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Natural language understanding is a sub-field of natural language process-

ing, which builds automated systems to understand natural language. It is such an

ambitious task that it sometimes is referred to as an AI-complete problem, implying

that its difficulty is equivalent to solving the central artificial intelligence problem

– making computers as intelligent as people. Despite its complexity, natural lan-

guage understanding continues to be a fundamental problem in natural language

processing in terms of its theoretical and empirical importance.

In recent years, startling progress has been made at different levels of natu-

ral language processing tasks, which provides great opportunity for deeper natural

language understanding. In this thesis, we focus on the task of semantic parsing,

which maps a natural language sentence into a complete, formal meaning represen-

tation in a meaning representation language. We present two novel state-of-the-art

learned syntax-based semantic parsers using statistical syntactic parsing techniques,

motivated by the following two reasons. First, the syntax-based semantic parsing is
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theoretically well-founded in computational semantics. Second, adopting a syntax-

based approach allows us to directly leverage the enormous progress made in sta-

tistical syntactic parsing.

The first semantic parser, SCISSOR, adopts an integrated syntactic-semantic

parsing approach, in which a statistical syntactic parser is augmented with seman-

tic parameters to produce a semantically-augmented parse tree (SAPT). This in-

tegrated approach allows both syntactic and semantic information to be available

during parsing time to obtain an accurate combined syntactic-semantic analysis.

The performance of SCISSOR is further improved by using discriminative rerank-

ing for incorporating non-local features. The second semantic parser, SYNSEM,

exploits an existing syntactic parser to produce disambiguated parse trees that drive

the compositional semantic interpretation. This pipeline approach allows seman-

tic parsing to conveniently leverage the most recent progress in statistical syntactic

parsing.

We report experimental results on two real applications: an interpreter for

coaching instructions in robotic soccer and a natural-language database interface,

showing that the improvement of SCISSOR and SYNSEM over other systems is

mainly on long sentences, where the knowledge of syntax given in the form of

annotated SAPTs or syntactic parses from an existing parser helps semantic com-

position. SYNSEM also significantly improves results with limited training data,

and is shown to be robust to syntactic errors.
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Chapter 1

Introduction

Natural language understanding is a sub-field of natural language process-

ing, which builds automated systems to understand natural language. It is such

an ambitious task that it sometimes is referred to as an AI-complete problem, im-

plying that its difficulty is equivalent to solving the central artificial intelligence

problem – making computers as intelligent as people. Despite its complexity, nat-

ural language understanding continues to be a fundamental problem in natural lan-

guage processing from both a theoretical and empirical standpoint. Theoretically,

natural language understanding answers the question of how people interpret lan-

guage. Empirically, deep natural language understanding is an integral part of nat-

ural language interfaces (Androutsopoulos et al., 1995; Zelle and Mooney, 1996;

Kuhlmann et al., 2004), question answering (Poon and Domingos, 2009), learning

by reading (Barker et al., 2007), and reasoning (Lev et al., 2004).

Due to the availability of a large amount of training data (Marcus et al.,

1993; Palmer et al., 2005), advanced statistical methods (Collins, 2004), and mas-

sive computing resources, startling progress has been made at different levels of

natural language processing tasks which may hopefully finally enable us to reach

the final goal of understanding. Much of the research effort has focused on sur-

face level tasks for analyzing structures in which meanings are conveyed, such as

part-of-speech tagging (Smith and Eisner, 2005; Goldwater and Griffiths, 2007),

chunking (Sang, 2002; Sha and Pereira, 2003) and syntactic parsing (Collins, 1997;
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Charniak and Johnson, 2005; Carreras et al., 2008). Significant research has also

been pursued on shallow semantic analysis tasks, such as word-sense disambigua-

tion (Ide and Jéronis, 1998; Tanaka et al., 2007), semantic role labeling (Gildea

and Palmer, 2002; Carreras and Marquez, 2004, 2005), and information extraction

(Califf and Mooney, 1999; Bunescu and Mooney, 2005; Paşca, 2009), which are

closer to the goal, by identifying the meanings of target words or finding phrases

that fill in the semantic roles of a single predicate or semantic frame.

All this progress provides great opportunity for deeper natural language un-

derstanding. In this thesis, we focus on such a task which analyze meanings deep in

natural language sentences by leveraging the progress in natural language process-

ing. Specially, we use statistical syntactic parsing techniques for semantic parsing.

1.1 Semantic Parsing

Semantic parsing is the task of mapping a natural language (NL) sentence

into a complete, formal meaning representation (MR) in a meaning representation

language (MRL), that is unambiguous which allows for automated reasoning, such

as first-order predicate logic. In particular, our research focuses on applications in

which the MRL is “executable” and can be directly used by another program to

perform some task such as answering questions from a database or controlling the

actions of a real or simulated robot. Below is a sample natural language advice

given to a simulated soccer player and its formal MR in a coach language (CLang):

If our player 2 has the ball, then position our player 5 in the midfield.

((bowner (player our {2}))
(do (player our {5}) (pos (midfield))))

2



where bowner, ball owner, is a domain specific predicate in the predefined coach

language, which requires a player as its argument. Meaning representations in

CLang can be directly understood by a learned simulated player. This differs from

representing semantics using more general MRs, such as using the binary predi-

cate “has(player,ball)” instead of bowner in the example, which is more

isomorphic with the syntax, but not directly executable.

The executable MR distinguishes semantic parsing from the related shal-

low semantic tasks such as semantic role labeling (Carreras and Marquez, 2004)

which is quite intentionally designed to be close to the syntax, and not directly ex-

ecutable. From another point view, semantic parsing can also be seen as the task

of machine translation which translates an NL sentence into an MR (Shieber and

Schabes, 1990; Wong, 2007). Thus it shares much of the challenges in machine

translation such as the non-isomorphism between an NL sentence and an MR.

1.2 Approaches

As the standard in computational semantics (Blackburn and Bos, 2005),

early semantic parsing systems mainly pursued a hand-built, syntax-based approach

(Woods, 1970; Warren and Pereira, 1982; Dowding et al., 1993; Bos et al., 1994),

where syntax is used to provide the meaning composition structure in which the

meaning of a parent is built from the meanings of its children in the tree. In these

hand-built systems, a unification-based grammar is often carefully developed in-

cluding detailed lexical entries and grammar rules for directing the generation of

the correct syntactic structure and unification for semantic composition.

Manually encoding all syntactic and semantic information into the grammar

is labor-intensive and brittle. In response to this, a number of learned semantic

3



parsing approaches were developed, such as Zelle and Mooney (1996) and Miller

et al. (1996), and recently Kate et al. (2005), Kate and Mooney (2006), Zettlemoyer

and Collins (2005), Wong and Mooney (2006, 2007), and Lu et al. (2008). Most of

these approaches departed from the syntax-based approach, but adopted a semantic-

driven approach instead, arguing that syntactic parse trees can be more elaborate

than needed for meaning composition; the sentence structure needed for meaning

composition can be built driven by semantics. On the other hand, Miller et al.

(1996) and Zettlemoyer and Collins (2005) were among the few systems which still

adopted a syntax-based approach. Miller et al. (1996) learn an integrated syntactic-

semantic parsing model from parse trees augmented with semantic information,

and Zettlemoyer and Collins (2005) learn a CCG which requires a small set of

manually-designed grammar template rules to start with.

1.3 Thesis Contributions

This thesis takes a syntax-driven approach to semantic parsing for the fol-

lowing two reasons:

• The syntax-based semantic parsing is theoretically well-founded in compu-

tational semantics: the grammatical relations between phrases or words en-

coded in a syntactic parse tree allow us to directly read predicate-argument

relations in semantics from the tree.

• Adopting a syntax-based approach allows us to directly leverage the enor-

mous progress made in statistical syntactic parsing. Statistical syntactic parsers

have improved significantly over the years in terms of quality (Collins, 1999;

Charniak, 2000; Charniak and Johnson, 2005; Koo et al., 2008; Carreras et al.,

2008) and diversity of grammar formalism (Riezler et al., 2002; Clark and

4



Curran, 2004). The enormous progress has also boosted progress in the tasks

which take syntactic parse trees as input for higher-level interpretation, such

as information extraction (Zelenko et al., 2003; Bunescu and Mooney, 2005),

information retrieval (Liu et al., 2007) and semantic role labeling (Gildea and

Jurafsky, 2002; Carreras and Marquez, 2005).

We introduce two novel learned syntax-based semantic parsers using sta-

tistical syntactic parsing techniques. The first parser, SCISSOR (Ge and Mooney,

2005), adopts an integrated syntactic-semantic parsing approach, where a state-

of-the-art statistical syntactic parser is augmented with semantics to produce a

semantically-augmented parse tree (SAPT); this tree is then translated into a fi-

nal formal meaning representation. Training requires that sentences be annotated

with SAPTs as well as MRs. This integrated approach allows semantic information

to be available during parsing time, so that the parser can find a globally most likely

parse for both syntactic and semantic interpretation to obtain an accurate combined

syntactic-semantic analysis. A discriminative reranking model (Ge and Mooney,

2006) is also developed for incorporating non-local features.

The second parser, SYNSEM (Ge and Mooney, 2009), adopts a pipeline

approach for semantic parsing, which exploits an existing syntactic parser to pro-

duce disambiguated parse trees that drive the compositional semantic interpretation.

With the advancement of statistical syntactic parsing, accurate syntactic parsers are

available for many languages and could potentially be used to learn more effective

semantic analyzers. Thus, this pipeline approach allows semantic parsing to conve-

niently leverage the progress in syntactic parsing. This contrasts with Zettlemoyer

and Collins (2005) which requires a set of hand-crafted grammar template rules

and CCG combinators to start with. Unlike the first approach, it does not require

fully-annotated SAPTs for training.
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The first approach used the same integrated syntactic-semantic parsing idea

to produce augmented parse trees as in Miller et al. (1996), but with significant

differences. First, the semantic augmentation in Miller et al. (1996) is designed for

domains in which an MR can be represented by a single semantic frame, while the

semantic augmentation in our approach is designed for deeply nested MRs which

are more expressive. Second, our approach is based on a state-of-the-art syntactic

parsing model which is suitable for modeling predicate-argument knowledge in an

application domain.

This thesis aims to answer the following three critical questions:

• Can the two proposed learned syntax-based approaches produce accurate se-

mantic parsers?

• What are the strengths and weaknesses of the proposed approaches when

compared to each other?

• What are the strengths and weaknesses of the proposed syntax-based ap-

proaches when compared to the non-syntax-based approaches? In other words,

we want to examine when syntax can help, in the form of annotated SAPTs

or syntactic parses from an existing parser.

We show that the two proposed learned syntax-based approaches both produce

state-of-the-art performance. The main improvement of SCISSOR and SYNSEM

over other systems is on long sentences, due to the prior syntactic knowledge given

in the form of annotated SAPTs or syntactic parses from an existing parser that

helps semantic composition. When comparing SCISSOR and SYNSEM, we show

that SCISSOR outperforms SYNSEM when given sufficient training data, by utiliz-

ing the annotated SAPTs. However, when given limited training data, SYNSEM
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gives the best results by using an accurate syntactic parser to provide syntactic

knowledge.

1.4 Thesis Outline

The outline of the thesis is as follows:

• Chapter 2 introduces syntactic parsing and discriminative reranking on which

our semantic parsing algorithms are based. We also provide background

knowledge in semantic parsing, including the main application domains and

approaches.

• Chapter 3 presents the integrated syntactic-semantic parsing approach called

SCISSOR. Specifically, Collins (1997) parsing model 2 is augmented to incor-

porate the semantic knowledge of an application domain into the model. We

report experimental results on two real applications, an interpreter for coach-

ing instructions in robotic soccer and a natural-language database interface.

We also take a closer look at the strengths and weaknesses of the parser.

• Chapter 4 presents discriminative reranking for semantic parsing which in-

corporates non-local syntactic and semantic features. We report experimental

results based on SCISSOR in the two real applications.

• Chapter 5 presents the pipeline approach to learning semantic parsers called

SYNSEM. Specifically, it uses syntactic parse trees from an existing syntactic

parser to drive the interpretation process. The learned parser uses standard

compositional semantics to construct alternative MRs for a sentence based

on its syntax tree, and then chooses the best MR based on a trained statis-
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tical disambiguation model. We report experimental results on the two real

applications, and analyze the strengths and weaknesses of the parser.

• Chapter 6 gives future work, and Chapter 7 concludes this thesis.

We note that the material presented in Chapter 3 has appeared in our pre-

vious publication Ge and Mooney (2005), the material in Chapter 4 has appeared

in Ge and Mooney (2006), and the material in Chapter 5 has appeared in Ge and

Mooney (2009).
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Chapter 2

Background

In this chapter, we briefly introduce syntactic parsing and discriminative

reranking on which our semantic parsing algorithms are based. We also provide

background knowledge in semantic parsing, including the main application do-

mains and approaches.

2.1 Statistical Syntactic Parsing

Syntactic parsing is the process of constructing a syntactic parse tree for an

input sentence by recursively applying a sequence of context free rewriting rules

(see Figure 2.1). The key issue in syntactic parsing is to solve syntactic ambiguity,

which arises when a sentence can have more than one syntactic parse tree according

to a grammar. For example, The children ate the cake with a spoon where the

prepositional phrase can be attached to either the noun or the verb.

Statistical parsing models provide a natural way for solving ambiguity by

attaching probabilities to each parse tree of a sentence. Probabilistic context free

grammars (PCFGs) are one of the most widely used models among them. Formally,

a PCFG is a 4-tuple:

G = (N, Σ, S, R) (2.1)

where N is a set of non-terminal symbols, Σ is a set of terminal symbols, and S is a

distinguished symbol in N , namely the start symbol. R is a set of rules of the form
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TOP   −> S

VP     −> VB NP

NP    −> DT NN

S        −> NP VP 

has2our player the ball

PRP$ NN CD

NNDT

VB

S

TOP

VPNP

NP

NP     −> PRP$ NN CD

Figure 2.1: A syntactic parse tree and the list of associated rewrite rules.

LHS → RHS, where LHS ∈ N and RHS is a sequence of terminals and non-

terminals; each rule has a associated probability where the probabilities of all rules

are expanding the same non-terminal sum up to one. PCFGs output a parse tree with

the highest joint probability P (T, S), where the joint probability is defined as the

product of the n applications of the context free rules LHSi → RHSi, 1 ≤ i ≤ n.

P(T, S) =
n

∏

i=1

P(LHSi → RHSi) (2.2)

In supervised learning, the probability of each rule is acquired by using maximum

likelihood estimation on a set of labeled parse trees through counting with smooth-

ing.

A well-known drawback with PCFGs is their lack of lexicalization – the

probabilities of rules are independent of the words involved. For example, in the

Penn Treebank (Marcus et al., 1993), the probabilities of the rule VP→V NP with

different verbs take (32.1%) and come (1.1%) are different (Manning and Schütze,

1999), however, they would be the same under PCFGs. Lexicalized PCFGs address

this problem by augmenting each non-terminal in a parse tree with its head word,

so that the probabilities of the rewriting rules are sensitive to words involved (see
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has2our player the

NP(player)

ball

PRP$ NN CD

NNDT

NP(ball)

VP(has)

VB

S(has)

TOP(has)

TOP(has)   −> S(has)

VP(has)     −> VB(has) NP(ball)

NP(ball)    −> DT(the) NN(ball)

S(has)        −> NP(player) VP(has)

NP(player) −> PRP$(our) NN(player) CD(2)

Figure 2.2: A lexicalized parse tree and the list of lexicalized rewrite rules associ-

ated.

Figure 2.2). The head is chosen using linguistic rules. For example, the head of a

noun phrase is the noun (player is the head of the noun phrase our player 2).

Lexicalization enormously increases the number of potential rules and makes

the direct rule probability estimation infeasible because of sparse data problems.

This is particularly true for parsing the Penn Treebank, which is known for its flat

tree structures. Collins (2003) points out that there are as many as 12,409 dis-

tinct rules from the approximately 40,000 sentences in sections 2-21 of the Penn

Treebank. Divide and Conquer strategies are effectively used to tackle this prob-

lem (Collins, 1997; Charniak, 1997).

2.1.1 Collins (1997) Parsing Models

In the following part of this subsection, we introduce Collins (1997) parser,

one of the best lexicalized statistical parsers. The basic idea of breaking down a

rule in Collins (1997) parser is as follows. One child is labeled as a head, and

all other children are labeled as modifiers. Expanding the non-terminal in the LHS

with its RHS is then broken down into several steps – first generating the head, then
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generating the left and right modifiers, respectively, under the assumption that the

generation of one modifier is dependent of the head, but independent of other mod-

ifiers. By applying the chain rule, the rule probability is calculated as the product of

the probabilities associated with the generation steps. Note that sparse data prob-

lems are significantly alleviated by relying on the counts of the smaller parts of a

rule instead of an entire rule.

While the independence assumption among the modifiers alleviate sparse

data problems effectively, it can also lead to incorrect probability estimations. For

example, the verb read normally only requires one object, thus its probability of

taking a second noun phrase as its object should be much lower than the probabil-

ity of taking the first noun phrase, however, it is not true under the independence

assumption.

To capture the dependencies between the modifiers, Collins (1997) builds

a series of progressively more complex models that lead to successively improved

performance. The first model (CM1) incorporates a distance feature, which is the

combination of the distance, intervening words and punctuation between the head

and modifier. The second model (CM2) divides the modifiers of a head into com-

plements (essential to the head) and adjuncts (optional to the head). Each head is

predicted with a subcategorization frame composed of a set of complements that

a head should appear with; and the generation of modifiers is conditioned on the

complements in the subcategorization frame that have not yet been fulfilled by the

previous modifiers. The third model (CM3) extends the second model to deal with

Wh-movement where subcat complements do not appear in their normal place, like

in the question Who did you go out with last night. In the semantic parsing task, we

will use CM2 in parsing sentences because CM2 performs significantly better than

CM1, while the most sophisticated model CM3 does not show significant improve-
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ment over CM2 (Collins, 1997). Another reason to use CM2 is that the statistics

on moved complements required for training CM3 are not labeled in the semantic

parsing data.

Below, we formally describe the rule probability estimation in CM2 using

the same notation as in Collins (1997). Each non-terminal X in a parse tree is

lexicalized with a word, w, and a part-of-speech (POS) tag t. Each rule LHS →
RHS has the form:

P (h)→Ln(ln)...L1(l1)H(h)R1(r1)...Rm(rm)

where P , H , L, and R are the parent, head child, and left and right children, re-

spectively; each non-terminal is written as X(x), where X is a constituent label,

and x = 〈w, t〉. The rule probability is calculated as the product of the following

probabilities:

1. The probability of choosing a head constituent label H: Ph(H|P, h).

2. The probabilities of choosing the left and right subcategorization frames LC

and RC: Plc(LC|P,H, h) and Prc(RC|P,H, h).

3. The probabilities of generating the left and right modifiers:
∏

i=1..m+1 Pr(Ri(ri)

|H,P, h, ∆i−1, RC)×
∏

i=1..n+1 Pl(Li(li)|H,P, h, ∆i−1, LC), where ∆ is the

distance between the head and modifier, and Ln+1(ln+1) and Rm+1(rm+1) are

the pseudo non-terminal STOP representing the boundaries of a phrase.

As an example, the probability of the rule VP(has) → VB(has) NP(ball) in Figure

2.2 would be estimated as:

Ph(VB|VP,has) × Plc({}|VP,has) × Prc({NP}|VP,has) ×

Pl(STOP|VP,has,{}) × Pr(NP(ball)|VP,has,{NP}) × Pr(STOP|VP,has,{})
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In Collins’ implementation, a variant of the CKY parser is employed to find

a parse tree that maximizes the joint probability of a sentence and its parse tree.

2.2 Discriminative Reranking for Syntactic Parsing

Collins’ (1997) parsing models are examples of widely-used history-based

parsing models, where a parse tree is represented as a sequence of decisions, and the

probability of the tree is then calculated as a product of the probabilities associated

with these decisions. For example, in Collins’ (1997) parsing models, generating

the RHS of a rule is decomposed into a sequence of decisions – first choosing the

head, then generating the left and right modifiers; each of these decisions is asso-

ciated with a probability. While history-based models have many advantages, they

can be awkward to incorporate discriminative features, because the choice of fea-

tures is directly constrained by the choice of the generation decisions. For example,

one discriminative feature for predicting correct parse trees that the models have

trouble incorporating is different heights of subtree features which can be overlap-

ping (Collins, 2002b).

Ideally, we would like to apply algorithms that incorporate arbitrary dis-

criminative features for directly choosing the best parse tree. In practice, however,

such algorithms become infeasible when a large exponential number of candidate

trees exist, because there is no feasible way to find the best tree efficiently when

arbitrary features are included. Dynamic programming techniques cannot apply in

this situation, and the algorithms need to enumerate all parse trees to find the best

tree.

Reranking approaches (Collins, 2000; Charniak and Johnson, 2005) address

this problem with the additional advantage of both allowing a tree to be represented
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using arbitrary features, and also keeping the size of the candidate trees manageable.

In such an approach, a baseline model is used to generate a set of top parses only

utilizing local features (thus feasible for dynamic programming), and then a second

model attempts to rerank the top parses using arbitrary discriminative features as

evidence.

