191,132 research outputs found

    Going Deeper with Convolutional Neural Network for Intelligent Transportation

    Get PDF
    Over last several decades, computer vision researchers have been devoted to find good feature to solve different tasks, object recognition, object detection, object segmentation, activity recognition and so forth. Ideal features transform raw pixel intensity values to a representation in which these computer vision problems are easier to solve. Recently, deep feature from covolutional neural network(CNN) have attracted many researchers to solve many problems in computer vision. In the supervised setting, these hierarchies are trained to solve specific problems by minimizing an objective function for different tasks. More recently, the feature learned from large scale image dataset have been proved to be very effective and generic for many computer vision task. The feature learned from recognition task can be used in the object detection task. This work aims to uncover the principles that lead to these generic feature representations in the transfer learning, which does not need to train the dataset again but transfer the rich feature from CNN learned from ImageNet dataset. This work aims to uncover the principles that lead to these generic feature representations in the transfer learning, which does not need to train the dataset again but transfer the rich feature from CNN learned from ImageNet dataset. We begin by summarize some related prior works, particularly the paper in object recognition, object detection and segmentation. We introduce the deep feature to computer vision task in intelligent transportation system. First, we apply deep feature in object detection task, especially in vehicle detection task. Second, to make fully use of objectness proposals, we apply proposal generator on road marking detection and recognition task. Third, to fully understand the transportation situation, we introduce the deep feature into scene understanding in road. We experiment each task for different public datasets, and prove our framework is robust

    Improving Deep Representation Learning with Complex and Multimodal Data.

    Full text link
    Representation learning has emerged as a way to learn meaningful representation from data and made a breakthrough in many applications including visual object recognition, speech recognition, and text understanding. However, learning representation from complex high-dimensional sensory data is challenging since there exist many irrelevant factors of variation (e.g., data transformation, random noise). On the other hand, to build an end-to-end prediction system for structured output variables, one needs to incorporate probabilistic inference to properly model a mapping from single input to possible configurations of output variables. This thesis addresses limitations of current representation learning in two parts. The first part discusses efficient learning algorithms of invariant representation based on restricted Boltzmann machines (RBMs). Pointing out the difficulty of learning, we develop an efficient initialization method for sparse and convolutional RBMs. On top of that, we develop variants of RBM that learn representations invariant to data transformations such as translation, rotation, or scale variation by pooling the filter responses of input data after a transformation, or to irrelevant patterns such as random or structured noise, by jointly performing feature selection and feature learning. We demonstrate improved performance on visual object recognition and weakly supervised foreground object segmentation. The second part discusses conditional graphical models and learning frameworks for structured output variables using deep generative models as prior. For example, we combine the best properties of the CRF and the RBM to enforce both local and global (e.g., object shape) consistencies for visual object segmentation. Furthermore, we develop a deep conditional generative model of structured output variables, which is an end-to-end system trainable by backpropagation. We demonstrate the importance of global prior and probabilistic inference for visual object segmentation. Second, we develop a novel multimodal learning framework by casting the problem into structured output representation learning problems, where the output is one data modality to be predicted from the other modalities, and vice versa. We explain as to how our method could be more effective than maximum likelihood learning and demonstrate the state-of-the-art performance on visual-text and visual-only recognition tasks.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113549/1/kihyuks_1.pd

    Self-Organization of Spiking Neural Networks for Visual Object Recognition

    Get PDF
    On one hand, the visual system has the ability to differentiate between very similar objects. On the other hand, we can also recognize the same object in images that vary drastically, due to different viewing angle, distance, or illumination. The ability to recognize the same object under different viewing conditions is called invariant object recognition. Such object recognition capabilities are not immediately available after birth, but are acquired through learning by experience in the visual world. In many viewing situations different views of the same object are seen in a tem- poral sequence, e.g. when we are moving an object in our hands while watching it. This creates temporal correlations between successive retinal projections that can be used to associate different views of the same object. Theorists have therefore pro- posed a synaptic plasticity rule with a built-in memory trace (trace rule). In this dissertation I present spiking neural network models that offer possible explanations for learning of invariant object representations. These models are based on the following hypotheses: 1. Instead of a synaptic trace rule, persistent firing of recurrently connected groups of neurons can serve as a memory trace for invariance learning. 2. Short-range excitatory lateral connections enable learning of self-organizing topographic maps that represent temporal as well as spatial correlations. 3. When trained with sequences of object views, such a network can learn repre- sentations that enable invariant object recognition by clustering different views of the same object within a local neighborhood. 4. Learning of representations for very similar stimuli can be enabled by adaptive inhibitory feedback connections. The study presented in chapter 3.1 details an implementation of a spiking neural network to test the first three hypotheses. This network was tested with stimulus sets that were designed in two feature dimensions to separate the impact of tempo- ral and spatial correlations on learned topographic maps. The emerging topographic maps showed patterns that were dependent on the temporal order of object views during training. Our results show that pooling over local neighborhoods of the to- pographic map enables invariant recognition. Chapter 3.2 focuses on the fourth hypothesis. There we examine how the adaptive feedback inhibition (AFI) can improve the ability of a network to discriminate between very similar patterns. The results show that with AFI learning is faster, and the network learns selective representations for stimuli with higher levels of overlap than without AFI. Results of chapter 3.1 suggest a functional role for topographic object representa- tions that are known to exist in the inferotemporal cortex, and suggests a mechanism for the development of such representations. The AFI model implements one aspect of predictive coding: subtraction of a prediction from the actual input of a system. The successful implementation in a biologically plausible network of spiking neurons shows that predictive coding can play a role in cortical circuits

