128 research outputs found

    Combining Contexts in Lexicon Learning for Semantic Parsing

    Get PDF
    Proceedings of the 16th Nordic Conference of Computational Linguistics NODALIDA-2007. Editors: Joakim Nivre, Heiki-Jaan Kaalep, Kadri Muischnek and Mare Koit. University of Tartu, Tartu, 2007. ISBN 978-9985-4-0513-0 (online) ISBN 978-9985-4-0514-7 (CD-ROM) pp. 175-182

    Deep learning for semantic parsing

    Get PDF
    This is the memory of an exploratory research project on techniques for reasoning on text with Deep Learning (DL). To study reasoning we focus on the problem of Natural Language Question-Understanding (NLQU), and in particular in the task of Semantic Parsing, a challenging Natural Language Processing (NLP) task that requires NLQU and even puts todays Deep Learning machinery to the test. More specifically we provide a discussion about semantic parsing, and in concrete, deep learning techniques for semantic parsing. In our study of semantic parsing, we focus on two central topics: annotation and (deep learning) systems. At a more practical level, we run experiments of a state-of-the-art semantic parsing system a new and innovative semantic parsing dataset called OTTA \cite{OTTA}. Finally, we take the opportunity to learn the details of the system implementation, and we refactor the system to make it suitable (in terms of speed and integration) for future work. Language: Englis

    Federated Learning for Semantic Parsing: Task Formulation, Evaluation Setup, New Algorithms

    Full text link
    This paper studies a new task of federated learning (FL) for semantic parsing, where multiple clients collaboratively train one global model without sharing their semantic parsing data. By leveraging data from multiple clients, the FL paradigm can be especially beneficial for clients that have little training data to develop a data-hungry neural semantic parser on their own. We propose an evaluation setup to study this task, where we re-purpose widely-used single-domain text-to-SQL datasets as clients to form a realistic heterogeneous FL setting and collaboratively train a global model. As standard FL algorithms suffer from the high client heterogeneity in our realistic setup, we further propose a novel LOss Reduction Adjusted Re-weighting (Lorar) mechanism to mitigate the performance degradation, which adjusts each client's contribution to the global model update based on its training loss reduction during each round. Our intuition is that the larger the loss reduction, the further away the current global model is from the client's local optimum, and the larger weight the client should get. By applying Lorar to three widely adopted FL algorithms (FedAvg, FedOPT and FedProx), we observe that their performance can be improved substantially on average (4%-20% absolute gain under MacroAvg) and that clients with smaller datasets enjoy larger performance gains. In addition, the global model converges faster for almost all the clients.Comment: ACL 2023 long pape

    Polyglot Semantic Parsing in APIs

    Full text link
    Traditional approaches to semantic parsing (SP) work by training individual models for each available parallel dataset of text-meaning pairs. In this paper, we explore the idea of polyglot semantic translation, or learning semantic parsing models that are trained on multiple datasets and natural languages. In particular, we focus on translating text to code signature representations using the software component datasets of Richardson and Kuhn (2017a,b). The advantage of such models is that they can be used for parsing a wide variety of input natural languages and output programming languages, or mixed input languages, using a single unified model. To facilitate modeling of this type, we develop a novel graph-based decoding framework that achieves state-of-the-art performance on the above datasets, and apply this method to two other benchmark SP tasks.Comment: accepted for NAACL-2018 (camera ready version

    Transfer Learning for Neural Semantic Parsing

    Full text link
    The goal of semantic parsing is to map natural language to a machine interpretable meaning representation language (MRL). One of the constraints that limits full exploration of deep learning technologies for semantic parsing is the lack of sufficient annotation training data. In this paper, we propose using sequence-to-sequence in a multi-task setup for semantic parsing with a focus on transfer learning. We explore three multi-task architectures for sequence-to-sequence modeling and compare their performance with an independently trained model. Our experiments show that the multi-task setup aids transfer learning from an auxiliary task with large labeled data to a target task with smaller labeled data. We see absolute accuracy gains ranging from 1.0% to 4.4% in our in- house data set, and we also see good gains ranging from 2.5% to 7.0% on the ATIS semantic parsing tasks with syntactic and semantic auxiliary tasks.Comment: Accepted for ACL Repl4NLP 201
    corecore