Formally, a reranking model for statistical syntactic parsing is composed

of three parts (Collins, 2002a): a set of candidate parse trees GEN , which is the

top N parse trees of a sentence from a baseline parsing model; a function Φ that

maps a sentence x and its parse tree y into a feature vector Φ(x, y) ∈ R
d; and

a weight vector W̄ associated with the set of features. Each feature in a feature

vector is a function on a parse tree that maps the tree to a real value. For example,

a feature could be the counts of a context-free rule in a parse tree. A special and

powerful feature, the score of a parse tree under a baseline model, is often included

to take advantage of the baseline model. In reranking models, the parse tree with the

highest score under a parameter vector W̄ is outputted, where the score is calculated

as:

score(x, y) = Φ(x, y) · W̄ (2.3)

Training a reranking model amounts to estimating the parameter vector W̄

using a set of training examples. Popular parameter estimation methods for rerank-

ing parse trees include probability models that maximize the likelihood of the train-

ing examples, such as maximum entropy models (Collins, 2000). They also include

distribution-free methods (Collins, 2004) where the distribution generating the data

is unknown, such as the perceptron algorithm (Collins, 2002a), boosting (Collins,

2000), and support vector machines (Joachims, 2002). As an example, we intro-

duce the perceptron algorithm (Rosenblatt, 1958) below, which has proven to be
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Inputs: A set of training examples (xi, y
∗
i ), i = 1...n

Initialization: Set W̄ = 0
Algorithm:

For t = 1...T, i = 1...n
Calculate yi = arg maxy∈GEN(xi) Φ(xi, y) · W̄
If (yi 6= y∗

i ) then W̄ = W̄ + Φ(xi, y
∗
i ) − Φ(xi, yi)

Output: The parameter vector W̄

Figure 2.3: The perceptron training algorithm.

efficient and effective in practical problems while also having the advantage of be-

ing extraordinarily simple.

The perceptron training algorithm is shown in Figure 2.3. For each sen-

tence x, one of the candidates y∗ that has the highest similarity score with the

gold-standard parse tree is chosen as the correct one. In training, all parameters

initially are set to 0. The algorithm then goes through the training examples for

T iterations, calculating the scores of each candidates using the current parameter

vector. In each iteration, for every example, the parse tree with the highest score

is chosen. If the best tree is not the correct tree, a simple additive method is used

to update the weights of the features which have different values in the two parse

trees. Note that the update operation is very efficient – parameter values associated

with other features remain unchanged. Collins (2002a) gives a theoretical analysis

of the convergence property of this method. If the training data is separable and

there is a parameter factor W which makes zero errors on the training data, then the

perceptron training algorithm will converge to a parameter vector with zero training

error in a finite number of iterations.

The averaged perceptron, a variant of the perceptron algorithm is often used

in testing to decrease generalization errors on unseen test examples, where the pa-
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S

NP VP

VBD NP NP SBAR

(a)

NP(president)

NP(president)

the president

PP(of)

of NP(U.S.)

the U.S.

(b)

Figure 2.4: The syntactic parse trees for illustrating the reranking features.

rameter vector used in testing is the average of each parameter vector generated

during the training process.

2.2.1 Features in Collins and Koo (2005)

In the rest of the section, we briefly introduce the feature types used by Collins

(2000) and Collins and Koo (2005) for reranking syntactic parse trees. In Chapter

4, we shall show that the same set of reranking features can be adapted for the

task of semantic parsing. The parse trees in Figure 2.4 taken from Collins and Koo

(2005) are used for illustration. The head of the rule VP→VBD NP NP SBAR in

Figure 2.4(a) is VBD.

1. Rules. These are the counts of unique context-free rules in a syntactic parse.

For example, the tree in Figure 2.4(a) has the feature f (VP→ NP NP SBAR)=1.

2. Bigrams. These are the counts of unique bigrams in a constituent. They

are also featured with the type of the constituent, and the bigram’s relative

direction (left, right) to the head of the constituent. For example, the tree in

Figure 2.4(a) has the feature f (NP NP, right, VP)=1, where the bigram appears

to the right of the head VBD.
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3. Grandparent Rules. These are the same as Rules, but also include the non-

terminal above a rule. For example, the tree in Figure 2.4(a) has a feature

f (VP→ NP NP SBAR, S)=1, where S is the non-terminal above the rule VP→
NP NP SBAR.

4. Grandparent Bigrams. These are the same as Bigrams, but also include the

non-terminal above the constituent containing the bigram. For example, the

tree in Figure 2.4(a) has a feature f (NP NP, right, VP, S)=1, where S is the

parent of the constituent VP.

5. Lexical Bigrams. These are the same as Bigrams, but also include the lexical

heads of the two non-terminals in a bigram.

6. Two-level Rules. These are the same as Rules, but also include the entire rule

above a rule, for example, the tree in Figure 2.4(a) has a feature f (VP→ NP

NP SBAR, S→ NP VP)=1.

7. Two-level Bigrams. These are the same as Bigrams, but also include the

entire rule above the constituent containing the bigram. For example, the tree

in Figure 2.4(a) has a feature f (NP NP, right, VP, S→ NP VP)=1.

8. Trigrams. These are the counts of unique trigrams in a constituent. This

is also featured with the type of the constituent. For example, the tree in

Figure 2.4(a) has a feature f (NP NP SBAR, VP)=1, where VP is the type of the

constituent containing the trigram.

9. Head-modifiers. These are the counts of unique head-modifier pairs appear-

ing in a constituent, with the types of the constituent and its parent also in-

cluded. A binary flag adj is used to signal if the modifier is adjacent to the

head. For example, the tree in Figure 2.4(a) has a feature f(VBD PP, adj=1,

VP, S, left)=1, where the modifier PP appears directly to the left of the head

VBD in the constituent VP under the non-terminals S.
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10. PPs. Each feature is the count of a prepositional phrase (PP), the noun phrase

(NP) it is attached to, the NP containing it, and the NP it contains with each

component lexicalized. For example, the tree in Figure 2.4(b) has a feature

f (PP of, NP president, NP president, NP U.S.)=1.

11. Distance Head-Modifiers. These features involves the distance between head

words.

12. Further Lexicalization. These are the lexicalized version of the previous fea-

tures except Head-Modifiers, PPs and Distance Head-Modifiers, where all

non-terminals are augmented with their lexical heads when the head words

are closed-class words.

Recent progress of applying discriminative reranking in syntactic parsing

includes (Charniak and Johnson, 2005; Huang, 2008). Besides parsing, discrimina-

tive reranking has also been successfully used in a large variety of NLP tasks: POS

tagging and chunking (Collins, 2002a), Name Entity recognition (Collins, 2002c),

machine translation (Och et al., 2004) and speech recognition (Collins et al., 2005).

2.3 Application Domains for Semantic Parsing

In this section, we introduce three application domains on which semantic

parsing has mainly focused, namely, GEOQUERY, ROBOCUP and ATIS.

The first domain we introduce is GEOQUERY, a learned natural language

interface to a US geography database. The database has about 800 facts, represented

as Prolog assertions. The domain was original chosen for semantic parsing because

the quality of semantic parsers can be practically measured by the quality of the

final results returned to the user in this domain (Zelle and Mooney, 1996).
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The GEOQUERY corpus contains 880 questions paired with their meaning

representations in a Prolog-based language, which consists of first-order predicates

augmented with several meta-predicates. Below is a sample query with its English

gloss:

What are the rivers in Texas?

answer(x1,(river(x1),loc(x1,x2),equal(x2,stateid(texas))))

The initial 250 questions were collected by asking undergraduate students to gen-

erate English queries for the given database; queries were then manually translated

into logical form (Zelle and Mooney, 1996). The corpus was later expanded to

880 questions by collecting more queries from various resources, including queries

from real users through a web-based interface to the database (Tang and Mooney,

2001). The initial 250 questions were also translated into Spanish, Japanese and

Turkish.

Kate et al. (2005) later developed a functional, variable-free version of the

query language called FUNQL, which can be used for semantic parsers not handling

logical forms. The MR in FUNQL for the example above is:

answer(river(loc 2(stateid(’texas’))))

where the function loc 2 binds the second argument of the original predicate loc,

so loc 2(stateid(’texas’)) denotes the set of entities in the state of Texas;

the enclosing function river constrains the set to a river subset. The MRs in

FUNQL typically demonstrate deeply-nested structures. Table 2.1 gives the statistics

on the corpus.

The second domain we introduce is the ROBOCUP domain. ROBOCUP

(www.robocup.org) is an international AI research initiative using robotic soc-

cer as its primary domain. In the Coach Competition, teams of agents compete on
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CLANG GEOQUERY

FUNQL LOGICAL MRL

MRG Nonterminals 12 13 14
MRG Productions 134 133 50
Ave. NL Length 22.52 7.57 7.57
No. Unique Words 337 280 280

Table 2.1: Statistics on the CLANG and GEOQUERY corpora.

a simulated soccer field and receive advice from a team coach in a formal language

called CLANG. In CLANG, tactics and behaviors are expressed in terms of if-then

rules. Below is a sample rule with its English gloss:

If our player 2 has the ball, then position our player 5 in the midfield.

((bowner (player our {2}))
(do (player our {5}) (pos (midfield))))

The CLANG corpus (Kate et al., 2005) contains 300 pieces of coaching advice, ran-

domly selected from the log files of the 2003 ROBOCUP Coach competition. Each

formal instruction was translated into English by one of four annotators. Table 2.1

gives the statistics on the corpus.

The CLANG MRL is sometimes not isomorphic to the semantics of an NL.

In the above example, in the MR, the predicate pos only takes one argument

midfield; while in the NL, the corresponding word position takes both the player

and midfield as arguments.

The last application domain we introduce is the Air Travel Information Ser-

vices (ATIS) domain (Price, 1990), which is an ARPA-sponsored benchmark for

speech recognition and understanding. The ATIS corpus is a collection of spoken

questions about air travel, their written form and meaning representations in the
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SQL database query language. A sample database query, paired with its SQL query

is given below:

Show me the flights from Boston.

SELECT flight id FROM flight WHERE from airport = ‘boston’

Some queries in the corpus are context dependent, which need to be interpretated

within a discourse. The corpus shows interesting language phenomena in speech

language such as flexible word order and the deletion of words.

The semantic parsing task in ATIS can often be simplified to filling a single

semantic frame, where the structure among these fillers become less important. For

example, the semantic frame associated with the example used above is:











AIR-TRANSPORTATION

SHOW FLIGHT

ORIGIN

[

CITY Boston
]











2.4 Semantic Parsing Approaches

In this section, we review the approaches developed for semantic parsing.

Early semantic parsing systems mainly built hand-crafted grammars for specific ap-

plication domains, which can be brittle and hard to be ported to other domains. Thus

researchers started to investigate various learned approaches which are more robust

and easily portable. Section 2.4.1 introduces the early hand-built syntactic-based

systems, and Sections 2.4.2 to 2.4.4 introduce the machine learning approaches.
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2.4.1 Hand-built Syntax-based Approaches

The syntax-based semantic parsing approaches are based on compositional

semantics in which the meaning of a complex expression is determined by the

meanings of its parts, and the structure in which those parts are combined. As

standard in computational semantics (Blackburn and Bos, 2005), syntax is used to

provide the meaning composition structure. Each node in a syntactic parse tree has

an associated semantics; the analysis of semantics is driven by the structure of a

parse tree, where the meaning of a parent is built from the meanings of its children

in the tree.

LUNAR (Woods, 1970), CHAT80 (Warren and Pereira, 1982), GEMINI (Dowd-

ing et al., 1993), VERBMOBIL parser (Bos et al., 1994), LKB (Copestake and

Flickinger, 2000), and OPENCCG (White and Baldridge, 2003; Baldridge et al.,

2007) are among the most notable hand-built semantic parsers. In these approaches,

a unification-based grammar is often developed including domain-specific lexical

entries and grammar rules. The lexical entries contain a large amount of lexically

specific information specifying selectional restrictions. For example, an entry for

the word walks can specify that syntactically, it requires a subject to be a single and

3rd-person noun; semantically, it requires its subject to be able to walk. The gram-

mar rules direct the correct unification for semantic composition. For example, a

head-subject phrase rule can specify that when combining a non-head child and a

head child, the non-head child should fulfill the head child’s subject if selectional

restrictions are met.

PRECISE (Popescu et al., 2003, 2004) is a syntax-based semantic parser

specially designed for building NL interfaces to databases. It requires a hand-built

lexicon to relate words to semantic concepts and a set of semantic constraints to

define correct meaning composition. According to the lexicon and semantic con-
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straints, a class of queries is defined as a group of semantically tractable questions,

which have a unique semantic parse. They showed that over 90% of the context-

independent questions in ATIS are semantically tractable, while only 80% of the

queries in GEOQUERY are semantically tractable, which suggests that GEOQUERY

is a harder problem for semantic parsing. The hand-crafted lexicon and semantic

constraints are also used to correct syntactic errors in a syntactic parse.

2.4.2 Learned Syntax-based Approaches

Hand-built syntax-based approaches require intensive knowledge engineer-

ing, and can be brittle and not easily portable. In response to this, learned syntax-

based semantic parsing approaches have been developed.

Miller et al. (1994, 1996) augment nodes in a syntactic parse tree with se-

mantic labels which represent semantic concepts in ATIS, and train a statistical

hidden understanding parsing model to find the best augmented parse tree. The tree

is then converted into a non-recursive semantic frame using a probabilistic semantic

interpretation model. Training the model requires fully-annotated augmented parse

trees. Figure 2.5 shows a sample augmented parse tree similar to that in (Miller

et al., 1996).

In a more recent work, Miller et al. (2000) apply their approach to infor-

mation extraction, but using an improved head-driven parsing model. The model

is similar to that of Collins (1997), but the decomposed parameters are not as el-

egant as that in Collins parser, without modeling subcategorization and structural

preference. Further, each nonterminal label in the model is the combination of a

syntactic and semantic label. Without careful smoothing, its parameter estimation

is potentially subject to much greater sparse-data problems.

Zettlemoyer and Collins (2005) learn a semantic parser based on combi-
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Figure 2.5: A sample augmented parse tree in the ATIS domain, similar to that

in (Miller et al., 1996).
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natory categorial grammar (CCG) (Steedman, 2000), which is trained directly on

NL sentences paired with their meaning representations. The approach does not

require fully-annotated augmented parse trees or a CCG, but requires a small set of

carefully-designed grammar templates to start with, which specify possible syntac-

tic categories and semantic functions (output category) for each type of predicates

(input trigger) in a meaning representation language. For example, a constant pred-

icate c requiring no argument can trigger the following template rule:

Input trigger: any constant c

Output category: NP : c

Initially, the output category is assigned to all words in an example, thus the initial

CCG contains many spurious lexical items. A log-linear model is then learned to

prune away the spurious items . This work was later improved by Zettlemoyer and

Collins (2007) to relax CCG to handle relatively flexible word order and the dele-

tion of words, and in Zettlemoyer and Collins (2009) to allow context-dependent

semantic parsing. To handle several types of non-isomorphism between syntax and

semantic representations, such as in Figure 5.6, where in syntax, a function (P POS)

takes other function (P DO)’s semantic argument (P PLAYER) as argument, it might

require using larger lexical categories.

In Chapters 3 and 5, we introduce two semantic parsing algorithms, SCIS-

SOR and SYNSEM, which learn syntax-based semantic parsers. The SCISSOR ap-

proach is similar to that in (Miller et al., 1996, 2000), but augments the Collins pars-

ing model, which is state-of-the-art and suitable for modeling predicate-argument

knowledge in an application domain (see Chapter 3). Besides, the combined syntactic-

semantic nonterminals in SAPTs are carefully smoothed in SCISSOR. The SYNSEM

approach is based on an existing syntactic parser which can easily leverage progress
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SHOW

Show me FLIGHT

the flights ORIGIN

from CITY

boston

Figure 2.6: A semantic parse tree for the sentence in Figure 2.5.

in syntactic parsing. Unlike SCISSOR, it does not require fully-annotated SAPTs for

training.

2.4.3 Learned Semantic Grammars

Another major approach to semantic parsing is semantic grammars (Hen-

drix et al., 1978), where nonterminals are purely semantic labels, and words can

appear in production rules directly. Semantic grammars embed more lexical infor-

mation (especially about heads of phrases) directly into the syntax rules, which can

greatly increase the efficiency of the parsing. The parse trees for meaning composi-

tion can also be more concise than the ones generated by syntax-based approaches.

For example, in Figure 2.5, since the conveys no meaning, the noun phrase the

flights actually has the same meaning as its child flights, thus no meaning compo-

sition happens in this phrase. Figure 2.6 shows a more concise semantic parse tree

generated by a semantic grammar.

In this section, we review several approaches which learn directly from NL
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sentences paired with their meaning representations. Thus, they require less super-

vision than the approaches in Section 2.4.2. Typically, for each semantic concept in

an application domain, a set of production rules are learned where the left-hand-side

(LHS) of a production rule is a nonterminal for the concept, and the right-hand-side

(RHS) is a string of terminals for the associated context words, and nonterminals

for all of its argument concepts.

SILT (Kate et al., 2005) induces a semantic grammar using a bottom-up

rule-learning method. For each semantic concept, the examples are first labeled as

positive or negative according to the concept’s appearance in the meaning repre-

sentations; then production rules for that concept are learned from these examples

using a rule-learning method. The rule-learning method learns both a string version

(SILT-STRING) of the production rules which is generalized from the NL sentences

directly, and a tree version (SILT-TREE) which is generalized from the syntactic

parses of the NLs. Since the concepts are in nested structures, where one con-

cept can have other concepts as its arguments, the production rules are learned in

a bottom-up manner: the productions for a concept are only learned after its argu-

ment concepts are learned. The parsing is deterministic and lacks the robustness of

a statistical model.

WASP (Wong and Mooney, 2006, 2007) learns a synchronous context-free

grammar (SCFG) for semantic parsing based on machine translation techniques,

where an SCFG can be seen as a synchronous pair of a meaning representation

grammar and a semantic grammar. The steps of learning an SCFG are as follows.

First, the NL sentence and meaning representation pairs in the training corpus are

aligned by a statistical word alignment model. Then, semantic grammar rules are

inferred from the alignments in a bottom-up manner. Finally, a maximum entropy

model is used to estimate the probability of these rules.
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Since various ways can be employed in expressing a semantic concept, the

production rules learned in SILT and WASP can fail to capture some context using

direct pattern matching. To address this problem, Kate and Mooney (2006) intro-

duce a semantic parser called KRISP based on string kernels. For each semantic

concept in a meaning representation language, a string-kernel-based classifier is

trained to capture a potentially infinite number of production rules to form a kernel-

based semantic grammar. KRISP can also make use of syntactic parse trees as prior

knowledge by utilizing a tree-kernel instead (Kate, 2007).

The RHS of a production rule learned in the previous approaches include all

of a concept’s arguments and its associated context, which can be sparse. Therefore,

LU (Lu et al., 2008) proposes a generative parsing model, where the generation

of the RHS of a production rule is decomposed into several decision steps as a

Markov process, inspired by Collins (1997) head-driven parsing models. It also has

a reranking model for utilizing non-local features not available in the base model.

2.4.4 Other Learned Approaches

CHILL (Zelle and Mooney, 1996) is one of the earliest learning approaches

to semantic parsing, which learns a deterministic shift-reduce parser using induc-

tive logic programming (ILP) (Muggleton, 1992). Control rules are induced to

decide the parsing actions given the context, such as when to introduce a seman-

tic concept, and when to fill an argument. The algorithm learns directly from NL

sentences paired with their meaning representations. It requires a lexicon to relate

words to semantic concepts, which can be acquired using lexicon learning meth-

ods (Thompson and Mooney, 2003). Tang and Mooney (2001) revised CHILL to

produce COCKTAIL by utilizing multiple clause constructors to obtain more expres-

sive power.
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He and Young (2005) treat semantic parsing as a tagging problem, where

each word is assigned a label that encodes the structure information in a semantic

parse tree. More specifically, the label of a word is a vector of all semantic labels

on the path, from the word to the root of a semantic parse. As an example, the

word from in Figure 2.6 would have a label 〈ORIGIN,FLIGHT,SHOW〉. A drawback

of this encoding is the sparse data problem. For example, if we have already seen

the sentence the flight from Boston to Austin, and know that from represents an

attribute ORIGIN, we should be able to analyze the meaning of from in the train from

Boston to Austin correctly. However, since these two froms would have different

labels (FLIGHT.ORIGIN and TRAIN.ORIG) in the system, the information from the

previous example will not be helpful. An HMM like model is trained directly on

NL sentences labeled with their MRs.

For simple semantic parsing tasks, such as booking the flights in the ATIS

domain, the semantic parsing task can be simplified to filling a single semantic

frame, where the structure among these fillers become less important. CHANEL

(Kuhn and De Mori, 1995) adopts a decision tree approach, where each SQL at-

tribute has a corresponding decision tree to decide if an attribute should be included

in the query. Macherey et al. (2001) use a phrase-based machine translation ap-

proach to translate a sentence into the list of attributes in a semantic frame.
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Chapter 3

Semantic Parsing Integrating Syntax and Semantics

This chapter presents a learning semantic parser, which we call SCISSOR,

short for Semantic Composition that Integrates Syntax and Semantics to get Op-

timal Representations. It first uses an integrated statistical parser to produce a

semantically-augmented parse tree (SAPT), in which each non-terminal node has

both a syntactic and semantic label. A compositional-semantics procedure is then

used to map the augmented parse tree into a final meaning representation. We eval-

uate the system in CLANG and GEOQUERY (Section 2.3).

3.1 Motivation

As mentioned in Chapter 1, statistical syntactic parsers have improved sig-

nificantly over the years (Collins, 1999; Charniak, 2000; Clark and Curran, 2004;

Charniak and Johnson, 2005; Miyao and Tsujii, 2005; Koo et al., 2008; Carreras

et al., 2008). The enormous progress has also boosted progress in the tasks of

computational semantics which take syntactic parse trees as input for semantic in-

terpretation, ranging from interpreting shallow semantics like information extrac-

tion (Bunescu and Mooney, 2005) and semantic role labeling (Gildea and Jurafsky,

2002; Pradhan et al., 2005a), to interpreting deep meaning representation like se-

mantic parsing (Lev et al., 2004; Curran et al., 2007).

However, syntactic parses directly from a syntactic parser are sometimes
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suboptimal for semantic interpretations since no semantic information is utilized

during parsing. A syntactic parser may fail to rank the syntactic parse which is

the best for semantic interpretations the highest, or it may generate syntactic errors

which would have been corrected with semantic information available.

A promising approach to this problem is to integrate syntactic and seman-

tic interpretation into a single statistical model, instead of using a pipeline process.

