15 research outputs found

    ConStance: Modeling Annotation Contexts to Improve Stance Classification

    Full text link
    Manual annotations are a prerequisite for many applications of machine learning. However, weaknesses in the annotation process itself are easy to overlook. In particular, scholars often choose what information to give to annotators without examining these decisions empirically. For subjective tasks such as sentiment analysis, sarcasm, and stance detection, such choices can impact results. Here, for the task of political stance detection on Twitter, we show that providing too little context can result in noisy and uncertain annotations, whereas providing too strong a context may cause it to outweigh other signals. To characterize and reduce these biases, we develop ConStance, a general model for reasoning about annotations across information conditions. Given conflicting labels produced by multiple annotators seeing the same instances with different contexts, ConStance simultaneously estimates gold standard labels and also learns a classifier for new instances. We show that the classifier learned by ConStance outperforms a variety of baselines at predicting political stance, while the model's interpretable parameters shed light on the effects of each context.Comment: To appear at EMNLP 201

    Leveraging Crowdsourcing Data For Deep Active Learning - An Application: Learning Intents in Alexa

    Full text link
    This paper presents a generic Bayesian framework that enables any deep learning model to actively learn from targeted crowds. Our framework inherits from recent advances in Bayesian deep learning, and extends existing work by considering the targeted crowdsourcing approach, where multiple annotators with unknown expertise contribute an uncontrolled amount (often limited) of annotations. Our framework leverages the low-rank structure in annotations to learn individual annotator expertise, which then helps to infer the true labels from noisy and sparse annotations. It provides a unified Bayesian model to simultaneously infer the true labels and train the deep learning model in order to reach an optimal learning efficacy. Finally, our framework exploits the uncertainty of the deep learning model during prediction as well as the annotators' estimated expertise to minimize the number of required annotations and annotators for optimally training the deep learning model. We evaluate the effectiveness of our framework for intent classification in Alexa (Amazon's personal assistant), using both synthetic and real-world datasets. Experiments show that our framework can accurately learn annotator expertise, infer true labels, and effectively reduce the amount of annotations in model training as compared to state-of-the-art approaches. We further discuss the potential of our proposed framework in bridging machine learning and crowdsourcing towards improved human-in-the-loop systems

    Attribute Adaptation for Personalized Image Search

    Full text link
    Current methods learn monolithic attribute predictors, with the assumption that a single model is sufficient to re-flect human understanding of a visual attribute. However, in reality, humans vary in how they perceive the association between a named property and image content. For example, two people may have slightly different internal models for what makes a shoe look “formal”, or they may disagree on which of two scenes looks “more cluttered”. Rather than discount these differences as noise, we propose to learn user-specific attribute models. We adapt a generic model trained with annotations from multiple users, tailoring it to satisfy user-specific labels. Furthermore, we propose novel techniques to infer user-specific labels based on tran-sitivity and contradictions in the user’s search history. We demonstrate that adapted attributes improve accuracy over both existing monolithic models as well as models that learn from scratch with user-specific data alone. In addition, we show how adapted attributes are useful to personalize im-age search, whether with binary or relative attributes. 1

    Bayesian Nonparametric Crowdsourcing

    Get PDF
    Crowdsourcing has been proven to be an effective and efficient tool to annotate large data-sets. User annotations are often noisy, so methods to combine the annotations to produce reliable estimates of the ground truth are necessary. We claim that considering the existence of clusters of users in this combination step can improve the performance. This is especially important in early stages of crowdsourcing implementations, where the number of annotations is low. At this stage there is not enough information to accurately estimate the bias introduced by each annotator separately, so we have to resort to models that consider the statistical links among them. In addition, finding these clusters is interesting in itself as knowing the behavior of the pool of annotators allows implementing efficient active learning strategies. Based on this, we propose in this paper two new fully unsupervised models based on a Chinese restaurant process (CRP) prior and a hierarchical structure that allows inferring these groups jointly with the ground truth and the properties of the users. Efficient inference algorithms based on Gibbs sampling with auxiliary variables are proposed. Finally, we perform experiments, both on synthetic and real databases, to show the advantages of our models over state-of-the-art algorithms.Pablo G. Moreno is supported by an FPU fellowship from the Spanish Ministry of Education (AP2009-1513). This work has been partly supported by Ministerio de Economía of Spain (’COMONSENS’, id. CSD2008-00010, ’ALCIT’, id. TEC2012-38800-C03-01, ’COMPREHENSION’, id. TEC2012-38883-C02-01) and Comunidad de Madrid (project ’CASI-CAM-CM’, id. S2013/ICE-2845). This work was also supported by the European Union 7th Framework Programme through the Marie Curie Initial Training Network ”Machine Learning for Personalized Medicine” MLPM2012, Grant No. 316861. Yee Why Teh’s research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no. 617411
    corecore