times, when all trajectories have
left the barrier region, it approaches the num-
ber of non-reactive particles N∞. After the ini-
tial transient behavior has decayed, this limit is
approached exponentially

Nreact(t)−N∞ ∝ exp(−k t) , (2)

where k is the rate constant of this reac-
tion.3,74,75 Deviations from exponential behav-
ior also arise at long times when the number of
remaining trajectories becomes too small to be
statistically meaningful.

3 Obtaining single points

on the NHIM

3.1 Revealing phase space struc-
tures

The phase space structures discussed in Sec. 2.2
can be uncovered through an increasing ar-
ray of tools, including the ones reviewed in
this section. For simplicity, we will illustrate
them using a one-dimensional model system for
a simple chemical reaction with a periodically
moving barrier and open reactant and product
channels. Specifically, we consider the motion
of a particle of unit mass under the influence of
the time-dependent potential

V (x, t) = Eb exp
{
−[x− x̂ sin(ωx t)]

2} . (3)

Here, Eb is the height of a Gaussian barrier
oscillating along the x axis with frequency ωx
and amplitude x̂. We use dimensionless units
in which we set Eb = 2, x̂ = 0.4, and ωx = π.

A tool to resolve the manifolds in phase space
is the Lagrangian descriptor (LD).76 In the con-
text of TST, the LD at position x0 in the coor-
dinate space, velocity v0, and time t0, is defined
as43,56,58,76

L(x0,v0, t0) =

∫ t0+τ

t0−τ
||v(t)|| dt . (4)

The LD measures the arc length of the tra-
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v x III I
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Figure 3: Phase space of the system introduced
in Eq. (3). Several methods are visualized to
reveal the stable (Ws) and unstable (Wu) man-
ifolds attached to the saddle. As in Fig. 1,
their intersection (the NHIM at a given time)
is marked with a black cross, and the DS at-
tached to it is a vertical solid line. The blue
dashed curve is the union of all NHIMs points
(and therefore the TS-trajectory) for the full
time-dependence of Eq. (3). The contours in
the panels correspond to (a) L as defined in
Eq. (4), (b) L̃ according to Eq. (5), (c) the time-
descriptor Td (see Eq. (6)), and (d) reactive and
non-reactive regions according to Table 1.

jectory x(t) that passes through (x0,v0) at
time t = t0. The trajectory is considered for-
ward and backward in time over the interval
[t0 − τ ; t0 + τ ], and the parameter τ is chosen
such that the relevant time scale of the system is
covered. In the case of open reactant and prod-
uct basins, the stableWs and unstableWu man-
ifolds associated with the energy barrier should
be revealed by local minima of the LD in phase
space, but are sometimes obfuscated by ditch-
like structures, as seen in Fig. 3(a). Trajectories
starting near the stable and unstable manifolds
generally have low LDs because they are bound
to the saddle region for a finite time. One ditch
—that is, a deep minimum— is found in the
forward time component, indicating the loca-
tion of the stable manifold Ws and the other
ditch is found in the backward time component,
indicating the unstable manifold Wu.

In the case of closed reactant and product
basins, the LD defined in Eq. (4) results in a
fractal-like structure in phase space that also
contains both manifolds, but obfuscates them
even more.64 Nevertheless, Ws and Wu can be
revealed if LDs are computed not for a fixed
time τ , but rather until they leave the saddle

7



region xR ≤ x ≤ xP:

L̃(x0,v0, t0) =

∫ tf(x0,v0,t0)

tb(x0,v0,t0)

||v(t)|| dt, (5)

x (tb,f(x0,v0, t0)) = xR or xP, for tb < t0 < tf.

As shown in Fig. 3(b), the manifolds are then
clearly revealed by local maxima in L̃.

The shift from minima in L to maxima in the
modified L̃ is attributed to the fact that tra-
jectories close to the stable and unstable mani-
fold are integrated over longer times, while the
respective particles are moving in the saddle
region. With this observation, one can find a
simpler and arguably more reliable approach to
reveal the manifolds. By simply tracking the
time a particle spends in the saddle region, we
alleviate the need to compute the arc length of
the trajectory. Following the nomenclature of
the LD, we refer to these times as time descrip-
tor (TD):

Td(x0,v0, t0) ≡ tf(x0,v0, t0)− tb(x0,v0, t0),

Td,f(x0,v0, t0) ≡ tf(x0,v0, t0)− t0, (6)

Td,b(x0,v0, t0) ≡ t0 − tb(x0,v0, t0).

The closer a particle is toWs in forward time or
to Wu in backward time, the longer it will stay
in the saddle region in the respective time com-
ponent. Consequently, the stable and the un-
stable manifold are again revealed by the max-
ima of the TD, as seen in Fig. 3(c). Note that
since trajectories on the stable and unstable
manifolds are trapped in the barrier region for
infinite time, both L̃ and Td may diverge, al-
though it is unlikely when propagating the tra-
jectories numerically.

To calculate the vx-position of the two mani-
folds in phase space for a given x-position (reac-
tion coordinate), one can search for the appro-
priate extremum of the LD, the modified LD, or
the TD. Using what we refer to as the standard
LD is perhaps the least robust of these methods
because the LD has several local minima in ad-
dition to the primary minimum indicating the
manifold, see Fig. 4(a). The modified LD and
the TD do not show such substructure and have
clear maxima for both stable and unstable man-
ifolds, see Fig. 4(b) – (d). However, because of

0

1 L

0

1 L̃

0

1 Td

−1.0 −0.5 0.0 0.5 1.0 1.5
vx

0

1 Td,b

Td,f

a)

b)

c)

d)

Figure 4: One-dimensional view along vx of the
data in Fig. 3 at x = −0.4. The LD without
cutoff is displayed in (a), the LD with cutoff
in (b) and the TD in (c). Subfigure (d) shows
the individual parts of the TD for propagation
solely in backward respectively forward time.
All curves have been normalized.

its simpler definition the TD seems to be the
method of choice as long as one can clearly de-
fine a saddle region. With all of these methods,
the integration in forward and backward time
can also be performed separately to reveal the
two manifolds individually, see Fig. 4(d). Thus,
numerical ambiguities between stable and un-
stable manifolds near their intersection can be
avoided.

3.2 1D: Finding the NHIM

With the stable and unstable manifold revealed
by the LDs or TDs, it is now possible to find the
NHIM. Since the NHIM is given by the inter-
section of the stable and unstable manifold, it
can be computed by finding coordinates where
their distance is zero. This can be accomplished
with a root search that finds the value of the
reaction coordinate x for which the difference
between the velocities vx of the stable and the
unstable manifold is zero. However, this proce-
dure is very costly as it nests an extreme value
search of the LDs or TDs within a root search
for the distance between these extreme values.
Moreover, the computation of each of the many
LD or TD values underlying this search is itself
expensive because it requires the integration of
a full trajectory.