This allows semantic information to be available during parsing time, so that the

parser can find a globally most likely parse for both syntactic and semantic inter-

pretation to obtain an accurate combined syntactic-semantic analysis (Miller et al.,

1994, 1996, 2000). In semantic parsing1, Miller et al. (1994, 1996) augment nodes

in a syntactic parse tree with semantic labels which represent semantic concepts

in ATIS, and train a statistical hidden understanding parsing model to find the best

augmented parse tree. The tree is then converted into a non-recursive semantic

frame using a probabilistic semantic interpretation model. In information extrac-

tion, Miller et al. (2000) apply their approach for semantic parsing, by using an

improved head-driven parsing model.

In this chapter, we adopt the integrated syntactic-semantic parsing approach

for semantic parsing which handles deeply nested meaning representations. Among

the state-of-the-art syntactic parsing models, we choose to augment Collins (1997)

parsing model 2. A major reason is that it is suitable for incorporating semantic

knowledge of an application domain. Concretely, Collins (1997) parsing model 2

models head-nonhead dependencies, which mimic the underlying predicate-argument

dependencies; it also models subcategorization, a set of complements that a head

should appear with, which mimic the underlying semantic subcategorization, a set

1Most ATIS queries are in fact conceptually very simple, so meaning representation in this work

often amounts to a single semantic frame (see Section2.3)
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of arguments that a predicate should appear with. An additional minor reason for

choosing this model is the availability of Bikel (2004)’s implementation of Collins’

parser, which is designed to be easily extensible.

The augmented statistical parsing model first generates a semantically aug-

mented parse tree (SAPT), in which each internal node includes both a syntactic

and semantic label. Once a SAPT is generated, an additional step is required to

translate it into a final formal meaning representation in a meaning representation

language. Training requires sentences annotated with both gold-standard SAPTs

and MRs. We present experimental results on corpora for both CLANG and GEO-

QUERY demonstrating that SCISSOR performs better than other systems on CLANG,

and competitive to other systems using the same MRL on GEOQUERY. Analysis

on CLANG shows that SCISSOR works especially well on long sentences, where

syntax is crucial for meaning composition.

The remainder of the Chapter is organized as follows. Section 3.2 describes

how semantic knowledge is represented in the integrated syntactic-semantic pars-

ing algorithm. Section 3.3 introduces the basic framework of SCISSOR, followed

by Section 3.4 which elaborates on corpus annotation and meaning composition

from SAPTs. After that, Section 3.5 formally describes the augmented syntactic-

semantic parsing model, and Section 3.6 presents the experimental results.

3.2 Representing semantic knowledge as a Meaning Represen-

tation Language Grammar

SCISSOR assumes that semantic knowledge of an application domain is

encoded in an unambiguous meaning representation language grammar (MRLG),

which specifies the set of predicates in the domain and the semantic constraints

on the predicates’ arguments. Specifically, in an MRLG, the left-hand side (LHS)
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If our player 2 has the ball, then position our player 5 in the midfield.

((bowner (player our {2}))
(do (player our {5}) (pos (midfield))))

Figure 3.1: A sample NL and MR pair in CLANG.

PRODUCTION PREDICATE

RULE→(CONDITION DIRECTIVE) P RULE

CONDITION→(bowner PLAYER) P BOWNER

PLAYER→(player TEAM {UNUM}) P PLAYER

TEAM→our P OUR

UNUM→2 P UNUM

DIRECTIVE→(do PLAYER ACTION) P DO

ACTION→(pos REGION) P POS

REGION→(midfield) P MIDFIELD

Table 3.1: Sample production rules for parsing the CLANG example in Figure 3.1

and their corresponding predicates .

of a production rule is a nonterminal, and the right-hand side (RHS) is a string of

terminals and non-terminals. Each production rule introduces a single predicate in

the MRL, where the type of the predicate is given by the nonterminal in the LHS,

and the number and types of its arguments are defined by the nonterminals in the

RHS. The MR of a predicate is the RHS of its production rule, with nonterminals

replaced by real arguments.

Given an MRLG, a meaning representation (MR) can be uniquely parsed,

a standard requirement for computer languages. At the same time, an MR parse

gives a predicate-argument structure in the application domain. Figure 3.1 shows a

sample instruction in CLANG, and Figure 3.2 (a) and (b) show the condition part’s

MR parse and predicate-argument structure using the MRLG in Wong (2007). Sam-

ple MRLG productions for parsing this example and their associated predicates are

shown in Table 3.1, where the predicate P PLAYER takes two arguments (a1 and a2)
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CONDITION

(bowner PLAYER )

(player TEAM

our

{UNUM})

2

(a)

P BOWNER

P PLAYER

P OUR P UNUM

(b)

Figure 3.2: (a) The MR parse and (b) predicate-argument structure for the condition

part of the CLANG in Figure 3.1 (the nodes for parentheses are not separately shown

for brevity).

of type TEAM and UNUM (uniform number). Since a predicate-argument structure

uniquely determines an MR string, in the following discussion, we sometimes use

predicate-argument structure for MR.

3.3 Semantic Parsing Framework

This section describes the basic framework for our integrated syntactic-

semantic parsing algorithm. First, a statistical parser integrating syntactic and se-

mantic information is used to construct a SAPT that captures the semantic interpre-

tation of individual words and the basic predicate-argument structure of a sentence.

Next, a recursive procedure is used to compositionally construct an MR for each

node in a SAPT from the semantic label of the node and the MRs of its children.

In a SAPT, each node in the parse tree is annotated with a semantic label.

Figure 3.3(a) shows the SAPT for the condition part of the CLANG example in

Figure 3.1. The semantic labels which are shown after dashes are predicates and

types (types are augmented with the prefix T for clarity) in CLANG. The semantic
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S-T CONDITION

NP-T PLAYER

PRP$-P OUR

our

NN-P PLAYER

player

CD-P UNUM

2

VP-P BOWNER

VB-P BOWNER

has

NP-NULL

DET-NULL

the

NN-NULL

ball

(a) SAPT

N8-P BOWNER(P PLAYER(P OUR,P UNUM))

N7-P PLAYER(P OUR,P UNUM)

N5-P OUR

our

N4-P PLAYER( , )

player

N6-P UNUM

2

N3-P BOWNER( )

N1-P BOWNER( )

has

N2-NULL

NULL

the

NULL

ball

(b) Semantic Derivation

Figure 3.3: (a) The SAPT and (b) semantic derivation for the condition part of the

example in Fig. 3.1.
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Function:COMPOSEMR(N,G)
Input: The root node N of a SAPT;

an MRLG, G.

Notation: XMR is the MR of node X .

Output: NMR

Ci := the ith child node of N, 1 ≤ i ≤ n

Ch = GETSEMANTICHEAD(N ) // see Section 3.3

ChMR
= COMPOSEMR(Ch, G)

NMR = ChMR

for each other child Ci where i 6= h

CiMR
= COMPOSEMR(Ci, G)

ADDARGUMENT(NMR, CiMR
, G) // see Section 3.3

return NMR

Figure 3.4: Computing an MR from a SAPT.

label on an internal node is the child predicate which takes other child predicates

as arguments (head predicate); when the predicate has all arguments filled (com-

pleted), its type is used as the node’s semantic label for better generalization in

the tree representation (see elaboration in Section 3.4). For example, P PLAYER is

the head predicate of the NP node covering our player 2, since it takes other child

predicates as arguments (P PLAYER(P OUR,P UNUM)); its type PLAYER is used as

the semantic label of the parent node, since it is completed at the node. A special

semantic label NULL is used for nodes that do not correspond to any predicate in

the domain.

Figure 3.4 shows the basic algorithm for composing an MR from a SAPT.

Figure 3.3(b) shows the semantic derivation for constructing an MR from the SAPT

in Figure 3.3(a) using this algorithm. Nodes are numbered in the order in which the

construction of their MRs are completed. The first step, GETSEMANTICHEAD, de-

termines which of a node’s children is its semantic head based on having a matching
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semantic label (has an equal predicate or belongs to the type). In the example, node

N3 is determined to be the semantic head of the sentence, since its semantic la-

bel, P BOWNER, matches N8’s semantic label. Next, the MR of the semantic head

is constructed recursively. The semantic head of N3 is clearly N1. Since N1 is a

part-of-speech (POS) node, its semantic label directly determines its MR, which

becomes P BOWNER( ). Once the MR for the head is constructed, the MR of all

other non-head children are computed recursively, and ADDARGUMENT assigns

their MRs to fill the arguments in the head’s MR to construct the complete MR for

the node. Argument constraints are used to determine the appropriate filler for each

argument. Since, N2 has a NULL label, the MR of N3 also becomes P BOWNER( ).

When computing the MR for N7, N4 is determined to be the head with the MR:

P PLAYER( , ). ADDARGUMENT then assigns N5’s MR to fill the TEAM argu-

ment and N6’s MR to fill the UNUM argument to construct N7’s complete MR:

P PLAYER(P OUR,P UNUM). This MR in turn is composed with the MR for N3 to

yield the final MR for the sentence: P BOWNER(P PLAYER(P OUR,P UNUM)).

The precise meaning composition algorithm depends on the methodology

of corpus annotation. We give more details in the next section together with corpus

annotation.

3.4 Corpus Annotation and Meaning Composition

This section describes how SAPTs for training SCISSOR were manually an-

notated to encode semantic knowledge in the training corpus. Since the annotation

methodology directly decides meaning composition from SAPTs, meaning compo-

sition is also described here. The SAPT annotation on CLANG took one annotator

about two weeks’ time, and the annotation on GEOQUERY took one week.
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To get an initial syntactic parse tree for each sentence in the training corpus,

Collins (1997) parsing model 2 (Bikel, 2004) was trained on all sections (00-24) of

the WSJ corpus of Penn Treebank (Marcus et al., 1993). The trees produced for the

corpus were then manually corrected.

Given a correct syntactic parse tree, semantic annotation starts with adding

semantic labels to individual words, called semantic tags, to the POS nodes in a

SAPT. If a predicate is conveyed by a single word (e.g. player for P PLAYER in

Figure 3.3(a)), then this word is labeled with the predicate. If a predicate is con-

veyed by a phrase (e.g. has the ball for P BOWNER), then only one word is labeled

with the predicate, where the syntactic head word (Collins, 1997) is preferred; all

other words in the phrase will be used to provide context for determining the word’s

semantic label during parsing. These unlabeled words in phrases and words convey-

ing no meaning (e.g. the) are labeled with the tag NULL. Meaning representation

of a word is simply its predicate with arguments unfilled (e.g. P PLAYER( , ) for

the word player).

After that, semantic labels are added to the internal nodes in a SAPT in a

bottom-up manner. For each node, one of its children is chosen as the semantic

head, from which it inherits a semantic label, where the semantic head is chosen to

be the child whose predicate takes other child predicates as arguments in the MR;

if the semantic head’s predicate becomes completed at the parent node, then the

predicate’s type is used as the the parent node’s label (e.g. T CONDITION). Using

the type instead of the specific predicate as the semantic label when a predicate

is completed ensures better generalization. It is also similar to the X-bar schema

used for head projection in its syntactic counterpart part, e.g., a verb projects up-

wards to a VP when all its syntactic complements are found. In Figure 3.3(a), the

root node inherits the semantic label from its semantic head VP-P BOWNER, which
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takes NP-P PLAYER as an argument in the MR; since the predicate P BOWNER is

completed at the parent node, its type T CONDITION is used as the root’s semantic

label. The meaning representation of an internal node can be composed using the

COMPOSEMR process in Figure 3.4.

Three cases require special handling in semantic annotation and meaning

composition. First, while many nodes successfully inherit semantic labels from se-

mantic heads whose predicates take all other children’s predicates as arguments,

many other nodes fail to find such semantic heads. This is due to non-isomorphism

in the syntactic parse and the MR parse, where a syntactic node may represent

multiple disjoint predicates not in predicate-argument relations in the MR. For ex-

ample, in Figure 3.5, the lower VP node has three child predicates P POS, P PLAYER

(T PLAYER) and P MIDFIELD (T REGION), where in the syntactic parse, both

P PLAYER and P MIDFIELD are attached to P POS, while in the semantic parse,

P POS takes P MIDFIELD but not P PLAYER as an argument in the MR. Thus the

node represents two disjoint predicates P POS and P PLAYER.

Ideally, to add semantic labels to such syntactic nodes representing multiple

disjoint predicates, we could use the combination of the disjoint predicates for high

discriminative power. However, it would most likely worsen the data sparsity prob-

lem since the labels on SAPTs are already a combination of syntactic and semantic

labels. Therefore, one of the disjoint predicates is chosen as the semantic label of a

node (revised semantic head) where the predicate on the syntactic head is preferred

(P POS).

In this case, the basic meaning composition algorithm COMPOSEMR in Fig-

ure 3.4 needs to be extended, since the MR of a node is no longer a single predicate,

and cannot be composed by simply attaching the non-head children’s MRs to the

semantic head’s MR. In the extension, a node’s MR is represented by an ordered
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P DO

P PLAYER P POS

P MIDFIELD

(a) Predicate-argument structure

VP-T DIRECTIVE

ADVP-P DO

RB-P DO

then

VP-P POS

VB-P POS

position

NP-T PLAYER

our player 5

PP-T REGION

in the midfield

(b) SAPT

{P DO(P PLAYER,P POS(P MIDFIELD))}

{P DO( , )}

{P DO( , )}

then

{P POS(P MIDFIELD),P PLAYER}

{P POS( )}

position

{P PLAYER}

our player 5

{P MIDFIELD}

in the midfield

(c) Semantic Derivation

Figure 3.5: (a) The predicate-argument structure, (b) SAPT, and (c) semantic

derivation for the directive part of the example in Figure 3.1 (The internal struc-

ture of P PLAYER in (a) and multi-word leaf nodes in (b) and (c) are omitted for

brevity).
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list of disjoint predicates, and is composed of two steps. First, the children’s MR

lists are merged into a single list. When merging the lists, the semantic head’s list is

merged first, followed by other children’s lists ordered from left to right. The merg-

ing order ensures that the predicates on a semantic head receive high composition

priority in the next step. Next, for each predicate in the merged list, we go through

the list to find its missing arguments, attach them to the predicate, and remove them

from the list. If an attached argument has missing arguments by itself, they are

also found. The yield is the MR of the parent node. We note that this process is

deterministic and only allows one interpretation for a SAPT: once an argument is

attached to a predicate in the front of a list, predicates in the back of the list who

may also require it cannot have it.

Consider the meaning composition for the directive part in Figure 3.1 us-

ing the extended algorithm (see Figure 3.5(c)). To compose an MR for the lower

VP node covering position our player 5 in the midfield, the first step merges the

children’s MR lists {P POS( )}, {P PLAYER}, and {P MIDFIELD} into a new list

{P POS( ), P PLAYER, P MIDFIELD}, where P POS is at the front since it matches

the parent node’s semantic label. The second step finds arguments for each predi-

cate in the ordered list, thus P POS has its argument P MIDFIELD filled, and the list

becomes {P POS(P MIDFIELD), P PLAYER}, the MR of the parent node. To com-

pose an MR for the root node, the first step merges the children’s MR lists into a

new list {P DO( , ), P POS(P MIDFIELD), P PLAYER}, where P DO is at the front.

The second step finds P DO’s arguments P POS and P PLAYER, and the list becomes

{p do(P PLAYER,P POS(P MIDFIELD))}, which is the MR of the directive part.

Second, in order for COMPOSEMR to be able to construct the MR for a

node, given an argument predicate of certain type, the production rule for a head

predicate must identify a unique argument for the argument predicate to fill. How-
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PRN-T POINT

-LRB- - P PT

(

CD-T NUM1

CD-P NUM

0.5

, - NULL

,

CD-T NUM2

CD-P NUM

0.1

-RRB- - NULL

)

Figure 3.6: Adding new type labels to disambiguate arguments.

ever, some predicates take multiple arguments of the same type, thus the algo-

rithm would fail to decide a unique argument. For example, the predicate P PT

(POINT→(pt NUM NUM)) representing an xy-coordinate has two arguments of

the same type NUM. In this case, extra nodes are inserted in the tree with new in-

troduced types which are only used to specify the argument. In Figure 3.6, the new

introduced type T NUM1 specifies that the predicate P NUM (NUM→ 0.5) below of

type NUM should be the first argument of the head predicate P PT.

Third, the meaning composition algorithm fails to compose a complete MR

when a predicate in an MR is not represented by any word. For example, in CLANG,

our player is frequently just referred to as player and the predicate P OUR must be

inferred (default value), because advice is given from a team coach’s perspective.

Therefore, the meaning composition algorithm also learns from the training corpus

what arguments of a predicate can have default value, and uses them when needed.

We note that traditionally, it is the task of pragmatic processing, not semantic pro-

cessing. It works for CLANG because there are limited entities that it is reasonable

for them to have default values that can be learned. In a more wide-coverage appli-

cation, a separate pragmatic processing is needed.
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3.5 Integrated Syntactic-Semantic Parsing Model

In this section, we formally introduce the integrated syntactic-semantic pars-

ing model based on Collins (1997) head-driven parsing model 2. We first briefly

review Collins’ parsing models necessary for understanding this chapter (see de-

tailed description in Section 2.1.1). After that, we describe the integrated model

with semantic output added. The augmented model is more complex than the ori-

gional one and requires careful smoothing, thus, Section 3.5.2 describes smoothing

in detail. Last, Section 3.5.3 gives implementation details.

Recall that Collins (1997) parsing model 2 (see Section 2.1.1) is a genera-

tive lexicalized PCFG model. In a generative PCFG, a syntactic parse tree is seen

as expanding nonterminals using production rules in a CFG grammar recursively

starting with a start nonterminal, and the probability of a tree is the product of all

probabilities associated with the production rules used. However, probabilities in

a PCFG are insensitive to lexical information and unable to provide adequate dis-

criminative power. In addition, the model also suffers from the sparse-data problem

since many production rules may only occur very few times. Therefore, Collins

(1997) proposes a sequence of progressively improved head-driven PCFG models

where the structure preference of a syntactic head is modeled, as used in many lexi-

calized syntactic formalisms such as CCG (Steedman and Baldridge, to appear) and

HPSG (Pollard and Sag, 1994). In model 2, each syntactic label in a syntactic parse

tree is lexicalized with a head word and its POS tag, and the expansion of a non-

terminal (LHS) using the RHS of a production rule is decomposed into a decision

sequence: first generating the head, then generating the subcategorizations of the

head modeling structural preference, and lastly generating the left and right modi-

fiers constrained on both the head and its subcategorizations. The resulting model

is more compact and discriminative. We choose to augment model 2 instead of the
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S-T CONDITION (has)

NP-T PLAYER (player)

PRP$-P OUR

our

NN-P PLAYER

player

CD-P UNUM

2

VP-P BOWNER (has)

VB-P BOWNER

has

NP-NULL (ball)

DET-NULL

the

NN-NULL

ball

Figure 3.7: The lexicalized SAPT for the SAPT in Figure 3.3(a).

more sophisticated model 3, because model 3 does not show significant improve-

ment over model 2. It is also because the moved complement information necessary

for training model 3 is not labeled in our training corpora.

3.5.1 Integrating Semantics into the Model

In our integrated parsing model for generating SAPTs, each syntactic com-

ponent in Collins’ parsing model is augmented with its semantic counterpart: a

semantic tag for a POS tag, a semantic label for a syntactic label, and a semantic

subcategorization for a syntactic subcategorization, where a semantic tag is the se-

mantic label attached to a head word, and a left/right semantic subcategorization

is the set of semantic labels appearing on the left/right nodes of a head node, in-

troduced for modeling a predicate’s argument requirements which are used when

generating semantic labels of modifiers. Figure 3.7 shows a lexicalized SAPT

(omitting POS and semantic tags lexicalized to nonterminals), where the root node
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S-T CONDITION has the head child VP-P BOWNER with left semantic subcatego-

rization {T PLAYER} and empty right semantic subcategorization.

Formally, in the augmented syntactic-semantic parsing model, the expan-

sion of a nonterminal (LHS) using the RHS of a production rule

P (h)→Ln(ln)...L1(l1)H(h)R1(r1)...Rm(rm)

is decomposed into the same decision sequence as in Collins’ parsing model 2, but

with augmented labels:

1. Generating a head label H with probability Prh(H|P, h).

2. Generating the left and right subcategorization frames LC and RC with prob-

abilities Prlc(LC|P,H, h) and Prrc(RC|P,H, h).

3. Generating the left and right modifiers with probabilities Prl(Li, li|P,H, h,

∆i−1, LC) and Prr(Ri, ri|P,H, h, ∆i−1, RC).

where the uppercase letters stand for nonterminal labels, and lowercase letters stand

for lexicalized heads; the letter P (p) stands for parent, H (h) for head, L (l) for left,

and R (r) for right (other symbols are described in Section 2.1.1). Each augmented

nonterminal X is in the form of 〈Xsyn, Xsem〉, where the subscript syn refers to

the syntactic part, and sem refers to the semantic part; each augmented lexicalized

head x is in the form of 〈w, tsyn, tsem〉, where w is a head word, tsyn is a POS tag,

and tsem is a semantic tag; the augmented left and right subcategorization frames

LC and RC are in the form of 〈LCsyn, LCsem〉 and 〈RCsyn, RCsem〉.

As an example, the probability of expanding the root node in Figure 3.7

using the decomposed steps (omitting the distance measure and the complement

symbol -C attached to NP as in Collins’ parser) is calculated as:
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Prh(VP-P BOWNER | S-T CONDITION,has)

× Prlc({{NP},{T PLAYER}} | S-T CONDITION,VP-P BOWNER,has)

× Prrc({{},{}} | S-T CONDITION,VP-P BOWNER,has)

× Prl(NP-T PLAYER(player) | S-T CONDITION,VP-P BOWNER,has,{{NP},{T PLAYER}})

× Prl(STOP | S-T CONDITION,VP-P BOWNER,has,{{},{}})

× Prr(STOP | S-T CONDITION,VP-P BOWNER,has,{{},{}})

where STOP is a special symbol specifying the boundary of a constituent. The

semantic subcategorizations decide that there is a T PLAYER to the head’s left, and

no semantic labels required to the right. After the child NP-T PLAYER is generated,

T PLAYER is removed from the left subcategorization.

