Manual annotations are a prerequisite for many applications of machine
learning. However, weaknesses in the annotation process itself are easy to
overlook. In particular, scholars often choose what information to give to
annotators without examining these decisions empirically. For subjective tasks
such as sentiment analysis, sarcasm, and stance detection, such choices can
impact results. Here, for the task of political stance detection on Twitter, we
show that providing too little context can result in noisy and uncertain
annotations, whereas providing too strong a context may cause it to outweigh
other signals. To characterize and reduce these biases, we develop ConStance, a
general model for reasoning about annotations across information conditions.
Given conflicting labels produced by multiple annotators seeing the same
instances with different contexts, ConStance simultaneously estimates gold
standard labels and also learns a classifier for new instances. We show that
the classifier learned by ConStance outperforms a variety of baselines at
predicting political stance, while the model's interpretable parameters shed
light on the effects of each context.Comment: To appear at EMNLP 201