An efficient alternative for obtaining the
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NHIM is the binary contraction method,46

which is based on the classification of trajec-
tories in Fig. 3(d). The algorithm starts with
a quadrangle whose vertices represent the four
different regions, see Fig. 5. A candidate ver-
tex is then associated with the midpoint of one
of the edges of the quadrangle, and a trajec-
tory is initiated to determine which region it
belongs to. The corresponding vertex is then
replaced, and the area of the quadrangle is re-
duced. This process is repeated for all vertices
until the quadrangle converges to the NHIM
with the desired accuracy —that is, sufficiently
small area. Additional details of the algorithm,
including an explanation on how to find good
initial conditions and the treatment of excep-
tional cases, can be found in Ref. 46.

Thus the binary contraction method can be
used to find the NHIM (or the TS trajectory)
with high precision, while propagating consid-
erably fewer trajectories than the optimization
method described above. For example, in the
one-dimensional model potential of Eq. (3) with
periodic external driving, this leads to a peri-
odic orbit (the TS trajectory), as demonstrated
by the blue dashed circles in Fig. 3.

3.3 The NHIM in higher dimen-
sions

In systems with n > 1 degrees of freedom, the
situation is qualitatively similar, but it is more
challenging because all phase space structures
have higher dimensions. As already established
in Sec. 2.2, the NHIM has dimension 2n− 2 in
phase space. Consequently, its associated sta-
ble and unstable manifolds both have dimen-
sion 2n − 1. The time-dependence in the po-
tential, either because of the external driving
or the noise, adds additional complexity which
makes these manifolds time-dependent.

A point in phase space can be characterized
by the reaction coordinates x and vx and the
bath coordinates y and vy. For any fixed val-
ues of the bath coordinates y and vy, we obtain
a two-dimensional section through phase space
with coordinates x and vx. We assume that in
each of these sections the stable and unstable
manifold intersect as shown in Fig. 1. In partic-

vx vx

x

vx

x

vx

Ws

Wu
Ws

Wu Ws

Wu
Ws

Wu

Ws

Wu
Ws

Wu
Ws

Wu
Ws

Wu

1 2

3 4

Figure 5: Illustration of the binary contraction
method. The algorithm starts with a quadran-
gle having each of its vertices (black bullets) in
one of the reactive and non-reactive areas de-
scribed in Table 1. At each step, a new trajec-
tory starting at the center between two of the
vertices is calculated (white bullet) and classi-
fied to one of the areas. Afterwards the corre-
sponding vertex of the quadrangle is replaced.
Iteration of this procedure for each distance be-
tween adjacent vertices shrinks the quadrangle
to the intersection of the stable Ws and unsta-
ble Wu manifold.

ular, each section contains a single point of the
NHIM that lies at the intersection of the two re-
active and two nonreactive regions. This condi-
tion provides a unique reaction coordinate and
velocity (xNHIM(y,vy, t), v

NHIM
x (y,vy, t)) on the

NHIM for each bath coordinate and time, which
can be found by the binary contraction algo-
rithm. Because these coordinates depend on
2n − 2 variables y and vy in phase space, the
NHIM has dimension 2n− 2.

A possible counterexample arises in the sim-
ple limiting case of an uncoupled harmonic sys-
tem. Therein, the point in the reactive phase
space, xNHIM and vNHIM

x will be constant, inde-
pendent of the bath coordinates y and vy. In
this case, it would not be possible to represent
any of the bath modes as functions of x or vx.
Nevertheless, the construction above provides
the correct phase space point because it does
not rely on the association being injective.

A non-trivial multidimensional example is a
two-dimensional model with a time-periodically
moving barrier separating open reactant and
product basins. It can be represented using
an extension of the one-dimensional potential
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of Eq. (3) to

V (x, y, t) = Eb exp
(
−[x− x̂ sin (ωxt)]

2)
+
ω2
y

2

[
y − 2

π
arctan (2x)

]2
. (7)

This potential describes a two-dimensional po-
tential energy landscape that has minima in
the bath coordinate along the curve y =
(2/π) arctan (2x). A moving Gaussian barrier
with height Eb is added over this stationary
potential. It is oscillating along the x axis with
frequency ωx and amplitude x̂. ωy is the fre-
quency of oscillations in the bath mode for a
particle of unit mass. For simplicity, we again
use dimensionless units in which the parameter
are Eb = 2, ωx = π, ωy = 2, and x̂ = 0.4.

We choose x as the approximate reaction co-
ordinate and y as the bath coordinate. Con-
sequently, we calculate an (x, vx)-slice for each
set of the remaining coordinates (y, vy) and for
any time. Using the binary contraction method,
we find the intersection (x, vx)

NHIM(y, vy, t).
Repeating this procedure for different values
(y, vy) on an equidistant grid for any time t and
using an appropriate interpolation method (see
below), we obtain the full NHIM of the system.
It is a two-dimensional, time-dependently mov-
ing surface embedded in the four-dimensional
phase space. A representation of this NHIM at
t = 0.5 is shown in Fig. 6 as a gray surface.

For certain points (y, vy), Fig. 6 shows sec-
tions of the stable and unstable manifolds
that are attached to the NHIM. To obtain
them, we consider a two-dimensional section of
phase space with fixed values of y and vx =
vNHIM
x (y, vy). The dynamical structure of this

section is similar to that in Fig. 1, except that
the axes are now x and vy. The manifolds are
obtained by finding the value of vy at which,
for given x, the TD is maximal. The stable and
unstable manifolds intersect on the NHIM, as
expected. Because they were obtained indepen-
dently of the calculation that yields the NHIM,
this observation also serves to confirm the reli-
ability of the computation and the uniqueness
of the NHIM.

x y

vy

-0.5

0.5
-0.5

0.5

0.34

-0.34

Figure 6: Gray surface: xNHIM(y, vy) for the po-
tential (7) at t = 0.5 with y and vy varied on
an equidistant grid in the plotted range. For
(x, vy)-slices at 3× 3 different values (y, vx) the
one-dimensional fiber of the stable manifold in
each slice is given as a red line, the fiber of
the unstable manifold as a blue line. Their in-
tersections are located on the two-dimensional
NHIM.