3.5.2 Smoothing

The integrated parsing model allows semantic information to be available

during parsing time, so that the parser can find a globally most likely parse for both

syntactic and semantic interpretation. However, since the model is more complex

than the original model, it has higher risk of sparse data problem. In this section,

we discuss how the parameters (probabilities associated with the generation steps)

are further decomposed and smoothed in the integrated model.

The parameters are first decomposed using the chain rule where syntactic

features are generated first, followed by semantic features conditioned on syntactic

features (only the parameters for generating the left modifiers are shown):

Prh(H|C) = Prhsyn
(Hsyn|C) × Prhsem

(Hsem|C,Hsyn)

Prlc(LC|C) = Prlcsyn
(LCsyn|C) × Prlcsem

(LCsem|C,LCsyn)

Prl(Li(li)|C) = Prlsyn
(Lisyn

(ltisyn
, lwi)|C) × Prlsem

(Lisem
(ltisem

, lwi)|C,Lisyn
(ltisyn

))
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where C represents the context on which each parameter is conditioned, and lwi,

ltisyn
, and ltisem

are the head word, POS tag, and semantic tag associated with the

non-terminal Li. Words are generated independently in both syntactic and semantic

outputs.

The model is then further simplified by making the independence assump-

tion to condition syntactic output only on syntactic features, and semantic output

only on semantic features:

Prh(H|C) = Prhsyn
(Hsyn|C) × Prhsem

(Hsem|C,Hsyn)

= Prhsyn
(Hsyn|Csyn) × Prhsem

(Hsem|Csem)

Prlc(LC|C) = Prlcsyn
(LCsyn|C) × Prlcsem

(LCsem|C,LCsyn)

= Prlcsyn
(LCsyn|Csyn) × Prlcsem

(LCsem|Csem)

Prl(Li(li)|C) = Prlsyn
(Lisyn

(ltisyn
, lwi)|C) × Prlsem

(Lisem
(ltisem

, lwi)|C,Lisyn
(ltisyn

))

= Prlsyn
(Lisyn

(ltisyn
, lwi)|Csyn) × Prlsem

(Lisem
(ltisem

, lwi)|Csem)

Note that the syntactic and semantic parameters are still integrated in the model to

find the globally most likely parse. We have also tried different ways of condition-

ing syntactic output on semantic features and vice versa, but they failed to show

significant improvement. Our explanation is that the integrated syntactic and se-

mantic parameters have already captured the benefit of this integrated approach in

our experimental domains.

The syntactic parameters are decomposed and smoothed as in Collins (1997),

and the semantic parameters are decomposed and smoothed as follows. Since the

semantic parameters do not depend on syntactic features under the independence as-

sumption, the subscript sem can be safely omitted. The parameter Prlsem
(Li(lti, lwi)

|P,H,w, t, ∆, LC) for generating a left modifier is again decomposed as:
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BACK-OFF LEVEL Prh(H|...) Prlc(LC|...) Prl1(Li|...) Prl2(lti|...) Prl3(lwi|...)
1 P,w,t P,H,w,t P,H,w,t,∆,LC P,H,w,t,∆,LC, Li P,H,w,t,∆,LC, Li, lti
2 P,t P,H,t P,H,t,∆,LC P,H,t,∆,LC, Li P,H,t,∆,LC, Li , lti
3 P P,H P,H,∆,LC P,H,∆,LC, Li Li , lti
4 – – – Li lti

Table 3.2: Conditioning features for each back-off level in semantic parameters.

Prl1(Li|P,H,w, t, ∆, LC)

× Prl2(lti|P,H,w, t, ∆, LC, Li)

× Prl3(lwi|P,H,w, t, ∆, LC, Li(lti))

where the parameters are the probabilities for generating the semantic label, seman-

tic tag, and head word of a left modifier respectively. We point out that the smooth-

ing is different from its syntactic counterpart, where the generation of a syntactic

label and POS tag pair Li(lti) is not decomposed into two parameters as in Prl1 and

Prl2. This is because semantic tags are essentially more specific than syntactic tags,

and require more smoothing. Table 3.2 shows the back-off levels for each semantic

parameter. The probabilities from these back-off levels are interpolated using the

techniques in Collins (1997).

3.5.3 Implementation details

As in Collins’ parsing model 2, the integrated parsing model does not rely

on an external POS or semantic tagger. Instead, it uses the following method to

provide candidate tags for parsing. It classifies words into known and unknown

words, where unknown words are those occurring less than 3 times in the training

data, and words in the test data that were not seen in training. Note that the unknown

word threshold is smaller than the one in Collins (1997) since the training corpora

for semantic parsing are small. For known words, the candidate tags are those that
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have been seen with the word in the training data; for unknown words, the candidate

POS tags are those that have been seen with any unknown words in the training data,

and the candidate semantic tags are limited to those that have been seen with the

word’s associated POS tag during training.

In training, counts needed for estimating a model are directly collected from

a training corpus. In testing, a CKY-style algorithm used in Collins (1997) is ex-

tended to find the best SAPT that maximizes the joint probability of a sentence and

SAPT. The beam width2 (Bikel, 2004) is set to 104. After that, the meaning com-

position algorithm is used to compose an MR, and return the MR of the root node

as the MR of an example . An example fails to return an MR when the root node’s

MR has more than one disjoint predicate, or a predicate is incomplete.

3.6 Experimental Evaluation

3.6.1 Methodology

We experimented with SCISSOR on both the CLANG and GEOQUERY cor-

pora (Section 2.3). Since SCISSOR does not handle MRLs with logical variables, in

GEOQUERY, we use FUNQL as the MRL. We also give results on the small GEO-

QUERY corpus containing 250 examples, GEO250. Detailed information on the

corpora were shown in Section 2.3.

SCISSOR was evaluated using standard 10-fold cross validation. We mea-

sured the number of test sentences that returned MRs, and the number of MRs that

were correct. For CLANG, an MR is correct if it exactly matches the correct MR,

up to reordering of the arguments of commutative operators like and. For GEO-

2In beam search, each cell in the chart is reduced by discarding all items whose probabilities are

lower than 1

β
times the probability of the best item in the cell. This β is called the beam width.
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QUERY, an MR is correct if it retrieves the same answer as the gold-standard query,

thereby reflecting the quality of the final result returned to the user. Since even a

single mistake in an MR could totally change the meaning of an example, no partial

credit was given for examples with partially-correct SAPTs. The performance of

the parser was then measured in terms of precision, recall, and F-measure:

Precision =
No. of correct MRs

No. of test sentences returning MRs
(3.1)

Recall =
No. of correct MRs

No. of test sentences
(3.2)

F-measure =
2 × Precision × Recall

Precision + Recall
(3.3)

We compared SCISSOR with the systems briefly described below (also see

Section 2.4). There are great variances among these systems, in terms of MRLs

used, and syntactic knowledge and engineering features required. Two MRLs are

available for GEOQUERY, among which FUNQL produces more deeply nested MR

parses than PROLOG, so systems using FUNQL can have greater performance loss

due to non-isomorphism between syntax and semantic representations than sys-

tems using PROLOG (Wong and Mooney, 2007). All systems require NL sentences

paired with their MRs for training. Besides, extra supervision and engineering

features are used in some systems and not available to other systems, which may

also affect performance. For example, SCISSOR requires the annotation of SAPTs,

COCKTAIL uses a hand-built lexicon for GEOQUERY, and Z&C requires hand-built

CCG lexical entries and templates. Below are the systems, and their variances are

summarized in Table 3.8(a) and Table 3.8(b):

• COCKTAIL (Tang and Mooney, 2001) is a deterministic shift-reduce parser

based on inductive logic programming. It requires a lexicon to start with:
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CLANG GEOQUERY

FUNQL LOGICAL MRL

COCKTAIL (2001)
√ − √

SCISSOR (2005)
√ √ −

WASP (2006)
√ √ −

KRISP (2006)
√ √ −

λ-WASP (2007) − − √

Z&C (2007) − − √

LU (2008)
√ √ −
(a) Corpus

SAPT annotation Hand-built components Reranking

COCKTAIL (2001) − √ −
SCISSOR (2005)

√ − −
WASP (2006) − − −
KRISP (2006) − − −
λ-WASP (2007) − − −
Z&C (2007) − √ −
LU (2008) − − √

(b) Prior knowledge and reranking

Figure 3.8: (a) Corpora and MRLs, and (b) syntactic knowedge and reranking used

in the systems, ordered by publication time.
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a hand-built lexicon for GEOQUERY, and a learned lexicon using WOLFIE

(Thompson and Mooney, 1999) for CLANG. It provides results on both

CLANG and GEOQUERY: on CLANG, it fails to handle training sets larger

than 160 examples due to intensive memory requirements.

• WASP (Wong and Mooney, 2006) and λ-WASP (Wong and Mooney, 2007).

WASP is a semantic parser based on machine translation techniques using

synchronous context-free grammars (SCFG). In GEOQUERY, it uses FUNQL

as the MRL since it cannot handle languages with logical variables. The work

λ-WASP is an extension of WASP for handing logical forms, and is tested on

the PROLOG-based MRL of GEOQUERY.

• KRISP (Kate and Mooney, 2006) is a semantic parser based on string kernels.

It also cannot handle logical forms and uses FUNQL on GEOQUERY.

• Z&C (Zettlemoyer and Collins, 2005, 2007) is a probabilistic semantic parser

using CCG, where Zettlemoyer and Collins (2007) is an improvement over

Zettlemoyer and Collins (2005) to allow more flexibility in CCG grammars. It

requires hand-built CCG templates and lexical items for function words (e.g.

what) as prior knowledge. In GEOQUERY, we compared our results to the

result with the highest F-measure in Zettlemoyer and Collins (2007), which

only uses one split of data into training and test sets containing 600 and 280

examples respectively. No results have been reported on CLANG. To make

it work on CLANG, the hand-built components and CCG combinators may

need to be revised. To handle non-isomorphism between an NL and its MR,

such as in Figure 3.5 (also see Section 5.3), larger lexical categories may need

to be introduced.
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CLANG GEOQUERY

Precision Recall F-measure Precision Recall F-measure

COCKTAIL − − − 89.9 79.4 84.3
SCISSOR 89.5 73.7 80.8 92.1 72.3 81.0
WASP 88.9 61.9 73.0 87.2 74.8 80.5
KRISP 85.2 61.9 71.7 93.3 71.7 81.1
λ-WASP − − − 92.0 86.6 89.2

Z&C − − − 95.5 83.2 88.9
LU 82.5 67.7 74.4 89.3 81.5 85.2

Table 3.3: Performance of semantic parsers on CLANG and GEOQUERY.

• LU (Lu et al., 2008) is a generative parsing model using semantic grammar,

which also has a reranking model for utilizing non-local features not available

in the base model. It uses FUNQL on GEOQUERY.

3.6.2 Results

Performance of semantic parsers on CLANG and GEOQUERY is shown in

Table 3.33, and learning curves for the available systems on CLANG and GEO-

QUERY are shown in Figure 3.9 and Figure 3.10. Several observations can be made:

• In CLANG, SCISSOR substantially outperformed all other systems.

• In GEOQUERY, the semantic parsers using the PROLOG MRL (COCKTAIL,

λ-WASP and Z&C) outperformed the semantic parsers using FUNQL (SCIS-

SOR, WASP, KRISP and LU) due to the deeply nested MR structure in FUNQL.

• In GEOQUERY, SCISSOR performed highly competitively all across the learn-

ing curves to KRISP and WASP which also used FUNQL. However, its perfor-

3Before reranking, Lu et al. (2008)’s F-measure is 67.8% on CLANG, and 84.0% on GEOQUERY
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Figure 3.9: Learning curves for semantic parsers on CLANG.
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Figure 3.10: Learning curves for semantic parsers on GEOQUERY.
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mance using all training data is lower than that of LU. Although the reranking

model used in LU helps, its performance before reranking is still higher than

SCISSOR (F-meaure = 84.0). This suggests that when sentences are short,

the sentence structure used for meaning composition can be captured well by

a semantic grammar learned directly from sentences paired with their MRs.

In fact, the approaches utilizing non-syntactic prior knowledge (LU, WASP,

and KRISP) can be sometimes even more flexible in exploring optional fea-

sible sentence structures for meaning composition. We shall give detailed

analysis in Section 5.7.2.2 after introducing SYNSEM which also utilizes the

knowledge of syntax (given by an existing syntactic parser). We note that

the improvement of ZU over WASP and KRISP on GEOQUERY is due to the

decomposed model it used which is more robust for learning semantic gram-

mars on short sentences (Section 2.4.3); However, when sentences are long,

its performance is worse than that of CLANG and KRISP which do not decom-

pose a production rule, as illustrated on CLANG before reranking (F-meaure

= 67.8).

Figure 3.11 gives the detailed look at the F-measures on sentences within

different length ranges on CLANG (range 41-50 not shown since only 5 sentences

fall into this category), where the sentence count for each length range is shown in

Figure 3.11 (b), and most sentences are within the ranges of 11 − 20 and 21 − 30.

It shows that the great improvement of SCISSOR over WASP and KRISP appeared

when sentences are long: while WASP and KRISP degraded significantly as sen-

tences became longer, SCISSOR did not show such degradation. It suggests that

utilizing syntactic knowledge learned from the SAPT annotation in SCISSOR suc-

cessfully guides the correct compositional semantic analysis; which can be hard for

the semantic-grammar-based parsers to learn when sentences are long. We note that
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GEOQUERY

Precision Recall F-measure

COCKTAIL 80.9 79.2 80.0
SCISSOR 98.5 74.4 84.8

WASP 95.4 70.0 80.8
KRISP 91.3 71.6 77.5
λ-WASP 91.8 75.6 82.9
LU 91.5 72.8 81.1

Table 3.4: Performance of semantic parsers on GEO250

.

KRISP performed better on longer sentences than WASP because of the string ker-

nel it utilized to learn production rules which can capture richer syntactic variation

(Section 2.4.3).

Performance of available semantic parsers on GEO250 is shown in Ta-

ble 3.4, where SCISSOR has the highest F-MEASURE. It would be interesting to

investigate the linguistic differences between GEOQUERY and GEO250 which may

cause the performance difference, since GEOQUERY was collected from more di-

verse resources than GEO250 (Section 2.3).

To summarize, SCISSOR learns accurate semantic interpretation by utiliz-

ing the SAPT annotation. The main improvement of SCISSOR over other systems

is on long sentences, where the annotated SAPTs provide the knowledge of accu-

rate meaning composition structure. In Section 5.7.2, we shall give more detailed

discussion on the strengths and weaknesses of utilizing the knowledge of syntax.
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3.7 Related work

In syntactic parsing, Shen and Joshi (2005) presents an integrated statistical

parser for a variant of LTAG, with a formalism of stronger generative capacity as

compared to CFG. In semantic parsing, Zettlemoyer and Collins (2005, 2007) uti-

lize the integrated treatment of syntax and semantics in CCG, and learn a semantic

parser by learning a probabilistic CCG. In semantic role labeling, Yi and Palmer

(2005) and Yi (2007) augment nodes in a syntactic parse with semantic argument

information from PropBank (Palmer et al., 2005), and train two syntactic parers,

Collins (1997)’s parser and Ratnaparkhi (1999)’s parser, directly on the augmented

corpus. No modification is made to the two parsers: a syntactic and semantic label

pair on SAPTs is treated as a single label in both of them4. Merlo and Musillo

(2008) also explores an integrated approach in semantic role labeling, and achieves

competitive results with other systems. Most recently, in information extraction,

Finkel and Manning (2009) introduce a joint parser of information extraction and

syntactic parsing, utilizing a discriminative CRF parser.

Semantic role labeling (SRL) (Gildea and Palmer, 2002) provides a layer of

semantic information for semantic parsing, which can be used for improved gener-

alization for semantic parsing (see Section 6.3).

3.8 Chapter Summary

SCISSOR learns statistical parsers that integrate syntax and semantics in or-

der to produce a semantically augmented parse tree that is then used to compo-

sitionally generate a formal meaning representation. Experimental results in two

4There is small modification on Collins’ parser for correctly finding syntactic heads using com-

bined labels.
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domains, a natural-language database interface and an interpreter for coaching in-

structions in robotic soccer, have demonstrated that SCISSOR generally produces

accurate semantic representations. By augmenting a state-of-the-art statistical pars-

ing model to include semantic information, it is able to integrate syntactic and

semantic clues to produce a robust interpretation that supports the generation of

complete formal meaning representations.

61



Chapter 4

Discriminative Reranking for Semantic Parsing

The generative model used in SCISSOR has a limited choice of features due

to the nature of a generative model. Its performance can be potentially improved by

using discriminative reranking, which explores arbitrary global features (Collins,

2000). In this chapter, we investigate discriminative reranking upon a baseline

semantic parser, SCISSOR, where the composition of meaning representations is

guided by syntax. We examine if global features used for reranking syntactic pars-

ing can be adapted for semantic parsing by creating similar semantic features based

on the mapping between syntax and semantics. We report experimental results on

two real applications: an interpreter for coaching instructions in robotic soccer, and

a natural-language database interface. The results show that reranking can improve

the performance on the coaching interpreter, but not on the database interface where

sentences are short, which are less likely for global features to show improvement

on.

4.1 Motivation

The generative model in SCISSOR assumes that a SAPT is generated us-

ing a sequence of generation steps, and the probability of a SAPT is a product of

the probabilities associated with these steps. Thus, it is often hard to incorporate

discriminative features, since the choice of features is directly constrained by the

choice of generation steps.
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The performance of SCISSOR can be potentially improved by using discrim-

inative reranking, which is distribution free and can explore arbitrary global features

for reranking outputs from a baseline model. While reranking has benefited many

tagging and parsing tasks (Collins, 2000, 2002c; Charniak and Johnson, 2005), in-

cluding semantic role labeling (Toutanova et al., 2005), it has not yet been applied

to semantic parsing before this work. In this chapter, we investigate the effect of

discriminative reranking to semantic parsing.

We examine if the features used in reranking syntactic parses can be adapted

for semantic parsing, more concretely, for reranking the top SAPTs from the base-

line model SCISSOR. The syntactic features introduced by Collins (2000) for syn-

tactic parsing are extended with similar semantic features, based on the coupling

of syntax and semantics. The averaged perceptron (Collins, 2002a) is used as the

reranking algorithm for this work, since it has been successfully applied to several

tagging and parsing reranking tasks (Collins, 2002c,a). We present experimental

results on two corpora: an interpreter for coaching instructions in robotic soccer

(CLANG) and a natural-language database interface (Geoquery). The best rerank-

ing model significantly improves F-measure on CLANG from 82.3% to 85.1%

(15.8% relative error reduction), however, it fails to show improvements on GEO-

QUERY where sentences are short, which are less likely for global features to show

improvement on.

The organization of this chapter is as follows. Section 4.2 first describes

the method for generating the n-best SAPTs with SCISSOR. Section 4.3 then in-

troduces discriminate features for reranking SAPTs. After that, Section 4.4 gives

experimental results.
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4.2 Generating the n-best SAPTs with SCISSOR

We utilized the technique provided in Bikel’s implementation of Collins’

parser to generate the n-best SAPTs, which adopted the methodology in Collins

(2000). In Collins’ parsing models, dynamic programming is used in chart parsing

to control the search space: when multiple derivations of a constituent result in the

same history (conditioned context) for future generation steps, only the derivation

with the highest probability is kept. Therefore, it would fail to generate the n-best

parses. To achieve this, Collins (2000) turns off dynamic programming, and uses

beam search instead, where a parse with its probability within a prune factor of the

top probability in the same chart entry is kept.

In SCISSOR, the generation of semantic labels on modifiers is constrained

by semantic subcategorization frames, for which data can be very sparse. Although

this constraint improves SCISSOR’s precision (which is important for semantic pars-

ing), it also limits its recall. To generate plenty of candidate SAPTs for reranking,

we extended the back-off levels for the parameters generating semantic labels of

modifiers. The new set is shown in Table 4.1 using the parameters for the genera-

tion of the left-side modifiers as an example. The back-off levels 4 and 5 are newly

added by removing the constraints from the semantic subcategorization. Although

the best SAPTs found by the model may not be as precise as before, we expect that

reranking can improve the results and rank correct SAPTs higher.

4.3 Features for Reranking SAPTs

By applying a reranking model on SCISSOR, we can make use of infor-

mative features not available in SCISSOR to discriminate between SAPTs that can

lead to correct MRs and those that cannot. Intuitively, both syntactic and seman-
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BACK-OFF LEVEL Prl1(Li|...)
1 P,H,w,t,∆,LC

2 P,H,t,∆,LC

3 P,H,∆,LC

4 P,H

5 P

Table 4.1: Extended back-off levels for the semantic parameter Prl1(Li|...) in Table

3.2.

tic features describing the syntactic and semantic sub-structures of a SAPT would

be good indicators. Since the syntactic features introduced by Collins (2000) for

reranking syntactic parse trees have been successful proven in both English and

Spanish (Cowan and Collins, 2005), we examine if these syntactic features can be

adapted for semantic parsing by creating similar syntactic and semantic features for

reranking SAPTs. Besides the structural features, the log probability from the base-

line model SCISSOR is also included as a feature, as in Collins (2000). A SAPT in

CLANG is shown in Figure 4.1 for illustrating the features throughout this section.

4.3.1 Syntactic Features

All syntactic features introduced by Collins (2000) are included for rerank-

ing SAPTs. The full feature set is described in Section 2.2.1. For the convenience

of introducing the corresponding semantic features later, we briefly describe several

syntactic feature types:

1. Rules. These are the counts of unique syntactic context-free rules in a SAPT.

The example in Figure 4.1 has the feature f (PRN → -LRB- NP COMMA NP

-RRB-) = 1.

