2,414 research outputs found

    Minimum Density Hyperplanes

    Get PDF
    Associating distinct groups of objects (clusters) with contiguous regions of high probability density (high-density clusters), is central to many statistical and machine learning approaches to the classification of unlabelled data. We propose a novel hyperplane classifier for clustering and semi-supervised classification which is motivated by this objective. The proposed minimum density hyperplane minimises the integral of the empirical probability density function along it, thereby avoiding intersection with high density clusters. We show that the minimum density and the maximum margin hyperplanes are asymptotically equivalent, thus linking this approach to maximum margin clustering and semi-supervised support vector classifiers. We propose a projection pursuit formulation of the associated optimisation problem which allows us to find minimum density hyperplanes efficiently in practice, and evaluate its performance on a range of benchmark datasets. The proposed approach is found to be very competitive with state of the art methods for clustering and semi-supervised classification

    Active Learning for Text Classification

    Get PDF
    Text classification approaches are used extensively to solve real-world challenges. The success or failure of text classification systems hangs on the datasets used to train them, without a good dataset it is impossible to build a quality system. This thesis examines the applicability of active learning in text classification for the rapid and economical creation of labelled training data. Four main contributions are made in this thesis. First, we present two novel selection strategies to choose the most informative examples for manually labelling. One is an approach using an advanced aggregated confidence measurement instead of the direct output of classifiers to measure the confidence of the prediction and choose the examples with least confidence for querying. The other is a simple but effective exploration guided active learning selection strategy which uses only the notions of density and diversity, based on similarity, in its selection strategy. Second, we propose new methods of using deterministic clustering algorithms to help bootstrap the active learning process. We first illustrate the problems of using non-deterministic clustering for selecting initial training sets, showing how non-deterministic clustering methods can result in inconsistent behaviour in the active learning process. We then compare various deterministic clustering techniques and commonly used non-deterministic ones, and show that deterministic clustering algorithms are as good as non-deterministic clustering algorithms at selecting initial training examples for the active learning process. More importantly, we show that the use of deterministic approaches stabilises the active learning process. Our third direction is in the area of visualising the active learning process. We demonstrate the use of an existing visualisation technique in understanding active learning selection strategies to show that a better understanding of selection strategies can be achieved with the help of visualisation techniques. Finally, to evaluate the practicality and usefulness of active learning as a general dataset labelling methodology, it is desirable that actively labelled dataset can be reused more widely instead of being only limited to some particular classifier. We compare the reusability of popular active learning methods for text classification and identify the best classifiers to use in active learning for text classification. This thesis is concerned using active learning methods to label large unlabelled textual datasets. Our domain of interest is text classification, but most of the methods proposed are quite general and so are applicable to other domains having large collections of data with high dimensionality

    Minimum Density Hyperplanes

    Get PDF
    Associating distinct groups of objects (clusters) with contiguous regions of high probability density (high-density clusters), is central to many statistical and machine learning approaches to the classification of unlabelled data. We propose a novel hyperplane classifier for clustering and semi-supervised classification which is motivated by this objective. The proposed minimum density hyperplane minimises the integral of the empirical probability density function along it, thereby avoiding intersection with high density clusters. We show that the minimum density and the maximum margin hyperplanes are asymptotically equivalent, thus linking this approach to maximum margin clustering and semi-supervised support vector classifiers. We propose a projection pursuit formulation of the associated optimisation problem which allows us to find minimum density hyperplanes efficiently in practice, and evaluate its performance on a range of benchmark datasets. The proposed approach is found to be very competitive with state of the art methods for clustering and semi-supervised classification

    Active Discovery of Network Roles for Predicting the Classes of Network Nodes

    Full text link
    Nodes in real world networks often have class labels, or underlying attributes, that are related to the way in which they connect to other nodes. Sometimes this relationship is simple, for instance nodes of the same class are may be more likely to be connected. In other cases, however, this is not true, and the way that nodes link in a network exhibits a different, more complex relationship to their attributes. Here, we consider networks in which we know how the nodes are connected, but we do not know the class labels of the nodes or how class labels relate to the network links. We wish to identify the best subset of nodes to label in order to learn this relationship between node attributes and network links. We can then use this discovered relationship to accurately predict the class labels of the rest of the network nodes. We present a model that identifies groups of nodes with similar link patterns, which we call network roles, using a generative blockmodel. The model then predicts labels by learning the mapping from network roles to class labels using a maximum margin classifier. We choose a subset of nodes to label according to an iterative margin-based active learning strategy. By integrating the discovery of network roles with the classifier optimisation, the active learning process can adapt the network roles to better represent the network for node classification. We demonstrate the model by exploring a selection of real world networks, including a marine food web and a network of English words. We show that, in contrast to other network classifiers, this model achieves good classification accuracy for a range of networks with different relationships between class labels and network links
    corecore