3.4 TS-trajectory in higher di-
mensions

In a one-dimensional system, the NHIM is a
single trajectory that can be identified as the
TS trajectory. A higher-dimensional NHIM, by
contrast, is made up of infinitely many trajec-
tories over time, all of which are trapped in
the saddle region for all times. Thus a unique
identification of the TS trajectory requires addi-
tional constraints beyond the minimal require-
ment that it is trapped within the saddle region.

In an autonomous system, the location of the
DS is often marked by the naive TS —that is
the saddle at the top of the barrier.

The TS is the point on some selected reaction
path that crosses the DS and it is not neces-
sarily the same as the naive TS but is often in
its proximity. We further note that there exist
exceptions to cases in which the TS is near the
naive TS. This includes the TS structures far
from the naive TS found by Gray and Davis77

for the autonomous HeI2 system and, more re-
cently, roaming reactions that are associated
to a TS that is not necessarily close to a sad-
dle.68,78–81 Such cases are not addressed in the
present work.

The TS trajectory is thus intended to gen-
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eralize the fixed TS for driven systems. In a
one-dimensional, time-periodically driven sys-
tem, the TS trajectory is a periodic orbit. Fol-
lowing this property, we suggest that for a time-
periodically driven, multidimensional Hamilto-
nian system the period-1 orbit trapped in the
barrier region, if uniquely identified, should also
be called the TS trajectory. Here, period-1
qualifies the orbit as one which is periodic and
for which the ratio of its period to that of the
external driving is 1.

To make this definition precise, we determine
the Euclidean distance ∆γ of two phase space
coordinates γ = (x,v)T on the same trajec-
tory, one time period T of the potential apart.
In practice, it can be computed by propagat-
ing initial conditions given for a certain time
t0 forward and backward in time by half a po-
tential period T/2. We perform this compu-
tation in such a way to avoid errors accumu-
lated by propagating trajectories near unstable
manifolds over long times. A trajectory with
∆γ = |γ(t0 + T/2)− γ(t0 − T/2)| = 0 is a pe-
riodic orbit. We identify such a periodic orbit
as the TS trajectory if it is the only period-1
orbit bound to the saddle region with respect
to the periodicity of the external driving in a
time-periodically driven system.

Again, the same assumptions as discussed in
Sec. 2.2 are valid, meaning that the system
should be not too non-linear, and the veloci-
ties of reacting particles not too high. Such
high non-linearities lead in general to a break-
down of our assumptions as the motion on the
NHIM of systems with many degrees of free-
dom becomes highly chaotic. Examples for such
chaotic regimes can be found in the high-energy
limit of autonomous systems described in Refs.
70,71. In such highly non-linear systems, the
NHIM and the TS can even bifurcate, as found
in Refs. 40,72.

The distance ∆γ shown in Fig. 7 has been
computed on the NHIM at t0 = 0 for the poten-
tial (7). The color of any point on the NHIM in-
dicates the distance ∆γ of the phase space vec-
tors of two trajectories, integrated for T/2 = 1
in forward and backward time. A pronounced
minimum, and thus by our proposed definition,
a point on the TS trajectory, can clearly be dis-

-0.3
0.3
1

-1
-0.5

0.5

min

max
x

y

vy

Δγ

Figure 7: Surface: visualization of the NHIM
for potential (7) at t = 0. Its color indicates the
Euclidean distance of the phase space vectors
∆γ = |γ(t0 + T/2)− γ(t0 − T/2)| for trajecto-
ries started at t0 = 0 at the respective point on
the NHIM and propagated for half the period
time of the external driving in potential (7) in
forward and backward time. The point with
∆γ = 0 is marked by a white dot. It is the
TS trajectory at time t = t0. Propagating a
trajectory starting at this specific point yields
the TS trajectory displayed as a blue line (par-
tially covered by the NHIM). The direction of
movement on the TS trajectory is indicated by
a white arrow. When calculated for different
initial times t0 in a full period T , the union of
all minima of ∆γ on each NHIM at time t0 cor-
responds to the TS trajectory.

tinguished. Using this point as the initial con-
dition for a trajectory propagation, the periodic
TS trajectory can be obtained. Since this prop-
agation will fail after a certain time because
the NHIM is unstable, one cannot compute a
fully periodic trajectory numerically. Neverthe-
less, with sufficiently accurate initial conditions
on the NHIM, one can compute a periodic tra-
jectory up to a certain error tolerance. Alter-
natively, various points on the TS trajectory
can be computed from scratch searching for the
minimum of ∆γ on the NHIM calculated at dif-
ferent initial times t0.

4 Machine-learning based

description of the NHIM

Using the methods described in Sec. 3, a single
point on the NHIM can be calculated for ar-
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bitrary values of the bath modes and time, as
is done here for the illustrative case of system
(7). However, for a rate calculation, the posi-
tion of the DS must be compared to the instan-
taneous position of each propagated particle at
each time step. To compute the required reac-
tion coordinate of the DS from scratch when-
ever it is needed would be prohibitively expen-
sive because even the efficient binary contrac-
tion method described above requires the prop-
agation of dozens of trajectories. To reduce the
numerical effort, it is critical to obtain a con-
tinuous representation of the DS as a function
of bath modes and time that is based on the
knowledge of a comparatively small number of
points on the NHIM.

Machine learning methods have already been
applied within the field of theoretical chemistry
for the interpolation of high-dimensional poten-
tial energy surfaces.82–92 Following our recent
work,45 we use machine learning techniques
—and specifically through the use of NNs or
GPR— to characterize an entirely different set
of surfaces: the NHIM and the DS attached
to it. After training on an arbitrary set of
points on the NHIM, a neural network yields
a continuous representation that approximates
the NHIM at the given points and elsewhere
as shown in Sec. 4.1. In principle, the method
can be applied for arbitrarily high dimension,
though the complexity of the network may in-
crease as the number of bath coordinates grows.
Alternatively, the interpolation of a given set
of points on the NHIM can be performed using
GPR (see, e. g. Ref. 49 and references therein)
as discussed in Sec. 4.2. This method requires a
priori knowledge of the length and time scales
along which the position of the NHIM is ex-
pected to vary. The comparison between these
two methods and a discussion of their advan-
tages and disadvantages in a given context will
follow in Sec. 4.3.