2. Bigrams. These are the counts of unique bigrams of syntactic labels in a
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VP-T ACTION

VB

be

VP-T ACTION

VBN-P PASS

passed

PP-T POINT

TO

to

NP-T POINT

PRN-T POINT

-LRB–P PT

(

NP-T NUM1

CD-P NUM

36

COMMA

,

NP-T NUM2

CD-P NUM

10

-RRB-

)

Figure 4.1: A SAPT for illustrating the reranking features. The comma’s syntac-

tic label “,” is replaced by COMMA for a clearer description of features, and the

NULL semantic labels are not shown. The syntactic and semantic heads of the rule

expanding PRN-T POINT are -LRB- and P POINT.
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constituent. They are also featured with the syntactic label of the constituent,

and the bigram’s relative direction (left, right) to the head of the constituent.

The example in Figure 4.1 has the feature f (NP COMMA, right, PRN) = 1.

3. Grandparent Rules. These are the same as Rules, but also include the syntac-

tic label above a rule. The example in Figure 4.1 has the feature f ([PRN →
-LRB- NP COMMA NP -RRB-], NP) = 1, where NP is the syntactic label above

the rule “PRN → -LRB- NP COMMA NP -RRB-”.

4. Grandparent Bigrams. These are the same as Bigrams, but also include the

syntactic label above the constituent containing a bigram. The example in

Figure 4.1 has the feature f ([NP COMMA, right, PRN], NP) = 1, where NP is

the syntactic label above the constituent PRN.

4.3.2 Semantic Features

Similarly, semantic features covering broader context of a SAPT are intro-

duced for indicating a SAPT’s semantic correctness. However, the tree structure in

a SAPT can sometimes be more elaborate than needed for meaning composition,

as the main argument for proposing semantic grammars (see Section 2.4.3). There-

fore, we additionally introduce a set of semantic features which are extracted from

a pruned SAPT with purely syntactic nodes removed.

4.3.2.1 Semantic Features from SAPTs

For a SAPT, a similar semantic feature type is introduced for each syntactic

feature type in the syntactic feature set by replacing syntactic labels with semantic

ones, where the semantic label NULL containing no meaning is not included. The

corresponding semantic feature types for the features in Section 4.3.1 are:
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1. Rules. The example in Figure 4.1 has the feature f (T POINT → P PT T NUM1

T NUM2) = 1.

2. Bigrams. The example has the feature f (T NUM1 T NUM2, right, P PT) = 1,

where the bigram {T NUM1 T NUM2} appears to the right of the semantic

head P PT.

3. Grandparent Rules. The example has the feature f ([T POINT → P PT T NUM1

T NUM2], T POINT) = 1, where the last T POINT is the semantic label above

the semantic rule T POINT → P PT T NUM1 T NUM2.

4. Grandparent Bigrams. The example has the feature f ([T NUM1 T NUM2,

right, T POINT], T POINT) = 1, where the last T POINT is the semantic label

above the T POINT associated with the semantic label PRN.

We have also informally experimented with smoothed semantic features uti-

lizing the domain ontology given by CLANG, which did not show improvements

over reranking models not using these features.

4.3.2.2 Semantic Features from pruned SAPTs

Purely-syntactic structures in SAPTs exist with no meaning composition

involved, such as the expansions from the syntactic label NP to PRN, and from PP

to “TO NP” in Figure 4.1. Hence, one possible drawback of the semantic features

derived directly from SAPTs is that they could include features with no meaning

composition involved, which are intuitively not very useful. For example, the nodes

with purely-syntactic expansions mentioned above would trigger a semantic rule

feature with meaning unchanged (T POINT → T POINT). Another possible draw-

back of these features is that the features covering broader context could potentially
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T ACTION

P PASS

passed

T POINT

P PT

(

T NUM1

P NUM

36

T NUM2

P NUM

10

Figure 4.2: A pruned SAPT generated by removing purely-syntactic nodes from

the SAPT in Figure 4.1 (with syntactic labels omitted.)

fail to capture the real high-level meaning composition information. For exam-

ple, the Grandparent Rule example in Section 4.3.2.1 has T POINT as the semantic

grandparent of a P PT composition, but not the real one T ACTION.

To address these problems, another semantic feature set is introduced by

deriving semantic features from trees where purely-syntactic nodes of SAPTs are

removed (the resulting tree for the SAPT in Figure 4.1 is shown in Figure 4.2). In

this tree representation, the example in Figure 4.2 would have the Grandparent Rule

feature f ([T POINT→ P PT T NUM1 T NUM2], T ACTION) = 1, with the correct

semantic grandparent T ACTION included.

4.4 Experimental Evaluation

4.4.1 Methodology

To test the reranking approach on SCISSOR, we experimented with it on

both CLANG and GEO250 (Section 3.6.1). The detailed information of the corpora

were shown in Section 2.3.
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We adopted a standard 10-fold cross validation for evaluation: 9
10

of the

whole dataset was used for training (training set), and 1
10

for testing (test set). To

train a reranking model on a training set, a separate “internal” 10-fold cross valida-

tion over the training set was employed to generate n-best SAPTs for each training

example using a baseline learner, where each training set was again separated into

10 folds with 9
10

for training the baseline learner, and 1
10

for producing the n-best

SAPTs for training the reranker. Reranking models trained in this way ensure that

the n-best SAPTs for each training example are not generated by a baseline model

that has already seen that example and thus works well on that example. To test a

reranking model on a test set, a baseline model trained on a whole training set was

used to generate n-best SAPTs for each test example, and then the reranking model

trained with the above method was used to choose a best SAPT from the candidate

SAPTs. The performance of the parser was then measured in terms of precision, re-

call, and F-measure as in Section 3.6, and no partial credit was given for examples

with partially-correct SAPTs.

When generating the n-best (n = 50) SAPTs, SCISSOR used a larger beam

width than that used in Collins (2000) (103), with 108 for CLANG, and 1012 for

GEO250. The reason to use a larger beam width for GEO250 is that the sentences

in GEO250 are relatively short (6.87 words on average), thus it is harder to get

enough candidates using a small beam width.

The averaged perceptron (see Section 2.2) was employed for training rerank-

ing models. To choose the correct SAPT of a training example required for training

the averaged perceptron, we selected a SAPT that results in the correct MR; if mul-

tiple such SAPTs exist, the one with the highest baseline score was chosen. Since

no partial credit was awarded in evaluation, a training example was discarded if it

had no correct SAPT. Rerankers were trained on the 50-best SAPTs provided by
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CLANG GEO250

Precision Recall F-measure Precision Recall F-measure

SCISSOR 89.5 73.7 80.8 98.5 74.4 84.8
SCISSOR+ 87.0 78.0 82.3 95.5 77.2 85.4

Table 4.2: The performance of the baseline model SCISSOR+ on CLANG and

GEO250 compared with SCISSOR.

n 1 2 5 10 20 50

CLANG 78.0 81.3 83.0 84.0 85.0 85.3
GEO250 77.2 77.6 80.0 81.2 81.6 81.6

Table 4.3: Oracle recalls on CLANG and GEO250 as a function of number n of

n-best SAPTs.

SCISSOR, and the number of perceptron iterations over the training examples was

limited to 10. Typically, in order to avoid over-fitting, reranking features are fil-

tered by removing the features which occur in very few training examples. We only

removed features that never occurred in the training data since experiments with

higher cut-offs failed to show any improvements.

4.4.2 Results

In this section, we describe the experiments with reranking models utilizing

different feature sets, where all models include a SAPT’s log probability assigned

by the baseline model as a special feature.

First, the performance of the baseline learner SCISSOR was measured. Ta-

ble 4.2 shows the results of SCISSOR using both the back-off levels in Figure 3.2

(SCISSOR) and the revised back-off levels in Section 4.3 (SCISSOR+). As expected,

SCISSOR+ has better recall and worse precision than SCISSOR on both corpora due
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CLANG GEO250

Precision Recall F-measure Precision Recall F-measure

SCISSOR+ 87.0 78.0 82.3 95.5 77.2 85.4

SYN 87.7 78.7 83.0 95.5 77.2 85.4

SEM1 90.0(23.1) 80.7(12.3) 85.1(15.8) 95.5 76.8 85.1
SYN+SEM1 89.6 80.3 84.7 95.5 76.4 84.9

Table 4.4: Reranking results on CLANG and GEO250 using different feature sets

derived from SAPTs (with relative error reduction in parentheses).

to the additional levels of back-off. For all reranking experiments, SCISSOR+ is

used as the baseline model.

Next, the optimal recalls a reranking model can possibly achieve were mea-

sured. Table 4.3 gives oracle recalls for CLANG and GEO250 where an oracle

picks the correct parse from the n-best SAPTs if any of them are correct. Results

are shown for increasing values of n. The optimal recall for a reranking model

when n equals to 50 is 85.3% for CLANG, and 81.6% for GEO250.

Last, reranking models utilizing different feature sets were evaluated. Ta-

ble 4.4 shows reranking results using different feature sets derived directly from

SAPTs, where the reranking model SYN uses the syntactic feature set in Section 4.3.1,

SEM1 uses the semantic feature set in Section 4.3.2.1, and SYN+SEM1 uses both.

One observation is that in general, reranking improves the performance of semantic

parsing on CLANG, but not on GEO250. This could be explained by the differ-

ent oracle recall trends of CLANG and GEO250. We can see that in Table 4.3,

even a small n can increase the oracle score on CLANG significantly, but not on

GEO250. With the baseline score included as a feature, correct SAPTs closer to

the top are more likely to be reranked to the top than the ones below, thus CLANG

is more likely to have more sentences reranked correctly than GEO250. Another
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CLANG GEO250

Precision Recall F-measure Precision Recall F-measure

SEM1 90.0 80.7 85.1 95.5 76.8 85.1
SEM2 88.1 79.0 83.3 96.0 77.2 85.6

SEM1+SEM2 88.5 79.3 83.7 95.5 76.4 84.9
SYN+SEM1 89.6 80.3 84.7 95.5 76.4 84.9
SYN+SEM2 88.1 79.0 83.3 95.5 76.8 85.1
SYN+SEM1+SEM2 88.9 79.7 84.0 95.5 76.4 84.9

Table 4.5: Reranking results on CLANG and GEO250 comparing semantic features

derived from both SAPTs and pruned SAPTs.

explanation is that global features utilized in reranking are not as effective on short

sentences (6.87 words on average in GEO250) as on long sentences .

Another observation is that on CLANG, using semantic features greatly

improves the performance of semantic parsing, as illustrated in both SEM1 and

SYN+SEM1. Using SEM1 alone achieves the best improvements over the baseline

with 2.8% absolute improvement in F-measure (15.8% relative error reduction),

which is significant at the 95% confidence level using a paired Student’s t-test; us-

ing SYN+SEM1 achieves similar performance: the difference between SEM1 and

SYN+SEM1 is only one example. However, using syntactic features alone only

slightly improves the results, because syntactic features do not directly discriminate

between correct and incorrect meaning representations. To put this in perspective,

Charniak and Johnson (2005) reported that reranking improves the F-measure of

syntactic parsing from 89.7% to 91.0% with a 50-best oracle F-measure score of

96.8%.

Table 4.5 compares reranking results using semantic features derived from

both SAPTs (SEM1) and pruned SAPTs (SEM2). It compares reranking models us-

ing these feature sets alone and together, and using them along with the syntactic
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feature set (SYN) alone and together. Overall, SEM1 provides better results than

SEM2 on CLANG and slightly worse results on GEO250 (only in one sentence),

regardless of whether or not syntactic features are included. Using both seman-

tic feature sets does not improve the results over just using SEM1. On one hand,

the better performance of SEM1 on CLANG contradicts our expectations discussed

in Section 4.3.2.2; the reason behind this needs to be investigated. On the other

hand, it also suggests that the semantic features derived directly from SAPTs can

provide good evidence for semantic correctness, even with the redundant purely-

syntactically motivated features.

4.5 Related work

In semantic parsing, Lu et al. (2008) learns a probabilistic semantic gram-

mar with a reranking model utilizing features similar to those in Collins (2000).

Discriminative reranking on semantic parsing can possibly be improved by

using the progress on discriminative reranking. One direction of research in this

area is to develop rich discriminative features. For example, in syntactic parsing,

Charniak and Johnson (2005) propose features which describe parse sub-structures

such as conjunction, constituent length and position. Collins (2002b) proposes ker-

nel methods which can be applied efficiently to effectively utilize an exponential

number of sub-structures in syntactic parses. We also plan to explore the features

used in semantic role labeling (Gildea and Jurafsky, 2002; Carreras and Marquez,

2005), like the path between a target predicate and its argument.

There has also been an increased interest in finding better candidate outputs

for reranking. One effort is on generating a better n-best list (Charniak and Johnson,

2005; Huang and Chiang, 2005). As pointed out by Charniak and Johnson (2005),
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the beam search method used in Collins (2000) to find the n-best parses can prune

away many good parses. Thus, Charniak and Johnson (2005) proposes a coarse-

to-fine approach where dynamic programming for the n-best parses can be done

feasibly on a set of pruned high-quality parse edges. Another effort is on reranking

directly on a packed forest which compactly contains an exponential number of

implicit parses (Huang, 2008), where non-local features are still made possible in

dynamic programming by using an on-the-fly technique.

4.6 Chapter Summary

We have applied discriminative reranking to semantic parsing, where rerank-

ing features are developed from features for reranking syntactic parses based on the

coupling of syntax and semantics. While the best reranking model significantly im-

proves F-measure on a Robocup coaching task (CLANG) from 82.3% to 85.1%, it

fails to improve the performance on a geography database query task (GEOQUERY),

where sentences are short, and global features are less likely to show improvement.
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Chapter 5

Semantic Parsing Using an Existing Syntactic Parser

This chapter describes a new approach to learning a semantic parser, SYN

SEM, which exploits an existing syntactic parser to produce disambiguated parse

trees that drive the compositional semantic interpretation. It also handles MRLs

with logical variables. The resulting system produces accurate semantic interpreta-

tions on standard corpora on natural language interfaces for database querying and

simulated robot control.

5.1 Motivation

Although SCISSOR (Chapter 3) learns to produce accurate semantic inter-

pretations, it uses the extra annotation of SAPTs not required by other systems

(Wong and Mooney, 2006; Kate and Mooney, 2006). In this chapter, we intro-

duce a novel semantic parser, SYNSEM, which exploits an existing syntactic parser

to produce disambiguated parse trees that drive the compositional semantic inter-

pretation. With the advancement of statistical syntactic parsing, accurate syntactic

parsers are available for many languages and could potentially be used to learn

more effective semantic analyzers. Thus, this approach allows semantic parsing to

conveniently leverage the progress in syntactic parsing.

Another improvement of SYNSEM over SCISSOR is that SYNSEM is capa-

ble of handling MRLs with logical variables. This improvement is necessary for two
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reasons. First, due to the ability to deal with a wide range of linguistic phenomena

such as quantification and modality, predicate logic languages, especially variants

of first-order logic, have been fundamental MRLs for computational semantics for

a long time (Montague, 1970; Thomason, 1974; Blackburn and Bos, 2005), and

have been used extensively in semantic parsing (Zelle and Mooney, 1996; Copes-

take and Flickinger, 2000; Bos, 2005; Zettlemoyer and Collins, 2005, 2007; Wong

and Mooney, 2007). Second, due to the availability of high-performance first-order

theorem provers, using variants of first-order logic as MRLs would make possi-

ble automatic reasoning for natural language understanding, a key application of

semantic parsing (Bos, 2006).

In addition, in SCISSOR, the meaning composition algorithm which trans-

forms SAPTs to MRs (COMPOSEMR) is heuristic and deterministic, which may

fail to explore alternative correct MRs. In response to this, in SYNSEM, semantic

labels on SAPTs become more specific, where a predicate’s missing arguments are

encoded, and meaning composition is acurately specified in composition rules.

Last, since the accuracy of syntactic parsers is critical to SYNSEM, we also

present the experiments for increasing robustness to syntactic parsing errors.

Specifically, SYNSEM uses standard compositional semantics to construct

alternative MRs for a sentence based on its syntax tree, and then chooses the best

MR based on a trained statistical disambiguation model. The learning system first

employs a word alignment method from statistical machine translation (GIZA++

(Och and Ney, 2003)) to acquire a semantic lexicon that maps words to logical

predicates. Then it induces rules for composing MRs and estimates the parame-

ters of a maximum-entropy model for disambiguating semantic interpretations. We

present experimental results on standard corpora demonstrating improved results

on learning NL interfaces for database querying (GEOQUERY) and simulated robot
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Before training and testing

Training

Testing

Output MR

Syntactic parsing

Semantic knowledge acquisition

Parameter estimation

Probabilistic parsing model

Semantic parsing

Semantic lexicon and rules

NL sentence, S Syntactic parse, T

syntactic parse, T

MRLG

Training set
{〈S, T,MR〉}

NL sentence, S

Figure 5.1: Overview of the SYNSEM semantic parsing algorithm

control (CLANG).

Figure 5.1 gives an overview of the SYNSEM semantic parsing algorithm.

Before training, syntactic parses for all sentences in the training corpus are gener-

ated using an existing syntactic parser. During training, a semantic parser is trained

on the set of NL-MR pairs together with the syntactic parses to learn a probabilistic

semantic parsing model. During testing, test sentences together with their syntactic

parses are parsed by the learned model to find the most likely MR.

Like SCISSOR, SYNSEM also assumes that an MRL is defined by an MRLG,
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If our player 2 has the ball, then position our player 5 in the midfield.

((bowner (player our {2}))
(do (player our {5}) (pos (midfield))))

Figure 5.2: A simple NL and its MR in the ROBOCUP domain.

CONDITION

(bowner PLAYER )

(player TEAM

our

{UNUM})

2

(a)

P BOWNER

P PLAYER

P OUR P UNUM

(b)

S

NP

PRP$

our

NP

NN

player

CD

2

VP

VB

has

NP

DET

the

NN

ball

(c)

Figure 5.3: Parses for the condition part of the CLANG in Figure 5.2: (a) The parse

of the MR (the nodes for parentheses are not separately shown for brevity). (b) The

predicate argument structure of (a). (c) The parse of the NL.
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PRODUCTION PREDICATE

RULE→(CONDITION DIRECTIVE) P RULE

CONDITION→(bowner PLAYER) P BOWNER

PLAYER→(player TEAM {UNUM}) P PLAYER

TEAM→our P OUR

UNUM→2 P UNUM

DIRECTIVE→(do PLAYER ACTION) P DO

ACTION→(pos REGION) P POS

REGION→(midfield) P MIDFIELD

Table 5.1: Sample production rules for parsing the CLANG example in Figure 5.2

and their corresponding predicates .

so that meaning representations can be uniquely parsed. In this chapter, the CLANG

example used in Chapter 3 (Figure 3.1) shall be reused to demonstrate SYNSEM.

For convenience, we include the example here in Figure 5.2. Figure 5.3 (a) and

(b) show the condition part’s MR parse and predicate-argument structure using the

MRLG in Wong (2007). Sample MRLG productions and their predicates for pars-

ing this example are shown in Table 5.1.

The remainder of the Chapter is organized as follows. Section 5.2 to Sec-

tion 5.4 introduce the learning algorithm, assuming a variable-free MRL, including

the basic framework (Section 5.2), the methodology for handling non-isomorphism

between syntactic and MR parses (Section 5.3), and the process of learning seman-

tic knowledge (Section 5.4). Based on this, Section 5.5 introduces the extension for

handling logical forms. After that, Section 5.6 introduces the disambiguation model

and Section 5.7 gives the experimental results. In addition, since the accuracy of

syntactic parsers is critical to SYNSEM, Section 5.8 presents the experiments for

increasing robustness to syntactic parsing errors.
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5.2 Semantic Parsing Framework

This section describes our basic framework, which is based on a fairly stan-

dard approach to computational semantics (Blackburn and Bos, 2005). The frame-

work is composed of three components: 1) an existing syntactic parser to produce

parse trees for NL sentences; 2) learned semantic knowledge (cf. Sec. 5.4), includ-

ing a semantic lexicon to assign possible predicates (meanings) to words, and a set

of semantic composition rules to construct possible MRs of a parent node on a syn-

tactic parse given its children’s MRs; and 3) a statistical disambiguation model (cf.

Sec. 5.6) to choose among multiple possible semantic constructs as defined by the

semantic knowledge.

The process of generating the semantic parse for an NL sentence is as fol-

lows. First, the syntactic parser produces a parse tree for the NL sentence. Sec-

ond, the semantic lexicon assigns possible predicates for each word in the sentence.

Third, all possible MRs of the sentence are constructed compositionally in a re-

cursive, bottom-up fashion following its syntactic parse using composition rules.

Lastly, the statistical disambiguation model scores each possible MR and returns

the one with the highest score. Fig. 5.4 shows one possible SAPT for the condition

part of the example in Fig. 5.2 given its syntactic parse in Fig. 5.3(c). A SAPT adds

a semantic label to each non-leaf node in the syntactic parse tree. Unlike SCISSOR,

besides the MRL predicate, the label also specifies the predicate’s remaining (un-

filled) arguments. The compositional process assumes a binary parse tree suitable

for predicate-argument composition; parses in Penn-treebank style are binarized

using Collins (1999) method.

Consider the construction of the SAPT in Fig. 5.4(a). First, each word is

assigned a semantic label. Most words are assigned an MRL predicate. For ex-

ample, the word player is assigned the predicate P PLAYER with its two missing
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P BOWNER

P PLAYER

P OUR

our

λa1P PLAYER

λa1λa2P PLAYER

player

P UNUM

2

λa1P BOWNER

λa1P BOWNER

has

NULL

NULL

the

NULL

ball

(a) SAPT

(bowner (player our {2}))

(player our {2})

our

our

λa1 (player a1 {2})

λa1λa2(player a1 {a2} )

player

2

2

λa1(bowner a1)

λa1(bowner a1)

has

NULL

NULL

the

NULL

ball

(b) Semantic Derivation

Figure 5.4: Semantic parse for the condition part of the example in Fig. 5.2 using

the syntactic parse in Fig. 5.3(c): (a) A SAPT with syntactic labels omitted for

brevity. (b) The semantic derivation of the MR.
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arguments, a1 and a2, indicated using λ. Words that do not introduce a predicate

are given the label NULL, like the and ball.1 Next, a semantic label is assigned to

each internal node using learned composition rules that specify how arguments are

filled when composing two MRs (cf. Sec. 5.4). The label λa1P PLAYER indicates

that the remaining argument a2 of the P PLAYER child is filled by the MR of the

other child (labeled P UNUM).

