222 research outputs found

    Manipulating Highly Deformable Materials Using a Visual Feedback Dictionary

    Full text link
    The complex physical properties of highly deformable materials such as clothes pose significant challenges fanipulation systems. We present a novel visual feedback dictionary-based method for manipulating defoor autonomous robotic mrmable objects towards a desired configuration. Our approach is based on visual servoing and we use an efficient technique to extract key features from the RGB sensor stream in the form of a histogram of deformable model features. These histogram features serve as high-level representations of the state of the deformable material. Next, we collect manipulation data and use a visual feedback dictionary that maps the velocity in the high-dimensional feature space to the velocity of the robotic end-effectors for manipulation. We have evaluated our approach on a set of complex manipulation tasks and human-robot manipulation tasks on different cloth pieces with varying material characteristics.Comment: The video is available at goo.gl/mDSC4

    Robotic Fabric Flattening with Wrinkle Direction Detection

    Full text link
    Deformable Object Manipulation (DOM) is an important field of research as it contributes to practical tasks such as automatic cloth handling, cable routing, surgical operation, etc. Perception is considered one of the major challenges in DOM due to the complex dynamics and high degree of freedom of deformable objects. In this paper, we develop a novel image-processing algorithm based on Gabor filters to extract useful features from cloth, and based on this, devise a strategy for cloth flattening tasks. We evaluate the overall framework experimentally, and compare it with three human operators. The results show that our algorithm can determine the direction of wrinkles on the cloth accurately in the simulation as well as the real robot experiments. Besides, the robot executing the flattening tasks using the dewrinkling strategy given by our algorithm achieves satisfying performance compared to other baseline methods. The experiment video is available on https://sites.google.com/view/robotic-fabric-flattening/hom

    Feedback-based Fabric Strip Folding

    Full text link
    Accurate manipulation of a deformable body such as a piece of fabric is difficult because of its many degrees of freedom and unobservable properties affecting its dynamics. To alleviate these challenges, we propose the application of feedback-based control to robotic fabric strip folding. The feedback is computed from the low dimensional state extracted from a camera image. We trained the controller using reinforcement learning in simulation which was calibrated to cover the real fabric strip behaviors. The proposed feedback-based folding was experimentally compared to two state-of-the-art folding methods and our method outperformed both of them in terms of accuracy.Comment: Submitted to IEEE/RSJ IROS201

    Sim-to-Real Reinforcement Learning for Deformable Object Manipulation

    Get PDF
    We have seen much recent progress in rigid object manipulation, but interaction with deformable objects has notably lagged behind. Due to the large configuration space of deformable objects, solutions using traditional modelling approaches require significant engineering work. Perhaps then, bypassing the need for explicit modelling and instead learning the control in an end-to-end manner serves as a better approach? Despite the growing interest in the use of end-to-end robot learning approaches, only a small amount of work has focused on their applicability to deformable object manipulation. Moreover, due to the large amount of data needed to learn these end-to-end solutions, an emerging trend is to learn control policies in simulation and then transfer them over to the real world. To-date, no work has explored whether it is possible to learn and transfer deformable object policies. We believe that if sim-to-real methods are to be employed further, then it should be possible to learn to interact with a wide variety of objects, and not only rigid objects. In this work, we use a combination of state-of-the-art deep reinforcement learning algorithms to solve the problem of manipulating deformable objects (specifically cloth). We evaluate our approach on three tasks --- folding a towel up to a mark, folding a face towel diagonally, and draping a piece of cloth over a hanger. Our agents are fully trained in simulation with domain randomisation, and then successfully deployed in the real world without having seen any real deformable objects.Comment: Published at the Conference on Robot Learning (CoRL) 201