4.1 Feed-forward neural net-
works

Neural networks (NNs) are a powerful tool for
approximating functions of arbitrary complex-
ity in any dimension.48 Inspired by our current

understanding of NNs in the brain, an artifi-
cial NN consists of a set of model neurons with
complex connections between them. It trans-
forms a given input into some output. Typi-
cally, a NN is trained in the sense that a set
of free parameters is adjusted on a set of input
points for which the output is known. Dur-
ing training, the net learns to find patterns and
dependencies in the given data without requir-
ing any user input beyond the training data.
When properly trained, the network will pro-
vide a good approximation to the correct out-
put for input similar to the points it was trained
on. In our case the training data consists of
a set of points on the NHIM. By training on
these points, we can create two separate NNs
that represent the functions xNHIM(y,vy, t) and
vNHIM
x (y,vy, t) separately, or use a more com-

plex network to represent the combined func-
tion (x, vx)

NHIM(y,vy, t). This representation
will be reliable in the range of inputs that a
suitably chosen set of training data covers, as
long as the accuracy of the output was verified.

Here, we provide a brief overview on how we
set up and use a NN to represent the DS.45 For
a more general discussion on NNs, we refer the
interested reader to the literature, e. g. Refs.
93,94 and references therein. A feed-forward
NN consists of several layers through which in-
formation is processed, see illustration in the
schematic of Fig. 8. As we create a net to ap-
proximate (x, vx)

NHIM(y,vy, t), the input layer
is given by the bath coordinates y, velocities
vy, and time t. Based on its input, each neu-
ron computes an output value that is passed to
the next layer of the network, from that layer
to the next, and so on until the final output is
obtained.

In typical neural network applications, a user
must decide on the number of hidden layers,
the number of neurons in each layer, and the
function by which a neuron converts its input
into its output. Each neuron —such as the one
shown in Fig. 8(b)— of a given layer receives
inputs ci from the N neurons of the previous
layer. Its output,

c = a

(
N∑
i=1

wi ci + b

)
, (8)
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Figure 8: (a): A schematic for a NN approxi-
mating the function (x, vx)

NHIM(y,vy, t). Using
the (n − 1) bath coordinates y, the respective
velocities vy as well as a time t as input, the net
processes this information layer by layer, pass-
ing the activation signals of the neurons from
the previous layer to the next. The arbitrary
number of layers between input layer and out-
put layer are the hidden layers. Each layer has
a number of neurons which interpret the incom-
ing signals and pass them along to eventually
calculate the reaction coordinates (x, vx)

NHIM as
results of the output layers. (b): A schematic of
a neuron, indicating how its activation is com-
puted. It sums up the input signals from the
previous layer of neurons ci weighted by wi and
adds an associated bias b, passing the results
into the activation function a(x) to compute its
output c.

depends on the input values and on the activa-
tion function a(x) whose nonlinearity ensures
that the NN is not simply a linear transfor-
mation of the input variables and hence capa-
ble of capturing the necessary complexity. In
this work, we choose the activation function
a(x) = tanh (x) for all neurons except those on
the output layer as it is smooth and bound for
x → ±∞ while providing the requisite nonlin-
earity. The different weights wi that the neuron
assigns to the output of each neuron of the pre-
vious layer and the bias b are optimized indi-
vidually during the training process. We note,
that although a single hidden layer NN is a uni-
versal approximator, it may not be the most
efficient NN to a specific problem. In the fol-
lowing, we tried several different NN configura-
tions, varying the number of hidden layers and
neurons. The examples presented below pro-
vide the best results among the different ap-
proaches we sampled, but may not necessarily
be fully optimized.

At the onset of training, a NN is initialized
with the weights and biases of the neurons cho-
sen randomly within a reasonable range of val-
ues. After successful training, a NN should re-
turn a good approximation of the outputs over
the domain of inputs. A cost function is se-
lected to measure the quality of the approx-
imation. In the present application, we av-
erage the mean square difference between the
output of the network and the known values
over all training points. This mean square cost
function has units of length squared whose val-
ues are denoted with respect to the dimension-
less units introduced in Sec. 3.3. To minimize
the cost function, there are several optimization
routines that adjust the weights and biases of
the neurons iteratively. This includes the back
propagation algorithm which is a gradient-based
method that successively adjusts all free param-
eters.45,95 Usually, a NN is exposed to the en-
tire set of training data many times before it is
optimized, and each such exposure is called an
epoch.

The training of a NN is usually not performed
with all the available data. Instead, the data set
is split into two disjoint sets: a training set and
a verification set. The NN is trained only on
the training set. The cost function on the veri-
fication set is used to assess the reliability of the
NN for data that it was not trained for. If the
cost function on the training set is significantly
smaller than the cost function on the verifica-
tion set, then the NN adapted very specifically
to the given training set. This kind of overfit-
ting is, in general, an undesirable effect as it
indicates that the NN is no longer learning to
make more accurate predictions.

To illustrate the ease in training a NN to ap-
proximate the position xNHIM for the NHIM in
the two-dimensional model system of Eq. (7),
we wrote and tested a simple C++ code with-
out using the more generally available libraries
that we use in the production runs described
below. The network was constructed with two
hidden layers: the first and second with 40
and 10 neurons, respectively. It was trained
on 2000 points randomly distributed over the
NHIM and obtained using the binary contrac-
tion method. The remaining data points —
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Figure 9: Training and verification costs of
a NN for different epochs of training. The
training is completed when the verification cost
ceases to decrease, thereby preventing overfit-
ting to the training set.

numbering approximately 8000— were used for
verification. Fig. 9 shows the training and ver-
ification costs as a function of the epochs in
the training. During training, both costs de-
crease monotonically at varying speeds and in
concert with each other for most of the epochs.
After more than about 105 epochs, the verifi-
cation cost ceases to decrease while the train-
ing cost decays further. It is at this point
(when additional training ceases to improve the
verification) that the training of a NN should
cease. Additional training simply provides bet-
ter agreement with the training data while pos-
sibly distorting the general accuracy of the NN.
In this example, we see that significant accu-
racy of the NHIM can be obtained (down to a
cost of 10−6, measured in units of dimensionless
length squared as described in Sec. 3.3), with a
relatively small NN.

4.2 Gaussian process regression

Gaussian process regression (GPR) offers an
alternative to the NN as a supervised ma-
chine learning approach for fitting a multidi-
mensional hypersurface such as the NHIM to
isolated training points. This approach inter-
polates given values of a function f(z) that
depends on an arbitrary number of input vari-
ables z. In our application, the input variables
are the bath coordinates y, velocities vy and
time t. The unknown functions xNHIM(y,vy, t)
and vx

NHIM(y,vy, t) will be interpolated inde-
pendently.