Finally, the SAPT is used to guide the composition of the sentence’s MR.

At each internal node, an MR for the node is built from the MRs of its children by

filling an argument of a predicate, as illustrated in the semantic derivation shown

in Fig. 5.4(b). Semantic composition rules (cf. Sec. 5.4) are used to specify the

argument to be filled. For the node spanning player 2, the predicate P PLAYER and

its second argument P UNUM are composed to form the MR: λa1 (player a1

{2}). Composing an MR with NULL leaves the MR unchanged. An MR is said to

be complete when it contains no remaining λ variables. This process continues up

the tree until a complete MR for the entire sentence is constructed at the root.

5.3 Ensuring Meaning Composition

The basic compositional method in Sec. 5.2 only works if the syntactic parse

tree strictly follows the predicate-argument structure of the MR, since meaning

composition at each node is assumed to combine a predicate with one of its ar-

guments. However, this assumption is often not satisfied for at least two reasons.

First, predicates and arguments can be detached in various linguistic phenomena

1The words the and ball are not truly “meaningless” since the predicate P BOWNER (ball owner)

is conveyed by the phrase has the ball. For simplicity, predicates are introduced by a single word,

but statistical disambiguation (cf. Sec. 5.6) uses surrounding words to choose a meaning for a word

whose lexicon entry contains multiple possible predicates.
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P DO
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P POS

P MIDFIELD
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VP
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then

VP

VP

VB
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NP
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the

NN
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(b)

Figure 5.5: Parses for the directive part of the CLANG in Fig. 5.2 (the nodes for

parentheses are not separately shown for brevity): (a) The predicate-argument struc-

ture of the MR. (b) The parse of the NL (the parse of the phrase our player 5 is

omitted for brevity).
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such as a moved subject or object in questions and relative clauses (Steedman and

Baldridge, to appear). Second, syntactic parses of an NL and MRL may be non-

isomorphic when seen as two different languages describing the same language-

independent world, as demonstrated in machine translation (Yamada and Knight,

2001). For example, the node covering the ball in the NL parse (Figure 5.3(c)),

arguably, does not have a matching node in the MR parse (Figure 5.3(b)). Another

example is shown in the non-isomorphic NL and MRL parses for the directive part

of the example in Figure 5.2 (see Figure 5.5). In the MR parse, P POS (position)

is composed with P PLAYER (our player 5) after it has its argument P MIDFIELD

(midfield) filled; whereas in the NL parse, it is composed with P PLAYER before it

has P MIDFIELD filled. Besides, to be robust to syntactic errors, SYNSEM learns

to construct correct MRs from syntactic parses with errors, which often cause this

non-isomorphic phenomena.

To ensure meaning composition in this case, we automatically create macro-

predicates as meaning postulates, that combine multiple predicates into one, so that

the child nodes’ MRs can be composed as arguments or internal predicates to a

macro-predicate. Fig. 5.7 shows the macro-predicate P DO POS (DIRECTIVE→(do

PLAYER (pos REGION))) formed by merging the P DO and P POS in Fig. 5.5(a).

The macro-predicate has two arguments, one of type PLAYER (a1) and one of type

REGION (a2). Now, P POS and P PLAYER can be composed as arguments to this

macro-predicate as shown in Fig. 5.6(b). However, it requires assuming a P DO

predicate that has not been formally introduced. To indicate this, a lambda variable,

p1, is introduced that ranges over predicates and is provisionally bound to P DO, as

indicated in Fig. 5.6(b) using the notation p1:do. Eventually, this predicate variable

must be bound to a matching predicate introduced from the lexicon. In the example,

p1:do is eventually bound to the P DO predicate introduced by the word then to
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form a complete MR.

Macro-predicates are introduced as needed during training in order to en-

sure that each MR in the training set can be composed using the syntactic parse of

its corresponding NL giving reasonable assignments of predicates to words. For

each SAPT node that does not combine a predicate with a legal argument, a macro-

predicate is formed by merging all predicates on the paths from the child predicates

to their lowest common ancestor (LCA) in the MR parse. Specifically, a child MR

becomes an argument of the macro-predicate if it is complete (i.e. contains no λ

variables); otherwise, it also becomes part of the macro-predicate and its λ vari-

ables become additional arguments of the macro-predicate. For the node spanning

position our player 5 in the example, the LCA of the children P PLAYER and P POS

is their immediate parent P DO, therefore P DO is included in the macro-predicate.

The complete child P PLAYER becomes the first argument of the macro-predicate.

The incomplete child P POS is added to the macro-predicate P DO POS and its λ

variable becomes another argument.

For improved generalization, once a predicate in a macro-predicate becomes

complete, it is removed from the corresponding macro-predicate label in the SAPT.

For the node spanning position our player 5 in the midfield in Fig. 5.6(a), P DO POS

becomes P DO once the arguments of pos are filled.

Previously, a number of works in machine translation and semantic parsing

have also addressed the non-isomorphism problem. In machine translation, Ya-

mada and Knight (2001) flatten subtrees for maintaining parse tree isomorphism in

syntax-based machine translation; Shieber and Schabes (1990) and Eisner (2003)

use synchronous tree-substitution grammars and synchronous tree-adjoining gram-

mars to maintain tree structure. In semantic parsing, Wong and Mooney (2006) use

an approach similar to that of Yamada and Knight (2001) which merges nodes in an
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P DO

λa1λa2P DO

then

λp1P DO POS = λp1P DO

λp1λa2P DO POS

λa1P POS

position

P PLAYER

our player 5

P MIDFIELD

NULL

in

P MIDFIELD

NULL

the

P MIDFIELD

midfield

(a) SAPT

(do (player our {5})
(pos (midfield)))

λa1λa2(do a1a2)

then

λp1(p1:do (player our {5})
(pos (midfield)))

λp1λa2(p1:do (player our {5})
(pos a2))

λa1(pos a1)

position

(player our {5})

our player 5

(midfield)

NULL

in

(midfield)

NULL

the

(midfield)

midfield

(b) Semantic Derivation

Figure 5.6: Semantic parse for the directive part of the example in Fig. 5.2 using the

syntactic parse in Fig. 5.5(b): (a) A SAPT with syntactic labels omitted for brevity.

(b) The semantic derivation of the MR.
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P DO

a1:PLAYER P POS

a2:REGION

Figure 5.7: The predicate-argument structure of macro-predicate P DO POS.

MR parse tree to maintain parse tree isomorphism. Zettlemoyer and Collins (2007)

introduce non-standard CCG combinators that relax the grammar to handle certain

phenomena such as the deletion of a word. When applied to a new NL-MRL pair,

new combinators may need to be introduced. To handle cases of non-isomorphism

such as in Figure 5.6 where P POS (syntactic head) takes P PLAYER as an argument

in syntax but not in the MR, larger lexical categories may need to be introduced.

Our approach is driven by existing syntactic parses which ensures that the MRs

of a node’s children can be composed to form the MRs of the node according to

the gold-standard MR. In the future, we plan to investigate the similarity between

SYNSEM and construction grammar (Goldberg, 1995), which defines constructions

as linguistic units that necessarily have some non-compositional semantics.

In the following two sections, we describe the two subtasks of inducing a

semantic grammar and disambiguation model for learning the enhanced composi-

tional framework. Both subtasks require a training set of NLs paired with their

MRs. Each NL sentence also requires a syntactic parse generated using Bikel

(2004)’s implementation of Collins parsing model 2.

88



5.4 Learning Semantic Knowledge

Learning semantic knowledge starts from learning the mapping from words

to predicates. We use an approach based on Wong and Mooney (2006), which con-

structs word alignments between NL sentences and their MRs. Normally, word

alignment is used in statistical machine translation to match words in one NL to

words in another; here it is used to align words with predicates based on a “parallel

corpus” of NL sentences and MRs. We assume that each word alignment defines

a possible mapping from words to predicates for building a SAPT and semantic

derivation which compose the correct MR. Semantic lexicon and composition rules

are then extracted directly from each of the nodes of the resulting semantic deriva-

tions.

Generating word alignments for each training example proceeds as follows.

First, each MR in the training corpus is parsed using the MRLG. Next, each result-

ing parse tree is linearized to produce a sequence of predicates by using a top-down,

left-to-right traversal of the parse tree. Then the GIZA++ implementation (Och and

Ney, 2003) of IBM Model 5 is used to generate the five best word/predicate align-

ments from the corpus of NL sentences each paired with the predicate sequence for

its MR.

After predicates are assigned to words using word alignment, for each align-

ment of a training example and its syntactic parse, a SAPT is generated for compos-

ing the correct MR, using the processes discussed in Sections 5.2 and 5.3. Specif-

ically, a semantic label is assigned to a parent node of a SAPT, so that the MRs of

its children are composed correctly, according to the MR for this example.

There are two cases that require special handling. First, when a predicate is

not aligned to any word, the predicate must be inferred from context. For example,
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in CLANG, our player is frequently just referred to as player and the our must be

inferred.

When building a SAPT for such an alignment, the meaning composition

algorithm learns what arguments of a predicate can have default value, and uses

them when needed. Second, when a predicate is aligned to several words, i.e. it is

represented by a phrase, then the alignment is transformed into several alignments

where each predicate is aligned to each single word in order to fit the assumptions

of compositional semantics.

Given the SAPTs constructed from the results of word-alignment, a seman-

tic derivation for each training sentence is constructed using the methods described

in Sections 5.2 and 5.3. Composition rules are then extracted from these deriva-

tions.

Formally, composition rules are of the form:

Λ1.P1 + Λ2.P2 ⇒ Λp.Pp, R (5.1)

where P1, P2 and Pp are predicates for the left child, right child, and parent node,

respectively. Each predicate includes a lambda term Λ of the form {λpi1 , . . . , λpim ,

λaj1 , . . . , λajn
}, a list of all missing predicate and argument variables for the pred-

icate. The component R specifies how some arguments of the parent predicate are

filled when composing the MR for the parent node. It is of the form: {ak1
=R1, . . .,

akl
=Rl}, where Ri can be either a child (ci), or a child’s complete argument (ci, aj)

if the child itself is not complete.

For instance, the rule extracted for the node for player 2 in Fig. 5.4(b) is:

λa1λa2.P PLAYER + P UNUM ⇒ λa1.P PLAYER, a2=c2,

and for position our player 5 in Fig. 5.6(b):
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λa1.P POS + P PLAYER ⇒ λp1λa2.P DO POS, a1=c2,

and for position our player 5 in the midfield:

λp1λa2.P DO POS + P MIDFIELD ⇒ λp1.P DO POS, {a1=(c1,a1), a2=c2}.

Learning semantic knowledge is necessary for handling ambiguity such as

word sense and semantic roles. It is also used to ensure that an MR is a legal

expression in the MRL.

5.5 Semantic Parsing with Logical Forms

The SYNSEM semantic parsing algorithm discussed so far assumes MRLs

free of logical variables. In this section, we extend the algorithm to use predicate

logic as MRLs where logical variables play a significant role.

But before turning into the details of the extension, let’s first briefly review

how meanings are represented in predicate logic informally2. In predicate logic,

the most basic meaning elements are constants for basic objects (e.g. texas), log-

ical variables (e.g. x1, x2 in Figure 5.8) and predicates (e.g. answer, river

and loc), where logical variables denote a set of entities, and predicates denote

relations and functions over their arguments in the application domain. These basic

elements are then composed to form complex formulas either by forming predicate-

argument relations or by connecting subformulas using logical connectives, where

variable names can be shared among predicates to constrain the exact entities rep-

resented.

2Although we mainly focus on the logical query language in the GEOQUERY domain, the algo-

rithm developed here is also applicable to other logical languages.
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What are the rivers in Texas?

answer(x1,(river(x1),loc(x1,x2),equal(x2,stateid(texas))))

Figure 5.8: A sample NL and its MR in the GEOQUERY domain.

Consider the sample query in Figure 5.8 in the GEOQUERY domain. The

logical variable x2 denotes a basic entity in the application domain, the state of

Texas, and the first-order predicate loc denotes a binary relation asserting if the

first entity is located in the second. The predicate answer is a higher-order pred-

icate which takes the conjunction (,) of the predicates river, loc and equal

as its only argument, specifying the conditions the target variable x1 has to satisfy.

Note that x1 is shared among river and loc to form the exact subset of entities

it represents: the rivers in Texas; it later also appears in ANSWER to specify the

entities to return as an answer.

Hence, to use predicate logic as target MRL languages, our algorithm should

have the capability to model predicate-argument relations, dependencies among

logical variables, and logical connectives. The modeling of predicate-argument

relations has already been implemented in our existing algorithm. In this section,

we show how the remaining tasks can be further incorporated, by first defining the

extended MRLG and semantic parsing framework for predicate logic, and then de-

scribing the process of learning the extended semantic knowledge.

5.5.1 Predicate Logic as Meaning Representation Language

In this section, we describe the extended MRLG for predicate logic, focus-

ing on logical variables and connectives. The predicate logic language we consid-

ered is the logical query language used in GEOQUERY, which is based on Prolog

consisting of both first-order and higher-order predicates (Zelle and Mooney, 1996).

In an extended MRLG, production rules are extended for logical variables.
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PRODUCTION PREDICATE

QUERY → answer(v1,FORM) P ANSWER

FORM → river(v1) P RIVER

FORM → loc(v1,v2) P LOC

FORM → equal(v1,stateid(texas)) P EQUAL

FORM → (FORM,FORM,FORM)

Table 5.2: The production rules for parsing the GEOQUERY example in Figure 5.8

and their corresponding predicates.

How many major cities are in states bordering Texas?

answer(x1,count(x2,(city(x2),major(x2),loc(x2,x3),

state( x3),next to( x3,x4),

equal(x4,stateid(texas)))))

Figure 5.9: The NL/MRL non-isomorphism example used in Wong and Mooney

(2007).

The LHS of a production rule is still a nonterminal, however, its RHS can be strings

of not only terminals and non-terminals, but also logical variables, where unique

variables from left to right are annotated with v1, v2, . . . sequentially. When form-

ing an MR, these variables are substituted for names (annotated with x1, x2, . . .),

which may be shared among predicates. Table 5.2 shows the production rules in the

MRLG for parsing the example in Figure 5.8.

Production rules for parsing connectives are also added to an MRLG. In

the GEOQUERY logical language, conjunction rules are added for the logical con-

junction. The last row in Table 5.2 shows the rule for parsing the conjunction in

Figure 5.8. When having multiple conjunction rules in an MRLG, it may fail to

generate a unique parse for an MR, since a conjunction constituent with multiple

children (> 2) can be further broken down into conjunctions with smaller arity. In

this case, the grammar chooses the parse where all conjunctive parts are in the same

constituent. Figure 5.10(a) shows such a parse for the MR in Figure 5.8 using the
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QUERY

answer(x1, FORM)

(FORM,

river(x1)

FORM,

loc(x1,x2)

FORM)

equal(x2,stateid(texas))

(a)

P ANSWER(x1)

(P RIVER(x1) P LOC(x1,x2) P EQUAL(x2) )

(b)

SBARQ

WHNP

WP

what

SQ

VP

VBP

are

NP

NP

DT

the

NNS

rivers

PP

IN

in

NP

NNP

Texas

(c)

Figure 5.10: Parses for the GEOQUERY example in Figure 5.8: (a) The parse of the

MR. (b) The predicate argument structure of (a). (c) The parse of the NL.
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MRLG in Wong (2007), augmented with n-ary conjunction rules.

Unlike our approach, Wong (2007) only allows binary conjunction so that

a n-ary conjunction in an MR is parsed into a binary tree where the internal struc-

ture of the conjunction is assumed. This may cause unnecessary parse tree non-

isomorphism since it forces a constraint not present in an MR (see Figure 5.9 for an

illustrative example in Wong and Mooney (2007)). In our approach, the grammar

does not assume the order of conjunctive parts.

Figure 5.10(b) shows the corresponding predicate-argument structure of Fig-

ure 5.10(a). In this structure, the only argument of the predicate P ANSWER is the

conjunction of P RIVER, P LOC and P EQUAL; each predicate is followed by a list

of names substituted for its logical variables. Note the name x1 is shared among the

predicates P ANSWER, P RIVER and P LOC representing the same entities.

5.5.2 Semantic Parsing Framework

Our SYNSEM semantic parsing framework relies on a semantic lexicon to

assign semantic labels to words, and a set of semantic composition rules to assign

semantic labels to internal SAPT nodes and construct MRs. In this section, we

show the extension to both components for handling logical forms.

We introduce the logical-variable binding operators λv to a semantic label,

which bind occurrences of logical variables in a predicate. Similar to the existing λ

operators for missing arguments and internal predicates, these operators specify the

logical variables to be shared with other predicates (shared logical variable). Here

are some sample lexicon entries for building the correct MR in example 5.8 (see the

SAPT in 5.11(a)):
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P ANSWER

λv1λa1P ANSWER

What

λv1P RIVER

NULL

are

λv1P RIVER

λv1P RIVER

the rivers

λv1P LOC

λv1λv2P LOC

in

λv1P EQUAL

Texas

(a) SAPT

answer(x1,(river(x1),loc(x1,x2),

equal(x2,stateid(texas))))

λa1answer(x1,a1)

What

(river(x1),loc(x1,x2),

equal(x2,stateid(texas)))

NULL

are

(river(x1),loc(x1,x2),

equal(x2,stateid(texas)))

river(x1)

the rivers

(loc(x1,x2),

equal(x2,stateid(texas)))

loc(x1,x2)

in

equal(x1,

stateid(texas))

Texas

(b) Semantic Derivation

Figure 5.11: Semantic parse for the GEOQUERY example in Fig. 5.8 using the

syntactic parse in Fig. 5.10(c).
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What = λv1λa1P ANSWER

river = λv1P RIVER

in = λv1λv2P LOC

Texas = λv1P EQUAL

where in the semantic label λv1λv2P LOC, λv1λv2 bind the corresponding logical

varibles in P LOC (FORM → loc(v1,v2)). When building an MR, logical vari-

ables v1, v2, . . . in a predicate are initially named x1, x2, . . . sequentially.

Composition rules in Equation 5.1 are also extended accordingly:

Λ1.P1(N1) + Λ2.P2(N2) ⇒ Λp.Pp[Np], R (5.2)

where Λ1.P1, Λ2.P2, and Λp.Pp are extended semantic labels for child and parent

nodes, with the shared logical variables λv included. The term Np is a list of names

for all logical variables in Pp, including both λv variables and other unbound vari-

ables (free variables), where {v1, v2, . . .} are named {x1, x2, . . .} sequentially3. Ni

(i = 1, 2) is a list of names for Pi’s λv variables after applying the rule, which

are their shared names in the parent predicate. This is made possible due to an as-

sumption that we shall elaborate in Section 5.5.3: all child predicates’ λv variables

must be shared with their parent predicate, either as its λv variables or free vari-

ables. Before applying the rule, if some name in Ni (i = 1, 2) is already used in the

MR of that child node, it should be renamed to avoid accidental binding of logical

variables, known as α-conversion in lambda calculus (Blackburn and Bos, 2005).

Before showing sample rules, let’s introduce one special type of composi-

tion rule for handling conjunction:

Λ1.P1(N1) + Λ2.P2(N2) ⇒c Λp.Pp[Np] (5.3)

3These names can actually be omitted, but are shown for clarity.
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where the subscript c in ⇒c stands for conjunction. Conjunction rules contain no

component R for specifying how arguments of a parent predicate are filled when

composing MR. Instead, the MR of a parent node is simply the conjunction of its

children’s MRs with name substitution applied.

Here are some sample composition rules for building the correct MR in

example 5.8 (see the SAPT and semantic derivation in Figure 5.11):

λv1λv2P LOC (x1,x2) + λv1P EQUAL (x2) ⇒c λv1P LOC [x1,x2]

λv1P RIVER (x1) + λv1P LOC (x1) ⇒c λv1P RIVER [x1]

λv1λa1P ANSWER (x1) + λv1P RIVER (x1) ⇒ P ANSWER [x1], {a1 = c2}

In predicate logic, a higher-order predicate’s argument can be a conjunction

of multiple child predicates (see Figure 5.9). Often in an NL’s syntax parse, such a

parent predicate may be attached with one child predicate at a time, before they form

a complete argument. To handle this situation, we allow a predicate’s argument to

be partially filled in composition rules. A missing argument variable is attached to a

predicate until all of its child predicates are found. Figure 5.12 gives an example for

generating the MR in Figure 5.8, where the following composition rules are used:

λv1λa1P ANSWER (x1) + λv1P RIVER (x1) ⇒ λv1λa1P ANSWER [x1],

{a1 = c2}
λv1λa1P ANSWER (x1) + λv1P LOC (x1) ⇒ P ANSWER [x1], {a1 = c2}

5.5.3 Learning Semantic Knowledge

Learning semantic knowledge for logical forms uses the same process as

described in Section 5.4. First, word alignments between words in an NL sentence

and predicates in the linearized MR parse are constructed using a word alignment

model. Next, a SAPT and semantic derivation which compose the correct MR are

built from an NL’s syntactic parse and a word alignment. Last, semantic lexicon
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P ANSWER

λv1λa1P ANSWER

λv1λa1P ANSWER

What

λv1P RIVER

rivers

λv1P LOC

NULL

are

λv1P LOC

λv1λv2P LOC

in

λv1P EQUAL

Texas

(a) SAPT

answer(x1,(river(x1),loc(x1,x2),

equal(x2,stateid(texas))))

λa1answer(x1,(river(x1),a′1))

λa1answer(x1,a1)

What

river(x1)

rivers

(loc(x1,x2),

equal(x2,stateid(texas)))

NULL

are

(loc(x1,x2),

equal(x2,stateid(texas)))

loc(x1,x2)

in

equal(x1,

stateid(texas))

Texas

(b) Semantic Derivation

Figure 5.12: An example of an incrementally-filled argument for generating the

MR in Fig. 5.8.
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and composition rules are extracted directly from the nodes of the resulting SAPTs

and semantic derivations.