    A 3D descriptor to detect task-oriented grasping points in clothing

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Manipulating textile objects with a robot is a challenging task, especially because the garment perception is difficult due to the endless configurations it can adopt, coupled with a large variety of colors and designs. Most current approaches follow a multiple re-grasp strategy, in which clothes are sequentially grasped from different points until one of them yields a recognizable configuration. In this work we propose a method that combines 3D and appearance information to directly select a suitable grasping point for the task at hand, which in our case consists of hanging a shirt or a polo shirt from a hook. Our method follows a coarse-to-fine approach in which, first, the collar of the garment is detected and, next, a grasping point on the lapel is chosen using a novel 3D descriptor. In contrast to current 3D descriptors, ours can run in real time, even when it needs to be densely computed over the input image. Our central idea is to take advantage of the structured nature of range images that most depth sensors provide and, by exploiting integral imaging, achieve speed-ups of two orders of magnitude with respect to competing approaches, while maintaining performance. This makes it especially adequate for robotic applications as we thoroughly demonstrate in the experimental section.Peer ReviewedPostprint (author's final draft

    Sim-to-real reinforcement learning for deformable object manipulation

    Get PDF
    We have seen much recent progress in rigid object manipulation, but in- teraction with deformable objects has notably lagged behind. Due to the large con- figuration space of deformable objects, solutions using traditional modelling ap- proaches require significant engineering work. Perhaps then, bypassing the need for explicit modelling and instead learning the control in an end-to-end manner serves as a better approach? Despite the growing interest in the use of end-to-end robot learning approaches, only a small amount of work has focused on their ap- plicability to deformable object manipulation. Moreover, due to the large amount of data needed to learn these end-to-end solutions, an emerging trend is to learn control policies in simulation and then transfer them over to the real world. To- date, no work has explored whether it is possible to learn and transfer deformable object policies. We believe that if sim-to-real methods are to be employed fur- ther, then it should be possible to learn to interact with a wide variety of objects, and not only rigid objects. In this work, we use a combination of state-of-the-art deep reinforcement learning algorithms to solve the problem of manipulating de- formable objects (specifically cloth). We evaluate our approach on three tasks — folding a towel up to a mark, folding a face towel diagonally, and draping a piece of cloth over a hanger. Our agents are fully trained in simulation with domain randomisation, and then successfully deployed in the real world without having seen any real deformable objects

    Assistive robotics: research challenges and ethics education initiatives

    Get PDF
    Assistive robotics is a fast growing field aimed at helping healthcarers in hospitals, rehabilitation centers and nursery homes, as well as empowering people with reduced mobility at home, so that they can autonomously fulfill their daily living activities. The need to function in dynamic human-centered environments poses new research challenges: robotic assistants need to have friendly interfaces, be highly adaptable and customizable, very compliant and intrinsically safe to people, as well as able to handle deformable materials. Besides technical challenges, assistive robotics raises also ethical defies, which have led to the emergence of a new discipline: Roboethics. Several institutions are developing regulations and standards, and many ethics education initiatives include contents on human-robot interaction and human dignity in assistive situations. In this paper, the state of the art in assistive robotics is briefly reviewed, and educational materials from a university course on Ethics in Social Robotics and AI focusing on the assistive context are presented.Peer ReviewedPostprint (author's final draft

    Deep Learning of Force Manifolds from the Simulated Physics of Robotic Paper Folding

    Full text link
    Robotic manipulation of slender objects is challenging, especially when the induced deformations are large and nonlinear. Traditionally, learning-based control approaches, such as imitation learning, have been used to address deformable material manipulation. These approaches lack generality and often suffer critical failure from a simple switch of material, geometric, and/or environmental (e.g., friction) properties. This article tackles a fundamental but difficult deformable manipulation task: forming a predefined fold in paper with only a single manipulator. A data-driven framework combining physically-accurate simulation and machine learning is used to train a deep neural network capable of predicting the external forces induced on the manipulated paper given a grasp position. We frame the problem using scaling analysis, resulting in a control framework robust against material and geometric changes. Path planning is then carried out over the generated "neural force manifold" to produce robot manipulation trajectories optimized to prevent sliding, with offline trajectory generation finishing 15Ă—\times faster than previous physics-based folding methods. The inference speed of the trained model enables the incorporation of real-time visual feedback to achieve closed-loop sensorimotor control. Real-world experiments demonstrate that our framework can greatly improve robotic manipulation performance compared to state-of-the-art folding strategies, even when manipulating paper objects of various materials and shapes.Comment: Supplementary video is available on YouTube: https://youtu.be/k0nexYGy-P
    • …
    corecore