GPR is based on the assumption that the val-
ues of a function f(z) are Gaussian random
variables that are a priori unknown, apart from
their statistical properties. After some values of
the function have been learned, other values are
inferred from the given information. For this in-
ference to be possible, some a priori knowledge
is required about the length scales along which
the values of the function vary. Specifically, we
assume that we know the a priori mean µ(z) of
the function f(z) and the covariance k(z1, z2)
between the values f(z1) and f(z2). In an un-
biased a priori distribution these means would
be set to zero, i.e., µ(z) = 0. A typical choice
for k(z1, z2) is the squared exponential kernel

k(z1, z2) = exp

(
−|z1 − z2|

2

2l2

)
, (9)

where the hyper-parameter l gives the typical
length scale along which the values of f are ex-
pected to vary. It yields high covariance be-
tween closely located points z1 and z2 and a
lower covariance between distant points. In an
application to TST, the characteristic length l
could differ for time and space coordinates, or
even for different bath modes.

Assume now that the values f train =(
f(z

(1)
train), . . . , f(z

(n)
train)

)T
of the function f

are known in n points z
(i)
train and the values

f test =
(
f(z

(1)
test), . . . , f(z

(m)
test)

)T
in m other

points z
(j)
test are sought. Initially, the values

f train and f test follow a multidimensional Gaus-
sian distribution with zero mean and covariance
matrix

Σ =

(
K NT

N M

)
(10)

that consists of the blocks

Kij = k(z
(i)
train, z

(j)
train) (of size n× n),(11)

Mij = k(z
(i)
test, z

(j)
test) (of size m×m),(12)

Nij = k(z
(i)
test, z

(j)
train) (of size m× n).(13)

The a posteriori conditional distribution of the
unknown values f test, given the known values
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f train, is a Gaussian function with mean49,50

µ̄ = NK−1f train (14)

and covariance matrix

Σ̄ = M −NK−1NT. (15)

The components of the conditional mean µ̄ are
taken to be the interpolated values of the func-
tion. If desired, the diagonal elements of the
conditional covariance matrix Σ̄ can be used to
provide an error estimate for the interpolation.

If the standard deviation
√

Σ̄ii is sufficiently

small, the interpolated value f(z
(i)
test) is known

essentially with certainty.
In practice, we compute a Cholesky decompo-

sition K = LLT of the matrix K, where L is a
lower triangular matrix. It is then easy to pre-
compute the vector K−1f train = L−TL−1f train

that depends only on the training points, but
not on the points z

(i)
test. After that, the com-

putation of one interpolated function value ac-
cording to Eq. (14) requires the computation
of the corresponding row of the matrix N and
the scalar product with the precomputed vec-
tor. The effort required is proportional to the
number n of training points. The conditional
covariance matrix (15) can be written as

Σ = M − ÑÑT, (16)

where the matrix Ñ is the solution of the equa-
tion N = ÑLT. Because L is triangular, the
computation of one row of Ñ , and therefore of
an error estimate for one data point, requires
an effort of order n2.

The training and use of a GPR machine can
be illustrated relative to a sine function shown
in Fig. 10 (b). We use the squared exponen-
tial kernel (9) with a characteristic length scale
l = 1. The conditional mean that serves as the
interpolated function is indicated by the dashed
red line, a 95 % confidence interval based on the
conditional standard deviation by the gray area.

The difference between the GPR machine’s
approximation and the original sine-function is
small near the training points and increases
elsewhere. Whereas for the prior, the mean µ
and the 95 % confidence region are independent
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Figure 10: (a) A Gaussian prior with a mean
of zero (thick red dashed line). The 95 % con-
fidence interval is given by a gray area which
covers two standard deviations from the mean.
The lines show three random functions drawn
from this prior. (b) Five points (•) located on a
sine curve (thick black line) are used as training
data. Learning these points turns the prior into
the posterior distribution, changing its mean
(thick red line) and its 95 % confidence inter-
val. Thin curves show three random functions
sampled from the posterior.

of z, the learning of several training points al-
ters both. At the training points, this 95 % re-
gion is zero, as these points are assumed to be
correct. The further away from training points,
the more the confidence region grows. This in-
crease happens on a length-scale compared to
the characteristic length l = 1 of the assumed
squared exponential kernel (9). At points far
from where no training points are given, e. g. for
z < −3, the confidence region of the poste-
rior realigns with the Gaussian prior. As a
result, the accuracy of the approximation in-
creases with the number of training points.

To illustrate that the posterior of the GPR
machine gives a distribution over admissible
functions, we plot three functions randomly
sampled from the posterior distribution in
Fig. 10 (b) and compare to three samples of the
prior distribution in Fig. 10 (a). The samples
of the posterior distribution match the training
points and are mostly located within the altered
95 % confidence region around the approxima-
tion µ(z) to the original function f(z). There-
fore, the posterior ‘chooses’ which functions of
the prior are suitable to interpolate between the
given training points.
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4.3 NNs vs. GPR

We now compare the advantages and disadvan-
tages of the two machine learning methods in-
troduced in Secs. 4.1 and 4.2 for the interpola-
tion of the NHIM and construction of the DS
in the calculation of rate constants. The aim
is to provide a guideline on when to use which
method.

For the training of a NN on a given set of
pre-calculated points of the NHIM, little pre-
vious knowledge on the interpolated object is
needed. For example, in a typical NN that ap-
proximates (x, vx)

NHIM(y,vy, t), the number of
neurons in each of the input and output layers
are fixed as illustrated in Fig. 8. The only infor-
mation that is prescribed is the structure of the
hidden layers, and it merely needs to contain
as much complexity as the system that it is re-
generating. Its efficacy is confirmed if the opti-
mization of the neurons leads to weights and bi-
ases that are sufficiently small compared to the
target accuracy with respect to the cost func-
tion.

When using GPR, the success and the speed
of training highly depends on the chosen hyper-
parameters of the kernel function. In choos-
ing these parameters, one can include previ-
ous knowledge of the object to be interpolated,
e. g. the expectation that the NHIM of a given
system may be a smooth surface with small cur-
vature. Consequently, the characteristic length
in the direction of the bath coordinates can
be higher than the characteristic length of the
variation in time, if the external driving leads
to a fast moving NHIM whose curvature does
not vary heavily. If such previous knowledge
is available, training can be accelerated signifi-
cantly by choosing an appropriate kernel func-
tion or by a corresponding restriction of the pa-
rameter ranges in the optimization.

Another difference between both methods lies
in the procedure of training itself. For NNs,
training with the back propagation algorithm is
an iterative process. It iterates a possibly high
number of times —that is, epochs— over the
given training set gradually adjusting weights
and biases to achieve a certain level of conver-
gence in the training and verification cost. This

procedure typically takes a lot of computation
time. Using GPR, training can be effectively
broken down to basic routines in linear algebra
without need for iteration. Therefore, training
to a certain accuracy in the context of GPR
is usually much faster compared to the use of
NNs.

