13,230 research outputs found

    Oversampling for Imbalanced Learning Based on K-Means and SMOTE

    Full text link
    Learning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification algorithm. Such techniques, called oversamplers, modify the training data, allowing any classifier to be used with class-imbalanced datasets. Many algorithms have been proposed for this task, but most are complex and tend to generate unnecessary noise. This work presents a simple and effective oversampling method based on k-means clustering and SMOTE oversampling, which avoids the generation of noise and effectively overcomes imbalances between and within classes. Empirical results of extensive experiments with 71 datasets show that training data oversampled with the proposed method improves classification results. Moreover, k-means SMOTE consistently outperforms other popular oversampling methods. An implementation is made available in the python programming language.Comment: 19 pages, 8 figure

    Hellinger Distance Trees for Imbalanced Streams

    Get PDF
    Classifiers trained on data sets possessing an imbalanced class distribution are known to exhibit poor generalisation performance. This is known as the imbalanced learning problem. The problem becomes particularly acute when we consider incremental classifiers operating on imbalanced data streams, especially when the learning objective is rare class identification. As accuracy may provide a misleading impression of performance on imbalanced data, existing stream classifiers based on accuracy can suffer poor minority class performance on imbalanced streams, with the result being low minority class recall rates. In this paper we address this deficiency by proposing the use of the Hellinger distance measure, as a very fast decision tree split criterion. We demonstrate that by using Hellinger a statistically significant improvement in recall rates on imbalanced data streams can be achieved, with an acceptable increase in the false positive rate.Comment: 6 Pages, 2 figures, to be published in Proceedings 22nd International Conference on Pattern Recognition (ICPR) 201

    Semantic concept detection in imbalanced datasets based on different under-sampling strategies

    Get PDF
    Semantic concept detection is a very useful technique for developing powerful retrieval or filtering systems for multimedia data. To date, the methods for concept detection have been converging on generic classification schemes. However, there is often imbalanced dataset or rare class problems in classification algorithms, which deteriorate the performance of many classifiers. In this paper, we adopt three “under-sampling” strategies to handle this imbalanced dataset issue in a SVM classification framework and evaluate their performances on the TRECVid 2007 dataset and additional positive samples from TRECVid 2010 development set. Experimental results show that our well-designed “under-sampling” methods (method SAK) increase the performance of concept detection about 9.6% overall. In cases of extreme imbalance in the collection the proposed methods worsen the performance than a baseline sampling method (method SI), however in the majority of cases, our proposed methods increase the performance of concept detection substantially. We also conclude that method SAK is a promising solution to address the SVM classification with not extremely imbalanced datasets
    corecore