Given a syntactic parse and word alignment, a key process for generating

a correct SAPT is to attach to each node a correct semantic label, including both

a predicate and its λ variables. To decide the predicate, a compositional variable-

dependency assumption is required besides using the methodology in Section 5.4:

a child predicate’s λv variables must be shared with the parent predicate, either

as its λv variables or free variables. Once a predicate is decided for a node, its

λv variables are merely the predicate’s logical variables whose names are not fully

covered by the MR of the current node. We illustrate this process in the following

two cases.

In conjunction, a parent predicate is chosen to be the child predicate whose

names of λv variables consume the other child predicate’s names. For example, the

child predicate P LOC in Figure 5.11(a) is the parent predicate for the constituent

in Texas, since the names of its λv variables, {x1, x2}, consumes the other child

predicate P EQUAL’s names, {x2}. Its attached λv list is {λv1} where v1 is bound,

since its name x1 still appears in the predicates P RIVER and P ANSWER which

are not covered by the current MR, while v2 is not bound since all appearances of

its name x2 are completely covered. Sometimes, both child predicates may have

the same name set used for their λv variables. Then, the one on the syntactic head

becomes the parent predicate (e.g. the constituent the rivers in Texas).

In non-conjunction, a parent predicate is chosen using the methodology in

Section 5.4. Occasionally, special handling is required to make sure that a child

predicate’s λv variables are shared with its parent predicate. Consider composing

smallest state in the following example,
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What is the smallest state by area?

answer(x1,smallest(x2,(state(x1),area(x1, x2)))

where the word smallest stands for the parent predicate P SMALLEST (in the MR,

smallest(x2, FORM)), and state stands for the child predicate P STATE (state

(x1)). Although x1 in P STATE needs to be shared with other predicates in the MR,

it is not a name for the parent predicate P SMALLEST’s logical variable. In this case,

a logical variable invisible to the MR is introduced to the parent predicate to make

the assumption true.

Once the correct SAPTs and semantic derivations are generated, semantic

lexicon and composition rules are extracted straightforwardly from the nodes of the

resulting SAPTs and semantic derivations. The following conjunction rule can be

extracted from the node in Texas:

λv1λv2P LOC (x1,x2) + λv1P EQUAL (x2) ⇒c λv1P LOC [x1,x2]

where the names attached to each child predicate are decided to form the correct

MR (loc(x1, x2),equal(x2,stateid(texas))).

5.6 Learning a Disambiguation Model

Usually, multiple possible semantic derivations for an NL sentence are war-

ranted by the acquired semantic knowledge, thus disambiguation is needed. To

learn a disambiguation model, the learned semantic knowledge (see Section 5.4) is

applied to each training example to generate all possible semantic derivations for

an NL sentence given its syntactic parse. Here, unique word alignments are not re-

quired, and compositional and possible non-compositional constructs compete for

the best semantic parse.
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We use a maximum-entropy model similar to that of Zettlemoyer and Collins

(2005) and Wong and Mooney (2006). The model defines a conditional probability

distribution over semantic derivations (D) given an NL sentence S and its syntactic

parse T :

Pr(D|S, T ; θ̄) =
exp

∑

i θifi(D)

Zθ̄(S, T )
(5.4)

where f̄ (f1, . . . , fn) is a feature vector parameterized by θ̄, and Zθ̄(S, T ) is a nor-

malizing factor. Three simple types of features are used in the model. First, are

lexical features which count the number of times a word is assigned a particular

predicate. Second, are bilexical features which count the number of times a word

is assigned a particular predicate and a particular word precedes or follows it. Last,

are rule features which count the number of times a particular composition rule is

applied in the derivation. We have also extensively experimented with other fea-

tures such as features including syntactic labels, and prepositional phrase features,

but failed to show improvement.

The training process finds a parameter θ̄∗ that (approximately) maximizes

the sum of the conditional log-likelihood of the MRs in the training set. Since no

specific semantic derivation for an MR is provided in the training data, the condi-

tional log-likelihood of an MR is calculated as the sum of the conditional proba-

bility of all semantic derivations that lead to the MR. Formally, given a set of NL-

MR pairs {(S1,M1), (S2,M2), ..., (Sn,Mn)} and the syntactic parses of the NLs

{T1, T2, ..., Tn}, the parameter θ̄∗ is calculated as:

θ̄∗ = arg max
θ̄

n
∑

i=1

log Pr(Mi|Si, Ti; θ̄) (5.5)

= arg max
θ̄

n
∑

i=1

log
∑

D∗

i

Pr(D∗
i |Si, Ti; θ̄)

where D∗
i is a semantic derivation that produces the correct MR Mi.
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L-BFGS (Nocedal, 1980) is used to estimate the parameters θ̄∗. The esti-

mation requires statistics that depend on all possible semantic derivations and all

correct semantic derivations of an example, which are not feasibly enumerated. A

variant of the Inside-Outside algorithm (Miyao and Tsujii, 2002) is used to effi-

ciently collect the necessary statistics. Following Wong and Mooney (2006), only

candidate predicates and composition rules that are used in the best semantic deriva-

tions for the training set are retained for testing. No smoothing is used to regularize

the model, although we have tried using a Gaussian prior (Chen and Rosenfeld,

1999), which failed to improve the results.

5.7 Experimental Evaluation

5.7.1 Methodology

We experimented with SYNSEM on both the CLANG and GEOQUERY cor-

pora (Section 2.3). Since in GEOQUERY, the FUNQL MRL has been shown to be

less effective than the Prolog-based MRL (Section 3.6), the Prolog language was

exclusively used for the GEOQUERY experiments. We shall also give results on the

small GEOQUERY corpus containing 250 examples, GEO250.

The semantic parsers were evaluated using standard 10-fold cross valida-

tion, and their performance was measured in terms of precision, recall, and F-

measure as in Section 3.6. No partial credit was given for examples with partially-

correct SAPTs.

Collins (1997) parsing model 2 (Bikel, 2004) was trained on all sections of

the WSJ corpus of Penn Treebank (Marcus et al., 1993) to get automated syntactic

parses. The performance of a syntactic parser trained only on the WSJ corpus can

degrade dramatically in new domains due to corpus variation (Gildea, 2001). Ex-
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Figure 5.13: Learning curves of the Bikel (2004) syntactic parser on CLANG and

GEOQUERY trained on the WSJ plus a small number of in-domain examples.
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periments on CLANG and GEOQUERY showed that the performance can be greatly

improved by adding a small number of treebanked examples from the correspond-

ing training set together with the WSJ. Figure 5.13 shows the results for the Bikel

parser trained on an increasing amount of in-domain data, demonstrating the im-

proved results of using a small number of in-domain sentences. We also experi-

mented with assigning higher weight to in-domain sentences, but failed to get im-

provement. In the experiments, our semantic parser was evaluated using three kinds

of syntactic parses, listed together with their PARSEVAL F-measures compared to

the gold-standard syntactic parses annotated for SCISSOR: gold-standard parses

from the treebank (GoldSyn, 100%), the Bikel parser trained on WSJ plus a small

number of in-domain training sentences required to achieve good performance, 20

for CLANG (Syn20, 88.21%) and 40 for GEOQUERY (Syn40, 91.46%), and the

Bikel parser trained on no in-domain data (Syn0, 82.15% for CLANG and 76.44%

for GEOQUERY).

For semantic parsing, we compared SYNSEM with SCISSOR, WASP, KRISP,

and LU on CLANG, and λ-WASP and Z&C on GEOQUERY which also used the

Prolog MRL. The details of these systems and their variances have been shown in

Section 3.6.1, briefly:

• SCISSOR (Chapter 3) is an integrated syntactic-semantic parser, which re-

quires annotated SAPTs for training.

• WASP (Wong and Mooney, 2006) is a semantic parser based on machine

translation techniques.

• λ-WASP (Wong and Mooney, 2007) is an extension of WASP for handing

logical forms.
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FULL SIZE (270) SMALL SIZE (40)

Precision Recall F-measure Precision Recall F-measure

GOLDSYN 84.73 74.00 79.00 61.14 35.67 45.05

SYN20 85.37 70.00 76.92 57.76 31.00 40.35

SYN0 87.01 67.00 75.71 53.54 22.67 31.85

SCISSOR 89.50 73.70 80.80 85.00 23.00 36.20

WASP 88.85 61.93 72.99 88.00 14.37 24.71

KRISP 85.20 61.85 71.67 68.35 20.00 30.95

LU 82.50 67.70 74.40 − − −

Table 5.3: Performance on CLANG, using all training examples and a small amount

of them.

• KRISP (Kate and Mooney, 2006) is a semantic parser based on string kernels.

• Z&C (Zettlemoyer and Collins, 2007) is a probabilistic semantic parser us-

ing CCG, which requires a set of hand-built grammar template rules for the

specific NL as prior knowledge.

• LU (Lu et al., 2008) is a generative semantic parsing model, which uses dis-

criminative reranking.

5.7.2 Results

5.7.2.1 Results on CLANG and Discussions

Table 5.3 summarizes the performance of the semantic parsers on CLANG

using all training data (270 examples) and a small amount of them (40) respec-

tively4. Figure 5.14 shows the available learning curves, where SYN0 and KRISP

are ommitted for clarity. Several observations can be made:

4Lu et al. (2008)’s F-measure on CLANG before reranking is 67.8%.
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Figure 5.14: Learning curves for semantic parsers on CLANG.
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• More accurate syntactic parsers (GOLDSYN > SYN20 > SYN0) improved

this approach. Although it may sound obvious, empirically, it confirmed our

fundamental assumption of this thesis that overall, syntactic parses provide

the correct structure for meaning composition.

• When using all training data, all SYNSEM parsers outperformed all other sys-

tems except SCISSOR which requires extra SAPT annotation. This suggests

that SYNSEM can leverage accurate syntactic parsers to produce accurate se-

mantic parsers.

• When using a small amount of training data, both GOLDSYN and SYN20

outperformed WASP and KRISP substantially; they even outperformed SCIS-

SOR which requires extra annotation. This shows that SYNSEM significantly

improves results when limited training data is available. This demonstrates

the advantage of utilizing an accurate existing syntactic parser, where syntac-

tic structure is learned from large open domain treebanks instead of relying

just on the training data.

• An additional point with limited training data is that SYN0 failed to show

great improvement over WASP and KRISP by using an existing parser. As

we can see, reducing the training data from 270 to 40 increased the differ-

ences among these parsers. This suggests that the quality of syntactic parsing

becomes critically important when limited training data is available.

The F-measures of syntactic parses that generated correct MRs on CLANG

were 85.50% in SYN0 and 91.16% in SYN20, which suggests that SYNSEM can

parse on imperfect syntactic parses, due to its ability to ensure meaning composi-

tion on imperfect syntactic parses during training (Section 5.3). For example, one
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syntactic error that SYN20 successfully generated the MR for was the conjunction

error in the phrase players 2,3,7 and 8, where 7 and 8 were mistakenly separated

from player, and instead attached to the following phrase. Even though a syntactic

parser can be not accurate enough for learning from limited training data, when

given sufficent training data, a semantic parser based on it can still learn success-

fully (SYN0). However, we note that a rationally accurate syntactic parser should be

used for SYNSEM. When evaluating SYNSEM using a syntactic parser trained only

on Section 1 of the WSJ (PARSEVAL F-measure = 59.2%), its semantic F-measure

dropped dramatically to about 46%.

A detailed analysis on CLANG (see Figure 5.15) shows that our improved

performance on CLANG compared to WASP and KRISP was mainly for long sen-

tences (> 20 words). Utilizing syntactic knowledge from an existing parser pro-

vides the predicate-argument structure for compositional semantic analysis, which

can be hard for the semantic-grammar-based parsers to learn when sentences are

long. Similarly, utilizing syntactic knowledge learned from the SAPT annotation in

SCISSOR also successfully guides the correct compositional semantic analysis (see

Figure 3.11).

5.7.2.2 Results on GEOQUERY and Discussions

Table 5.4 summarizes the performance of the semantic parsers on GEO-

QUERY using all training examples, and Figure 5.16 shows the available learning

curves, where SYN0 is ommited for clarity. Several observations can be made:

• SYN0 performed significantly worse than λ-WASP and other SYNSEM parsers

using more accurate syntactic parses. This is not surprising since SYN0’s F-

measure for syntactic parsing was only 76.44% in GEOQUERY due to a lack
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Precision Recall F-measure

GOLDSYN 91.94 88.18 90.02

SYN40 90.21 86.93 88.54

SYN0 81.76 78.98 80.35

λ-WASP 91.95 86.59 89.19

Z&C 91.63 86.07 88.76

Table 5.4: Performance on GEOQUERY.
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Figure 5.16: Learning curves for semantic parsers on GEOQUERY.
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N1

N2

What state

is the smallest

(a)

N1

What N2

state is the smallest

(b)

Figure 5.17: A simple example to illustrate the limitation of SYNSEM and SCIS-

SOR. (a) The sentence structure given in SYNSEM and SCISSOR. (b) A possible

sentence structure learned by a semantic grammar.

of interrogative sentences (questions) in the WSJ corpus. This suggests that

a rationally accurate syntactic parser should be used for SYNSEM.

• All of SYN40, GOLDSYN and λ-WASP performed highly competitively all

across the learning curves. This could be explained by the characteristic

of GEOQUERY where sentences are generally short (7.57 words on aver-

age). When sentences are short, utilizing syntactic parses does not neces-

sarily benefit semantic parsing by providing meaning composition structure;

the difficulty in learning semantic knowledge (SYNSEM) can approximately

be equal to the difficulty in learning semantic knowledge together with syn-

tactic knowledge (λ-WASP). However, when sentences are long (CLANG),

syntactic parses can provide the basic predicate-argument structure which can

be hard to learn. This is consistent with our observation on CLANG.

In fact, when sentences are short, utilizing the predefined syntactic structure

in a syntactic parse or SAPT (Chapter 3) is sometimes less flexible than learning

directly from the NL sentences. Consider the following example:
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Precision Recall F-measure

GOLDSYN 95.73 89.60 92.56

SYN20 93.19 87.60 90.31

SYN0 91.81 85.20 88.38

λ-WASP 91.76 75.60 82.90

Table 5.5: Performance on GEO250 (20 in-domain sentences are used in SYN20 to

train the syntactic parser).

What state is the smallest?

answer(x1,smallest(x1,state(x1)))

A syntactic parser would typically produce the sentence structure in Figure 5.17(a),

where the argument state is attached to its ancestor predicate answer, which

is non-isomorphic to its MR parse. While a parser based on semantic grammars

such as λ-WASP would learn the structure in Figure 5.17(b), where the argument

state is isomorphically attached to the predicate smallest due to its flexibility

in learning directly from the NL strings . As a result, the non-isomorphic syntactic

structure introduced by a predefined syntax can increase the difficulty of learning

semantic parsers, particularly when using an inaccurate syntactic parser. We note

that Zettlemoyer and Collins (2005, 2007) also adopt a syntax-based approach. Un-

like SYNSEM and SCISSOR, it does not rely on a predefined syntax, thus it bears

the same flexibility as the approaches based on semantic grammars.

Performance of available semantic parsers on GEO250 using the Prolog

MRL is shown in Table 5.5. Similar to the performance of SCISSOR which also

explores the knowledge of syntax, all SYNSEM parsers significantly outperformed

λ-WASP. Again, it would be interesting to investigate the linguistic differences

between GEOQUERY and GEO250 which may cause the performance difference,

since GEOQUERY was collected from more diverse resources than GEO250 (Sec-
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tion 2.3).

5.7.2.3 Other Results

We also evaluated the impact of the word alignment component by replac-

ing Giza++ by gold-standard word alignments manually annotated for the CLANG

corpus (See Figure 5.18). The results consistently showed that compared to using

gold-standard word alignment, Giza++ produced lower semantic parsing accuracy

when given little training data, but better results when given sufficient training data

(= 270 examples). This suggests that, given sufficient data, Giza++ can produce

effective word alignments, and that imperfect word alignments do not seriously im-

pair our semantic parsers since the disambiguation model evaluates multiple possi-
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ble interpretations of ambiguous words. Using multiple potential alignments from

Giza++ sometimes allows for even better performance than using a single gold-

standard word alignment because it permits multiple interpretations to be evaluated

by the global disambiguation model.

5.7.2.4 Summary

The observations are summarized as follows:

• SYNSEM can produce accurate semantic interpretations by utilizing an accu-

rate syntactic parser. On CLANG, SYNSEM outperformed all other systems

except SCISSOR which requires extra SAPT annotation. On GEOQUERY,

when utilizing accurate syntactic parses, SYNSEM is competitive to other se-

mantic parsers.

• SYNSEM significantly improves results with limited training data by using

an accurate syntactic parser to provide syntactic knowledge; the quality of

syntactic parsing becomes critically important with limited training data.

• SYNSEM significantly improves results on long sentences when syntactic

parses can provide the basic predicate-argument structure which is hard to

learn for parsers based on semantic grammars.

• When sentences are short, utilizing the syntactic structure predefined in a

syntactic parse or SAPT (Chapter 3) is sometimes less flexible than learning

directly from the NL sentences.

• SYNSEM is robust to syntactic errors.

We have shown that by utilizing a syntax-driven approach, SYNSEM is ca-

pable of learning accurate semantic parsers based on automated syntactic parsers.
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On the other hand, we note that automated syntactic parses have also been used in

the semantic-grammar-based parsers to learn semantic production rules (see Section

2.4.3). SILT (Kate et al., 2005) learns a tree version of a semantic grammar where

the production rules are generalized from automated syntactic parses. Its F-measure

on CLANG is 64%, which is lower than that of SYN0, 75.71%. KRISP (Kate, 2007)

utilizes tree kernels instead of string kernels to learn a semantic grammar. No re-

sults were reported on CLANG. On the GEOQUERY using FUNQL, its performance

using both gold-standard and automated syntactic parses were lower than that of

the parser learned directly from the NL strings. Thus, it failed to demonstrate the

same strengths of utilizing syntactic parses as in SYNSEM.

5.8 Increasing Robustness to Syntactic Parsing Errors

Our SYNSEM semantic parsing algorithm uses the best parse trees from an

existing syntactic parser to drive the interpretation process. Hence, if a syntactic

parse has significant errors affecting semantic construction, the correct MR may

not be generated. For example, if the word 2 in Figure 5.3(c) is mistakenly attached

to has instead of player, the predicate-argument relation between the player and

its number cannot be analyzed. We note that in training, to be robust to syntactic

errors, our algorithm learns to construct correct MRs even from syntactic parses

with errors. In testing, however, the algorithm may fail if syntactic errors have not

been seen. In this section, we present our work on increasing robustness to syntactic

errors by utilizing the k-best syntactic parses produced by a syntactic parser.

A similar problem is also faced by a related task of semantic role label-

ing (SRL) where semantic role identification and classification are only applied to

nodes (constituents) in a syntactic parse tree. Thus, if a target word’s argument

does not have its corresponding syntactic node constructed correctly, it will not be
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k 1 2 5 10

F-measure 88.21 89.04 89.37 89.43

Table 5.6: the oracle F-measure of the syntactic parser used in SYN20 on CLANG.

identified. Much work has been done to address this problem by utilizing the k-best

syntactic parses (Gildea and Jurafsky, 2002; Sutton and McCallum, 2005; Haghighi

et al., 2005), where a syntactic parser is used to generate the k-best syntactic parses

for an example, and a base SRL system is then used to generate an SRL for each

parse. The output SRL is mainly chosen to be the one with the best score: Gildea

and Jurafsky (2002), and Haghighi et al. (2005) use simple ways to combine the

scores from the syntactic parser and the SRL system, while Sutton and McCallum

(2005) also learn a sophisticated reranking system to rank the candidate SRLs. All

approaches fail to show improvement on this task.

In our experiments, we adopted a similar simple methodology for utilizing

multiple syntactic parses in testing. First, Bikel’s implementation of Collins’ pars-

ing model (Bikel, 2004) is used to generate the best k syntactic parses for each test

example (beam width = 104). Second, the learned SYNSEM algorithm is used to

generate an MR for each syntactic parse, starting from the best until a complete

MR is constructed. Finally, the complete MR is returned as the MR of the example.

For experimental setting, we applied the semantic parser SYN20 to CLANG.

Generally, more accurate syntactic parses generate more accurate MRs (cf.

Section 5.7). Thus, to decide k, we first measured the oracle performance of the

syntactic parser used in SYN20, where the oracle picks the syntactic parse with the

highest F-measure among the k parses. If utilizing more syntactic parses do not

improve the oracle syntactic parser, it may also fail to improve the semantic parser.

Table 5.6 summarizes the oracle F-measure on CLANG as a function of number k,
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Precision Recall F-measure

SYN20 85.37 70.00 76.92

SYN20+ 85.65 71.67 78.04

Table 5.7: Performance of the augmented semantic parser SYN20+ on CLANG

(Oracle recall: 72.00).

It shows that increasing k above 5 only slightly improves the syntactic parser, thus

k is set to be 10 in our experiment, where 278 (total 300) examples have their oracle

parses scored the highest by the original syntactic parser.

Table 5.7 shows the performance of the semantic parser Syn20 augmented

with the simple approach previously proposed (Syn20+). The results show a slight,

but not statistically significant (based on paired t-test), increase in the performance.

To better understand the results, we measured the oracle recall of SYN20+ (k =

10) where if any of the MRs constructed from the syntactic parses were correct, the

example was also correct. This is the optimal recall any reranking approach can

achieve using the same base semantic parser. It is found that the recall achieved by

the simple approach (71.67%) is very close to the oracle recall (72%), thus more

sophisticated reranking approaches will not help. Surprisingly, the possible im-

provement between this oracle recall and the recall using the top one syntactic parse

(70%) is only 2%.