We compare the training of the neural net-
work already discussed in Sec. 4.1 to the train-
ing done by GPR on the NHIM of the same
two-dimensional model potential according to
Eq. (7). The NN is set up with two hidden lay-
ers with 40 and 10 neurons as before. For GPR,
we use the squared exponential kernel (Eq. (9))
with l = 2.0 as hyper-parameter. In the left
panel of Fig. 11, the drop of the cost function
in relation to the needed computational time
is shown for the training for each of the NN
and GPR machines. Whereas training a NN
converges after several thousand seconds, the
GPR approach reaches the same level of accu-
racy within seconds.

Another difference in the implementation of
the two methods lies in the relative time each
machine learning approach requires to evalu-
ate the function (x, vx)

NHIM(y,vy, t) for some
input of the bath coordinates. For simplicity,
we report the internal run time reported by
the same computer and call it the function call
time. Precision for GPR is achieved by adding
more training points and therefore decreasing
the 95 % region of the posterior. But adding
more training points leads to an increasing di-
mension of the matrices discussed in Sec. 4.2.
Consequently, the function call time required
to evaluate Eq. (14) increases linearly with the
number of training points as shown by the red
curve in the right panel of Fig. 11. In contrast,
increasing the number of training points does
not increase the evaluation time for the NN,
assuming its layer geometry does not change.
Thus evaluating a small NN can be significantly
faster than GPR, although it might have taken
a long time to train the net.

Based on these three observations, we now
have guidelines for choosing between the NN
and GPR machines for continuously interpolat-
ing the time-dependent NHIM or the related
DS: (i) In cases when the function call time ex-
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Figure 11: Comparison between NN and GPR:
In the left panel, the cost function over the
needed training time is shown for each imple-
mentation as a function of computing time. For
GPR, successfully adding training points leads
to a fast decrease of the training cost, whereas
the same decrease using NNs is considerably
slower while training with the back propagation
algorithm. Here, both the training cost (NN-
t), as well as the verification cost (NN-v) are
shown. In the right panel, the function call time
required for each method is shown relative to
the number of training points. For GPR, func-
tion call time increases linearly with the num-
ber training points provided to it, and which
are needed to decrease the cost function. Thus,
high accuracy of GPR comes with the disad-
vantage of an increasing function call time. The
black dashed line shows the function call time
of a NN and it is independent of the number
of training points because the cost of sampling
across an epoch is dominated by the inversion
of the NN parameters.

ceeds the additional training time of the neural
network compared to GPR, it is computation-
ally more efficient to use the neural network
approach. A simple example would be a sys-
tem with time-periodic external driving (and
without friction). If the focus is on calculat-
ing rates for different initial ensembles of par-
ticles under the influence of the same external
force, the NHIM and therefore the DS is al-
ways the same. Consequently, it is more effi-
cient to use NNs so as to benefit from the short
function call time. (ii) On the other hand, in
cases when the same ensemble is used to cal-
culate reaction rates for a system under influ-
ence of a different external driving or in cases
with non-periodic driving, the training time for
each NN can easily be higher than the over-

all function call time to propagate the ensem-
ble and calculating reaction rates. It is then
more efficient to use GPR. Another example is
the future application of the methods presented
here on thermal systems which experience non-
trivial friction and fluctuations. In these sys-
tems, there will be a different NHIM (and DS)
for each sequence of random numbers modeling
the fluctuations in a Langevin-type approach,
and each sequence will require separate train-
ing. The training time can then easily exceed
the function call time. (iii) A third guideline
can be formulated in terms of how many train-
ing points are needed for a given method. Using
NNs, millions of training points can be fit eas-
ily, whereas with GPR, the function call time
is rather high even for just thousands of train-
ing points, and its use to fit millions of training
points is hopeless. This comparison can also
be seen exactly in the opposite way, as prior
knowledge on the object to be interpolated—
here the NHIM—can be included in the GPR
method by choosing an appropriate kernel func-
tion. This usually reduces the amount of train-
ing data needed significantly and provides an
advantage of GPR over the NN approach. If
only a few training points are available (for ex-
ample if training data is hard to obtain), GPR
is still capable of interpolating these few points
when provided a suitable kernel function, at
least one with respect to optimization of the
cost function.

5 Application to a two-

dimensional system

In this section, we assess the performance of
the methods summarized above for the central
application of this work. That is, the deter-
mination of the time-dependent NHIM and the
associated rate for the driven model potential
(7) for the same parameters as used in Sec. 3.3.
In the previous section, we focused on the accu-
racy as determined by the cost function as one
would typically use in training a NN or GPR
machine. However, in our specific application,
we also have an external criterion at our dis-
posal that allows us to assess the accuracy of the
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NHIM. Namely, the DS attached to the NHIM
should by construction be recrossing-free. For
a numerical test of this criterion, a large en-
semble of trajectories can be launched in the
neighborhood of the barrier and propagated for-
ward in time until it leaves this neighborhood.
In the process, the number of crossings and re-
crossings of the DS can be monitored. Beyond
the decrease in the cost function, the demand
of the DS to be as recrossing free as possible
is another—and in our case more relevant—
indicator of a successful training process.

To obtain a stringent test of the DS, it is ad-
vantageous to launch trajectories close to the
stable manifolds. These trajectories will re-
main in the neighborhood of the barrier for a
long time and therefore have plenty of oppor-
tunity to recross a DS of low quality. A de-
tailed description of such tests for the NHIM
constructed by other approaches, together with
numerical results, can be found in Refs. 44,45
for various test systems. In what follows, we
test the NN and GPR machines relative to this
criteria.

5.1 Representation of the NHIM
by NNs or GPR

For both NNs and GPR, training points are
computed in the range y ∈ [−4, 4] and vy ∈
[−8, 8]. The NN is trained on an equidistant
grid of 25 points in y, 40 points in vy range and
40 points in t, sampled over one period, i.e., in
the interval [0, 2]. The structure of the net uses
three input neurons for the variables y, vy, and
t, four hidden layers with 40, 40, 40, and 10
neurons, respectively, and one output neuron
representing xNHIM. While the NN discussed in
Sec. 4.3 was written from scratch in our group,
here we resort to an efficient implementation
using TensorFlow.96 To improve the periodic-
ity of the resulting function xNHIM, the grid of
training points is tripled to cover a full time
span from t ∈ [0, 6]. All in all, we use 120 000
training points taking advantage of the period-
icity of the driven system, so just 40 000 points
have to be obtained using the binary contrac-
tion method explained in Sec. 3.3. After train-
ing for 50 000 epochs, the training cost has de-

creased to 2.06× 10−7 and the verification cost
to 2.15× 10−7. Although using so many train-
ing points might seem to be a bit conservative
here, we did so as to ensure, that the likelihood
of single, localized artifacts in the representa-
tion of the DS is reduced. Such artifacts, which
are hidden by averaging over a large amount
of accurately inferred data points in the loss
function, will cause spurious recrossings to the
trajectories. This would lead to errors in the
corresponding rates which goes against our pri-
mary reason for calculating the non-recrossing
DS. Thus the large number of points—though
not fully optimized—was chosen in order to en-
sure not only the proper construction of the
manifold but also to satisfy our more stringent
criterion for a reduced number of recrossings.