Besides reranking the multiple parses from a single syntactic parser, other

approaches have also been employed to reduce the effect of syntactic errors. In

semantic parsing, Popescu et al. (2004) utilize a hand-crafted semantic lexicon

and a set of semantic constraints to correct syntactic errors of a syntactic parse.

In SRL, Pradhan et al. (2005b) and Koomen et al. (2005) perform fine granuality

combination from semantic roles generated using multiple syntactic outputs. We are

also interested in utilizing multiple alternative syntactic parses in training SYNSEM.
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5.9 Conclusion

We have presented a new approach to learning a semantic parser that uti-

lizes an existing syntactic parser to drive compositional semantic interpretation. By

exploiting an existing syntactic parser trained on a large treebank, our approach

produces improved results on standard corpora, particularly when training data is

limited or sentences are long. The approach also exploits methods from statistical

MT (word alignment) and therefore integrates techniques from statistical syntactic

parsing, MT, and compositional semantics to produce an effective semantic parser.
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Chapter 6

Future Work

In this chapter, we discuss several future research directions for this thesis.

6.1 Improving SCISSOR and SYNSEM

There are a number of ways in which SCISSOR and SYNSEM can be im-

proved. SCISSOR uses a generative model for semantic parsing, which has a lim-

ited choice of features due to its generative nature. In Chapter 4, we have exper-

imented with improving its performance by using discriminative reranking, which

explores arbitrary global features. In the future, we would like to experiment with

discriminative methods (Finkel et al., 2008) for semantic parsing, which have more

flexibility in selecting features.

Another potential improvement of SCISSOR is to extend it for handling

MRLs with logical variables. In the current SCISSOR framework, labels in SAPTs

are the combination of syntactic and semantic labels. Thus it would be hard to

directly incorporate logical variables in semantic labels, since further adding logi-

cal variables into semantic labels would make the model more complex. Alterna-

tively, the unification knowledge of logical variables can be learned in the process

that transforms SAPTs to MRs by learning composition rules similar to those in

SYNSEM.

The integrated approach in SCISSOR allows semantic information to be
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available during parsing time, so that the parser can find a globally most likely

parse for both syntactic and semantic interpretation. However, it requires the extra

annotation of SAPTs. Thus, another interesting area of future research would be

to explore an integrated parser like SCISSOR, that does not require the extra anno-

tation. In such a parser, syntax can be learned in an unsupervised manner (Klein

and Manning, 2002, 2004) under the supervision of semantic knowledge. Ideally

semantics would aid the unsupervised grammar induction. On the other hand, the

semantic parsers can also provide possible evaluation for unsupervised syntactic

parsers that is more indicative of quality.

SYNSEM exploits an existing syntactic parser to produce disambiguated

parse trees that drive the compositional semantic interpretation, thus, it has the

advantage of conveniently leveraging the progress in syntactic parsing. In this the-

sis, we utilized the Collins parser so that its results were comparable to those of

SCISSOR. In the future, we would like to experiment with syntactic parsers with

improved accuracy (Charniak and Johnson, 2005; Huang, 2008) and using diverse

grammar formalism (Riezler et al., 2002; Clark and Curran, 2004). Particularly,

we would like to experiment with dependency parsers (McDonald et al., 2005; Koo

et al., 2008) which focus on modeling word dependencies rather than phrase struc-

ture, which might be more suitable for modeling predicate-argument relations in

semantic parsing. We would also like to experiment with using many syntactic

parsers in parallel, possibly informing the same decisions (Pradhan et al., 2005b;

Koomen et al., 2005).

6.2 Semantic Parsing Utilizing Wide-coverage Semantic Repre-

sentations

SYNSEM exploits an existing syntactic parser to produce disambiguated
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parse trees that drive the compositional semantic interpretation. When based on

syntactic parse trees, SYNSEM needs to learn knowledge for syntactic variations

that represent the same meaning. For example, the following examples have varied

syntax:

Pass the ball to John.

The ball is passed to John.

for the same meaning1:

x0, ball(x0)

x1, named(x1, john, per)

x2, {pass(x2), event(x2), patient(x2, x0), to(x2,x1)}

Instead of relying on syntactic parses, a semantic parser can alternatively rely on

wide-coverage meaning representations generated from syntactic parses, but with

syntactic variations normalized, to reduce the complexity of handling syntactic vari-

ations in semantic parsing. In such a parser, the system must learn to construct the

wide-coverage meaning representations to the MRs in a target MRL.

Combinatory Categorial Grammar (CCG) (Steedman, 2000) has an appeal-

ing integrated treatment of syntax and semantics, in which linguistic phenomena

including long dependencies are well addressed. By using CCG, wide-coverage

meaning representations can be practically generated from syntactic parses (Hock-

enmaier et al., 2004; Curran et al., 2007). Boxer (Curran et al., 2007) is such

a wide-coverage compositional semantic tool that takes a CCG derivation output

from a high performance CCG parser (Clark and Curran, 2004), and generates a

1Generated using the Boxer demo at http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Demo. The

MR in Discourse Representation Theory is not strictly shown for brevity.
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semantic meaning representation with syntactic variances removed, including long-

dependency variations as illustrated in the following example:

the food that John cooked

x0, food(x0)

x1, named(x1, john, per)

x2, {cook(x2), event(x2), agent(x2, x1), patient(x2, x0)}

Note systems like Boxer do not handle word senses or map words to a formal on-

tology.

By using wide-coverage meaning representations as input instead of NLs

or syntactic parses, semantic parsers such as WASP and SYNSEM can reduce the

complexity in learning syntactic variations, and therefore hopefully learn more ef-

ficiently.

6.3 Utilizing Semantic Role Labeling for Semantic Parsing

Semantic role labeling (SRL) (Gildea and Palmer, 2002) is the task of iden-

tifying target words and their semantic roles in natural language sentences, which

is an important task toward natural language understanding beyond syntactic pars-

ing. With the availability of the large open-domain annotated SRL corpora such as

FrameNet (Fillmore et al., 2002), PropBank (Palmer et al., 2005), and OntoNotes

(Hovy et al., 2006), semantic role labeling has made fast progress (Carreras and

Marquez, 2004, 2005) in recent years. Consider the following example with the

PropBank style SRL annotation paired with its MR in CLANG2:

2The semantic roles were generated using the SRL demo at http://l2r.cs.uiuc.edu/ cogcomp/srl-

demo.php.
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[A0Player 2] [V passes] [A1the ball] [A2to player 3]

(do (player our {2}) (pass (player our {3})))

where the target verb is passes, the semantic role A0 means the giver, A1 means

the things given, and A2 means the entity given to. Although the outputs of SRL

are not complete and directly executable, they still extract interesting semantic re-

lations between target words and their semantic roles, which often correlate with

the predicate-argument relations in semantic parsing. For example, in the exam-

ple above, the semantic role A2 of the target verb passes correlates with the only

argument of the predicate P PASS in the MR.

Thus, beyond syntactic parsing, semantic role labeling can provide a layer

of semantic information for semantic parsing. It would be interesting to investigate

possible ways to leverage SRL in semantic parsing. One direction could be to

provide discriminative features for semantic parsing. For example, in SYNSEM,

when composing the meanings of passes the ball and to player 3, since in the SRL,

the phrase to player 3 is the recipient of the word passes, it could suggest that in the

MR, it should also fill the only argument of the predicate P PASS (passes). Another

direction could be to provide improved generalization for semantic parsing. For

example, if we see the following sentence in testing:

[A0Player 2] [V passes] [A1the ball] [A2to the goalie].

where the goalie is not seen as a player in training, since in the SRL, to the goalie

also fills passes’ semantic role A2 as in the previous example, we could confidently

conclude that in the MR, it also represents a player which fills the only argument of

the predicate P PASS.
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6.4 Open-domain Natural Language Understanding

Until now, most work on deep natural language understanding has focused

on a specific domain (Wong and Mooney, 2006; Kate and Mooney, 2006; Zettle-

moyer and Collins, 2007), where domain knowledge can be represented in a mean-

ing representation language; while open-domain natural language understanding

has mainly focused on relatively shallow tasks such as information extraction and

semantic role labeling.

A major challenge to open-domain semantic parsing is that its intricacy

makes it difficult, if not possible, to design a global meaning representation lan-

guage for open domains. For example, what should be the concepts and their se-

mantic relations? In response to this, Poon and Domingos (2009) propose unsu-

pervised semantic parsing which avoids the difficulty of defining an open-domain

MRL, assuming that the concepts in open domains can be viewed as clusters of syn-

tactic or lexical variations of the same meaning, and their relations can be defined

by their syntactic relations. For example, the concept of C BUY can be viewed as

the cluster of buys, acquires, ’s purchase of, as in the following sentences:

Microsoft buys PowerSet

Microsoft acquires PowerSet

Microsoft’s purchase of PowerSet

MacCartney and Manning (2008) propose utilizing natural logic which supports

directly reasoning in natural language.

These two approaches represent interesting work on open-domain natu-

ral language understanding. However, they largely ignored the rich open-domain

knowledge base currently available, such as WordNet (Fellbaum, 1998), which

roughly defines the concepts in open domains, and PropBank (Palmer et al., 2005)
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and OntoNotes (Hovy et al., 2006), which roughly define the semantic relations

among the concepts. There have been research efforts aimed at integrating these

concepts and relation knowledge bases, such as in Omega (Philpot et al., 2005).

Moreover, Wikipedia can be used to provide a large, constantly evolving ontol-

ogy (Strube and Ponzetto, 2007). In future work, we would like to explore the

possibilities of leveraging these open-domain knowledge base for deep language

understanding. For example, we would like to see if the knowledge base can pro-

vide disambiguation knowledge and expectations for concept clustering in Poon

and Domingos (2009), or if the knowledge learned for one lexical word or concept

can be propagated to other words or concepts according to their relations in the

knowledge base, so that we can learn efficiently. In turn, the knowledge learned in

these systems can also be used to enrich the knowledge base, which forms an inte-

grated growth cycle of knowledge base and natural language understanding. This

interesting idea has been investigated in Barker et al. (2007).
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Chapter 7

Conclusion

Natural language understanding is a fundamental problem in natural lan-

guage processing in terms of its theoretical and empirical importance. In recent

years, startling progress has been made at different levels of natural language pro-

cessing tasks which provides great opportunity for deeper natural language under-

standing. In this thesis, we focused on semantic parsing, which maps a natural

language sentence into a complete, formal meaning representation in a meaning

representation language. We presented two novel learned syntax-based semantic

parsers using statistical syntactic parsing techniques, motivated by the following

two reasons. First, the syntax-based semantic parsing is theoretically well-founded

in computational semantics. Second, adopting a syntax-based approach allows us

to directly leverage the enormous progress made in statistical syntactic parsing.

We first introduced SCISSOR (Chapter 3), an integrated syntactic-semantic

parsing approach, in which the Collins (1997) syntactic parser is augmented with

semantic parameters to produce a semantically-augmented parse tree; this tree is

then translated into a final formal meaning representation. This integrated ap-

proach allows semantic information to be available during parsing time, so that

the parser can find a globally most likely parse for both syntactic and semantic in-

terpretation to obtain an accurate combined syntactic-semantic analysis. Training

SCISSOR required that sentences be annotated with SAPTs as well as MRs. We

reported experimental results on two real applications, an interpreter for coaching
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instructions in robotic soccer (CLANG) and a natural-language database interface

(GEOQUERY). On CLANG, SCISSOR substantially outperformed all other systems;

on GEOQUERY, it was comparable to all other semantic parsers except the recent

Lu et al. (2008). Analysis showed that the main improvement of SCISSOR over

other systems was on long sentences, where the annotated SAPTs provided the

knowledge of accurate meaning composition structure; while it is hard for other ap-

proaches to infer the syntactic knowledge directly from sentences only paired with

MRs when sentences are long.

The generative model in SCISSOR has a limited choice of features due to

its generative nature, and its performance can potentially be improved by using

discriminative reranking, which explores arbitrary global features. In chapter 4, we

investigated discriminative reranking upon SCISSOR, examining if global features

used for reranking syntactic parsing can be adapted for semantic parsing by creating

similar semantic features based on the mapping between syntax and semantics. We

reported experimental results on CLANG and GEOQUERY, showing that reranking

improved the performance on CLANG but not on GEOQUERY, where sentences are

short which are less likely for global features to show improvement on.

We then introduced the second semantic parser called SYNSEM (Chapter

5), which does not require the SAPT annotation as in SCISSOR, but exploits an ex-

isting syntactic parser instead to produce disambiguated parse trees that drive the

compositional semantic interpretation. With the advancement of statistical syntac-

tic parsing, accurate syntactic parsers are available for many languages and could

potentially be used to learn more effective semantic analyzers. Thus, this pipeline

approach allows semantic parsing to conveniently leverage the progress in syntac-

tic parsing. We reported experimental results on CLANG and GEOQUERY. On

CLANG, SYNSEM outperformed all other systems except SCISSOR which requires
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extra SAPT annotation; on GEOQUERY, when utilizing accurate syntactic parses,

SYNSEM is competitive to all other semantic parsers. Analysis showed that SYNSEM

significantly improved results with limited training data by using an accurate syn-

tactic parser providing syntactic knowledge; similarly to SCISSOR, it also improved

results on long sentences due to the prior syntax knowledge. It has also been shown

to be robust to syntactic errors.

In these two syntax-based approaches, the knowledge of traditional syntac-

tic analysis comes in the form of annotated SAPTs and syntactic parses from an ex-

isting syntactic parser, incorporating the knowledge of accurate sentence structures

for compositional semantic analysis. When sentences are short, the knowledge of

syntax encoded in SCISSOR and SYNSEM can feasibly be learned directly from NL

sentences paired with their MRs, as illustrated in the GEOQUERY domain. In fact,

the approaches utilizing non-syntactic knowledge (Zettlemoyer and Collins, 2005;

Wong and Mooney, 2006; Kate and Mooney, 2006) can sometimes be even more

flexible in exploring optional feasible sentence structures for meaning composition,

and in finding the best one which is more isomorphic to the underlying MR struc-

ture. However, when sentences are long, it gets harder for these approaches to infer

the syntactic knowledge directly from sentences paired with MRs. SCISSOR and

SYNSEM show their strengths here by using prior knowledge of syntactic analysis

to guide the basic predicate-argument structure for meaning composition, which

outweighs the lost flexibility constrained by this knowledge.

Overall, this thesis contributed in improving the task of semantic parsing:

while the mainstream of the syntax-based approaches for semantic parsing is hand-

built, this thesis proposed two state-of-the-art learned semantic parsers based on

syntax which leverage both the techniques and results of the enormous progress

made in statistical syntactic parsing. We showed that the main improvement of
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SCISSOR and SYNSEM over other systems is on long sentences, where the prior

syntactic knowledge given in the form of annotated SAPTs or syntactic parses

from an existing parser helps semantic composition. When comparing SCISSOR

and SYNSEM, we showed that SCISSOR outperformed SYNSEM when given suffi-

cient training data, by utilizing the annotated SAPTs. However, when given limited

training data, SYNSEM gave the best state-of-the-art results by using an accurate

syntactic parser as syntactic knowledge.
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Nancy A. Ide and Jean Jéronis (1998). Introduction to the special issue on word

sense disambiguation: The state of the art. Computational Linguistics, 24(1):1–

40.

Thorsten Joachims (2002). Optimizing search engines using clickthrough data. In

Proceedings of the Eighth ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining (KDD-2002). Edmonton, Canada.

Rohit J. Kate (2007). Learning for Semantic Parsing with Kernels under Various

Forms of Supervision. Ph.D. thesis, Department of Computer Sciences, Univer-

sity of Texas, Austin, TX.

138



Rohit J. Kate and Raymond J. Mooney (2006). Using string-kernels for learning

semantic parsers. In Proceedings of the 21st International Conference on Com-

putational Linguistics and 44th Annual Meeting of the Association for Computa-

tional Linguistics (COLING/ACL-06), pp. 913–920. Sydney, Australia.

Rohit J. Kate, Yuk Wah Wong and R. J. Mooney (2005). Learning to transform

natural to formal languages. In Proceedings of the Twentieth National Conference

on Artificial Intelligence (AAAI-05), pp. 1062–1068. Pittsburgh, PA.

Dan Klein and Chris Manning (2002). A generative constituent-context model for

improved grammar induction. In Proceedings of the 40th Annual Meeting of the

Association for Computational Linguistics (ACL-2002). Philadelphia, PA.

Dan Klein and Christopher D. Manning (2004). Corpus-based induction of syntac-

tic structure: Models of dependency and constituency. In Proceedings of the 42nd

Annual Meeting of the Association for Computational Linguistics (ACL-04), pp.

479–486. Barcelona, Spain.

Terry Koo, Xavier Carreras and Michael Collins (2008). Simple semi-supervised

dependency parsing. In Proceedings of the 46th Annual Meeting of the Associa-

tion for Computational Linguistics (ACL-08), pp. 595–603. Columbus,OH.

Peter Koomen, Vasin Punyakanok, Dan Roth and Wen-tau Yih (2005). Generalized

inference with multiple semantic role labeling systems. In Proceedings of the

Ninth Conference on Computational Natural Language Learning (CoNLL-2005),

pp. 181–184. Ann Arbor, MI.

Gregory Kuhlmann, Peter Stone, Raymond J. Mooney and Jude W. Shavlik (2004).

Guiding a reinforcement learner with natural language advice: Initial results in

139



RoboCup soccer. In Proceedings of the AAAI-04 Workshop on Supervisory Con-

trol of Learning and Adaptive Systems. San Jose, CA.

Roland Kuhn and Renato De Mori (1995). The application of semantic classifi-

cation trees to natural language understanding. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 17(5):449–460.

Iddo Lev, Bill MacCartney, Christopher D. Manning and Roger Levy (2004). Solv-

ing logic puzzles: From robust processing to precise semantics. In Proceedings

of the Second Workshop on Text Meaning and Interpretation, ACL-04. Barcelona,

Spain.

Chang Liu, Hui Wang, Sally Mcclean, Jun Liu and Shengli Wu (2007). Syntactic

information retrieval. In Proceedings of the 2007 IEEE International Conference

on Granular Computing. Silicon Valley, CA.

Wei Lu, Hwee Tou Ng, Wee Sun Lee and Luke S. Zettlemoyer (2008). A genera-

tive model for parsing natural language to meaning representations. In Proc. of

the Conf. on Empirical Methods in Natural Language Processing (EMNLP-08).

Honolulu, Hawaii.

Bill MacCartney and Christopher D. Manning (2008). Modeling semantic contain-

ment and exclusion in natural language inference. In Proceedings of the 22nd

International Conference on Computational Linguistics (COLING-08), pp. 521–

528. Manchester, UK.

Klaus Macherey, Franz Josef Och and Hermann Ney (2001). Natural language

understanding using statistical machine translation. In Proceedings of the 7th

European Conference on Speech Communication and Technology (EuroSpeech-

01), pp. 2205–2208. Aalborg, Denmark.

140



Christopher D. Manning and Hinrich Schütze (1999). Foundations of Statistical

Natural Language Processing. MIT Press, Cambridge, MA.

Mitchell P. Marcus, Beatrice Santorini and Mary A. Marcinkiewicz (1993). Build-

ing a large annotated corpus of English: The Penn treebank. Computational

Linguistics, 19(2):313–330.

Ryan McDonald, Fernando Pereira, Kiril Ribarov and Jan Hajic̆ (2005). Non-

projective dependency parsing using spanning tree algorithms. In Proceedings

of the Human Language Technology Conference and Conference on Empirical

Methods in Natural Language Processing (HLT/EMNLP-05), pp. 523–530. Van-

couver, BC.

Paola Merlo and Gabriele Musillo (2008). Semantic parsing for high-precision

semantic role labelling. In Proceedings of the Twelfth Conference on Computa-

tional Natural Language Learning (CoNLL-2008), pp. 1–8. Manchester,UK.

Scott Miller, Robert Bobrow, Robert Ingria and Richard Schwartz (1994). Hidden

understanding models of natural language. In Proceedings of the 32nd Annual

Meeting of the Association for Computational Linguistics (ACL-94), pp. 25–32.

Scott Miller, Heidi Fox, Lance A. Ramshaw and Ralph M. Weischedel (2000). A

novel use of statistical parsing to extract information from text. In Proceedings

of the Meeting of the North American Association for Computational Linguistics,

pp. 226–233. Seattle, Washington.

Scott Miller, David Stallard, Robert Bobrow and Richard Schwartz (1996). A fully

statistical approach to natural language interfaces. In Proceedings of the 34th

Annual Meeting of the Association for Computational Linguistics (ACL-96), pp.

55–61. Santa Cruz, CA.

141



Yusuke Miyao and Jun’ichi Tsujii (2002). Maximum entropy estimation for feature

forests. In Proc. of Human Language Technology Conf.(HLT-2002). San Diego,

CA.

Yusuke Miyao and Jun’ichi Tsujii (2005). Probabilistic disambiguation models for

wide-coverage HPSG parsing. In Proceedings of the 43nd Annual Meeting of

the Association for Computational Linguistics (ACL-05), pp. 83–90. Ann Arbor,

Michigan.

Richard Montague (1970). Universal grammar. Theoria, 36:373–398.

Stephen H. Muggleton, ed. (1992). Inductive Logic Programming. Academic Press,

New York, NY.

Jorge Nocedal (1980). Updating quasi-Newton matrices with limited storage. Math-

ematics of Computation, 35(151):773–782.

Franz Josef Och, Daniel Gildea, Sanjeev Khudanpur, Anoop Sarkar, Kenji Yamada,

Alex Fraser, Shankar Kumar, Libin Shen, David Smith, Katherine Eng, Viren

Jain, Zhen Jin and Dragomir Radev (2004). A smorgasbord of features for sta-

tistical machine translation. In Proceedings of Human Language Technology

Conference / North American Association for Computational Linguistics Annual

Meeting (HLT-NAACL-2004), pp. 161–168. Boston, MA.

Franz Josef Och and Hermann Ney (2003). A systematic comparison of various

statistical alignment models. Computational Linguistics, 29(1):19–51.
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