For the GPR representation of the NHIM, we
used 6000 training points in total on equidis-
tant grids chosen at 30 time steps in the range
t ∈ [−0.5, 2.4] and in the same y and vy ranges
as for the NN. The time range is more than
the full period of T = 2 of the time-dependent
potential (7) in order to improve periodicity.
Training was done using a squared exponen-
tial kernel like in Eq. (9), but with different
characteristic length scales l in any direction
(y, vy, t). Training was carried out for various
values of the hyperparameters on a logarithmic
grid, and the set that led to the smallest veri-
fication cost was retained. The final values of
the hyperparameters that best reflect the length
and time scales on which the NHIM moves, were
σy ≈ 0.705, σvy ≈ 0.790 and σt ≈ 0.505. Note,
that the equidistant grids are chosen in order
to provide no initial bias, and thus focus on
whether the different approaches are feasible.
Choosing non-equidistant grids may be a sub-
ject for future optimization of the training pro-
cess.

To assess the accuracy of the representation
obtained from either the NN or the GPR, we
computed the position of the NHIM at a fixed
time for a grid of 50 × 50 additional points
in the ranges y ∈ [−4, 4] and vy ∈ [−8, 8]
with an accuracy of 10−12 using the binary
contraction method. Afterwards, the values
xNN(y, vy, 0) and xGPR(y, vy, 0) were obtained
for both trained machines of the NHIM at all
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Figure 12: Estimation of the error of the NN
(a) and GPR (b) machines in representing the
NHIM. Here, the values xNHIM(y, vy, 0) for a
grid of 50× 50 points in the ranges y ∈ [−4, 4]
and vy ∈ [−8, 8] are obtained with an accuracy
of 10−12 using the binary contraction method
explained in Sec. 3.3. The color of the curved
surface connecting these points represents the
pointwise difference to the representation of the
NHIM by one of the two interpolation methods
discussed here.

of these 50 × 50 verification points. Fig. 12
shows the location of the NHIM at time t = 0
(in a three-dimensional projection of the four-
dimensional phase space). Very similar figures
have been obtained for different times. The
color of the surfaces represents the error of the
machine learning representation of the NHIM
compared to the numerically exact result.

The maximum error of the NN representation
is 6.1×10−3 as seen in Fig. 12(a). It is nearly a
factor of three smaller than the maximum error
for GPR in Fig. 12(b). Large errors of the NN
occur just in a limited region near y = vy = 0,
whereas the GPR has large errors in a band-like
structure near vy = 0. The maximum differ-
ence could be lowered by e. g. using more train-
ing points. But this will come with the burden
of longer training times for neural networks or
longer function call times for GPR. A different
approach, to be pursued in the future, might
be the use of a non-equidistant grid of train-

Table 2: Training and function call times
for the use of NN and GPR to learn
and access the same NHIM for the model
problem discussed in the text.

NN GPR

obtaining training data 3636 s 545 s
training 4220 s 9 s
optimize hyper-parameters – 2238 s

total training time 7856 s 2792 s

function call time 14µs 253µs

ing points. By increasing the density of points
in the regions where the quality of the repre-
sentation is poor and decreasing it elsewhere,
it should be possible to lower the maximum er-
ror while keeping the total number of training
points constant.

As noted above, the GPR interpolates the
given training points exactly, whereas the NN
attempts to minimize the training cost, i.e., the
mean square error, averaged over all training
points, without bringing it to zero. It now ap-
pears that the NN produces a smoother repre-
sentation of the NHIM, with moderate errors
everywhere, whereas the GPR yields very small
errors near the training points at the expense
of larger errors elsewhere.

Note that a NN typically has intrinsic hyper-
parameters like the activation function or the
learning rate. Although adjusting these pa-
rameters is not free, we neglect this adjustment
time in our discussion, since in our experience,
these parameters have to be adjusted only once
for the general problem, but can be kept con-
stant while just varying potential parameters
as, e. g., the amplitude of the moving saddle.

Finally, we comment on the numerical effort
required by both methods, as represented by
the computing times listed in Table 2. These
times depend critically on, e. g., the hardware
used or the desired accuracy, and should be un-
derstood as a rough guidance only. Computing
all 40 000 training points for the neural network
took 3636 s, whereas obtaining 6 000 points for
the GPR took only 545 s. (This corresponds to
0.091 s on average per training point.) The pro-
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cess of training the neural net for 50 000 epochs
took 4220 s. GPR, by contrast, could be trained
in only 9 s. However, this training had to be
repeated many times in order to optimize the
hyperparameters. In total, the process took
2238 s. In summary, the neural network was
was ready to use after 7856 s (about 131 min)
the GPR about 2792 s (about 47 min). After-
wards, the evaluation of a single value of xNHIM

took 14µs for the neural network and 253µs
for GPR. Thus, although training in GPR is
much faster, its function call time is by a factor
of 18 higher. As we concluded at the end of
Sec. 4, depending on how many function calls
are required after training, either method can
be more computationally efficient: The NN be-
comes advantageous if more than about 21 mil-
lion evaluations are made.

5.2 Relative accuracy of the rate
constants: NNs vs. GPR

To obtain a rate constant for a reaction over
the time-dependent barrier of potential (7), we
propagate an ensemble of particles initialized
on the reactant side and monitor the reaction
of particles to the product side. The ensemble
is set up with Nreact(t = 0) = 106 particles at
x0 = −0.2 with y on the minimum energy path
of potential (7) at time t0 = 0. The velocities
(vx, vy) of these particles are sampled from a
thermal distribution with kB T = 0.5.

Propagating the full ensemble using a stan-
dard velocity-Verlet integrator, we monitor pos-
sible crossings of the DS and the related cross-
ing times of each particle. Ideally, each trajec-
tory should either descend on the reaction side
of the barrier without crossing the DS or cross
it at exactly once and then descend on the prod-
uct side. In practice, because of inaccuracies in
how the DS is represented, we expect a small
number of trajectories to recross the DS.

A histogram with the number of crossings is
shown in Fig. 13 (a) for the NN and in Fig. 13
(b) for the GPR approach. In both cases ap-
prox. 16 % of all particles are reactive and cross
the DS once from the reactant to the product
side. Nearly all other particles are non-reactive.
The number of trajectories that cross the DS
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Figure 13: Number of trajectories in the re-
active ensemble crossing the DS 0, 1 or more
times, as determined using a NN and GPR in
panels (a) and (b), respectively. As the associ-
ated DS should be recrossing free, the number
of trajectories with more than one crossing (2+)
gives an estimate of the error in the computa-
tion. Whereas the y-axis is in relative counts,
the numbers on the bars are absolute numbers.
The corresponding time-dependent traces of the
reactant population Nreact(t) shifted by its in-
finite time limit are shown in panels (c) and
(d). The rate constant k given in units of a di-
mensionless inverse time can by found from the
linear fit (shown with a dashed red line) in the
steady-state regime according to Eq. (2).

more than once is very small in both cases,
though the GPR still produces a factor 22 more
recrossings than the NN. This difference arises
because the NN represents the NHIM more ac-
curately than GPR as shown in Fig. 12.

Rates are obtained in dimensionless units us-
ing the procedure described in Sec. 2.3. For the
NN approach in Fig. 13 (c), we obtain a rate
constant of kNN = 3.1 compared to the rate
constant of kGPR = 3.0 for the GPR approach
in Fig. 13 (d). As discussed in Secs. 2.3 and
3.3, these rate constants are given in units of
a dimensionless inverse time. The time-scale is
given by a period with T = 2 of the oscillation
with frequency ωx = π in Eq. (7). Although
these constants are very similar, kNN is pre-
sumed to be more precise because the DS of the
NN approach exhibits fewer recrossings. Note
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that differences between the reactant popula-
tions computed by the two methods arise once
the populations have decayed to approximately
the number of recrossing trajectories in GPR.

6 Conclusion and outlook

In this paper, we have presented several tech-
niques to obtain the underlying geometric
structures needed to obtain rate constants for
reactions over time-dependent driven barriers in
the context of TST. Specifically, we focused on
the determination of the NHIM which is gener-
ally a multidimensional, time-dependent object
located in phase space, to which a recrossing-
free DS can be attached, and with respect to
which the TST rate is obtained. As we restrict
ourselves to rank-1 saddles, the procedures pre-
sented here can in principle be carried out for
any multidimensional system with one unstable
degree of freedom and an arbitrary number of
stable bath degrees of freedom. Here, one needs
to keep in mind that in higher-dimensional sys-
tems not only does the propagation of trajec-
tories become more complex and computation-
ally more challenging, but also the NHIM it-
self scales modestly with the dimensionality of
the equations of motion. Depending on how
one chooses to construct the DS, the number
of points needed to characterize the underlying
NHIM may scale exponentially with increasing
dimensionality.

A central result of this work is the extension
of recent approaches to address reactions of in-
creasing dimensionality. We elaborate on the
use of our recently developed binary contraction
method 46 for the accurate non-perturbative de-
termination of points on the NHIM. In the
case of time-periodically driven Hamiltonian
systems, this allowed us to extend the one-
dimensional TS trajectory to multi dimensions
by defining it to be the unique periodic orbit
that remains in the vicinity of the saddle.

A second central result of this work is the
elaboration and extension of our recent work
on NNs.45 Here we show the applicability of
the NN to construct the NHIM and rates for a
two-dimensional system. We also demonstrated

that a different machine learning approach, the
GPR, is also effective. These two approaches
have competing efficiencies in training and use.
Together, they offer a powerful combination
for obtaining high-accuracy smooth NHIMs for
barriers with rank-1 saddles in higher dimen-
sions. Indeed, Kamath et al97 recently com-
pared both of these methods for the first time
in the context of constructing potential energy
surfaces.92 Although their work has a different
objective than the NHIMs obtained here, we
likewise obtained similar conclusions regarding
the advantages and disadvantages of the two
methods with respect to the determination of
the target surface. Carrington and coworkers92

employed a secondary criterion for evaluating
the quality of their computed surface. Namely,
the GPR outperforms NN when fitting poten-
tial energy surfaces to obtain vibrational spec-
tra. In our case, we see in Fig. 13 that the
total number of recrossings for the DS obtained
by GPR is significantly higher than that found
by the NN. Following this additional —and in
our case more relevant—requirement to the DS
that it be recrossing-free, we conclude that for
our applications the NNs are more useful in the
sense that they provide higher accuracy for an
indirect metric not used as part of the cost func-
tion while training. We emphasize that we do
not claim our setup to be fully optimized in
terms of net structure or the training process,
but it is the best we found using comparable
approaches.

For the determination of the rate, the com-
putation of the required reaction coordinates of
the DS from scratch (using e. g. the binary con-
traction method) whenever it is needed would
be prohibitively expensive, as the position of
the DS must be compared to the instantaneous
position of each propagated particle. Having a
continuous representation of the DS as a func-
tion of bath modes and time reduces this nu-
merical effort drastically. This is where the use
of NN and GPR machine-learning techniques
represent a key advance by way of providing a
suitable smooth surfaces.

It remains to show that these approaches are
effective for the determination of rate constants
in systems with more complex energy land-
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scapes or external potentials. This includes
aperiodic external driving, potentials with mul-
tiple saddles, dissipative terms and thermal
noise. In addition, although these methods are
developed for in principle arbitrary dimensional
problems, everything done so far was an appli-
cation to two- and three-dimensional model sys-
tems.44,45 So one aspect for a future work will
be to test these methods on really high dimen-
sional systems with tens of degrees of freedom
to answer the question if for increasing dimen-
sionality really an exponential increase in the
obtained number of points on the NHIM is nec-
essary or if these points can be chosen more
efficiently by improving the machine learning
procedures.

An application for future work will lead
away from model systems towards real systems
like the LiCN ↔ LiNC isomerization reaction,
to which an analytical approximation to the
molecular potential98 as well as to the molec-
ular dipole moment99 is known. Another pos-
sible application includes the ketene isomeriza-
tion67,100,101 which has received increased atten-
tion since the initial work by some of us35 using
the Lagrangian descriptor to obtain the NHIM
and the associated rate constants. The deter-
mination of the full-dimensional NHIM in both
of these cases remains a challenge that may be
addressable using the emerging approaches pre-
sented here.
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