    Learning to Generate and Refine Object Proposals

    Get PDF
    Visual object recognition is a fundamental and challenging problem in computer vision. To build a practical recognition system, one is first confronted with high computation complexity due to an enormous search space from an image, which is caused by large variations in object appearance, pose and mutual occlusion, as well as other environmental factors. To reduce the search complexity, a moderate set of image regions that are likely to contain an object, regardless of its category, are usually first generated in modern object recognition subsystems. These possible object regions are called object proposals, object hypotheses or object candidates, which can be used for down-stream classification or global reasoning in many different vision tasks like object detection, segmentation and tracking, etc. This thesis addresses the problem of object proposal generation, including bounding box and segment proposal generation, in real-world scenarios. In particular, we investigate the representation learning in object proposal generation with 3D cues and contextual information, aiming to propose higher-quality object candidates which have higher object recall, better boundary coverage and lower number. We focus on three main issues: 1) how can we incorporate additional geometric and high-level semantic context information into the proposal generation for stereo images? 2) how do we generate object segment proposals for stereo images with learning representations and learning grouping process? and 3) how can we learn a context-driven representation to refine segment proposals efficiently? In this thesis, we propose a series of solutions to address each of the raised problems. We first propose a semantic context and depth-aware object proposal generation method. We design a set of new cues to encode the objectness, and then train an efficient random forest classifier to re-rank the initial proposals and linear regressors to fine-tune their locations. Next, we extend the task to the segment proposal generation in the same setting and develop a learning-based segment proposal generation method for stereo images. Our method makes use of learned deep features and designed geometric features to represent a region and learns a similarity network to guide the superpixel grouping process. We also learn a ranking network to predict the objectness score for each segment proposal. To address the third problem, we take a transformation-based approach to improve the quality of a given segment candidate pool based on context information. We propose an efficient deep network that learns affine transformations to warp an initial object mask towards nearby object region, based on a novel feature pooling strategy. Finally, we extend our affine warping approach to address the object-mask alignment problem and particularly the problem of refining a set of segment proposals. We design an end-to-end deep spatial transformer network that learns free-form deformations (FFDs) to non-rigidly warp the shape mask towards the ground truth, based on a multi-level dual mask feature pooling strategy. We evaluate all our approaches on several publicly available object recognition datasets and show superior performance

    Visual pathways from the perspective of cost functions and multi-task deep neural networks

    Get PDF
    Vision research has been shaped by the seminal insight that we can understand the higher-tier visual cortex from the perspective of multiple functional pathways with different goals. In this paper, we try to give a computational account of the functional organization of this system by reasoning from the perspective of multi-task deep neural networks. Machine learning has shown that tasks become easier to solve when they are decomposed into subtasks with their own cost function. We hypothesize that the visual system optimizes multiple cost functions of unrelated tasks and this causes the emergence of a ventral pathway dedicated to vision for perception, and a dorsal pathway dedicated to vision for action. To evaluate the functional organization in multi-task deep neural networks, we propose a method that measures the contribution of a unit towards each task, applying it to two networks that have been trained on either two related or two unrelated tasks, using an identical stimulus set. Results show that the network trained on the unrelated tasks shows a decreasing degree of feature representation sharing towards higher-tier layers while the network trained on related tasks uniformly shows high degree of sharing. We conjecture that the method we propose can be used to analyze the anatomical and functional organization of the visual system and beyond. We predict that the degree to which tasks are related is a good descriptor of the degree to which they share downstream cortical-units.Comment: 16 pages, 5 figure

    The Neural Representation Benchmark and its Evaluation on Brain and Machine

    Get PDF
    A key requirement for the development of effective learning representations is their evaluation and comparison to representations we know to be effective. In natural sensory domains, the community has viewed the brain as a source of inspiration and as an implicit benchmark for success. However, it has not been possible to directly test representational learning algorithms directly against the representations contained in neural systems. Here, we propose a new benchmark for visual representations on which we have directly tested the neural representation in multiple visual cortical areas in macaque (utilizing data from [Majaj et al., 2012]), and on which any computer vision algorithm that produces a feature space can be tested. The benchmark measures the effectiveness of the neural or machine representation by computing the classification loss on the ordered eigendecomposition of a kernel matrix [Montavon et al., 2011]. In our analysis we find that the neural representation in visual area IT is superior to visual area V4. In our analysis of representational learning algorithms, we find that three-layer models approach the representational performance of V4 and the algorithm in [Le et al., 2012] surpasses the performance of V4. Impressively, we find that a recent supervised algorithm [Krizhevsky et al., 2012] achieves performance comparable to that of IT for an intermediate level of image variation difficulty, and surpasses IT at a higher difficulty level. We believe this result represents a major milestone: it is the first learning algorithm we have found that exceeds our current estimate of IT representation performance. We hope that this benchmark will assist the community in matching the representational performance of visual cortex and will serve as an initial rallying point for further correspondence between representations derived in brains and machines.Comment: The v1 version contained incorrectly computed kernel analysis curves and KA-AUC values for V4, IT, and the HT-L3 models. They have been corrected in this versio

    ShapeCodes: Self-Supervised Feature Learning by Lifting Views to Viewgrids

    Full text link
    We introduce an unsupervised feature learning approach that embeds 3D shape information into a single-view image representation. The main idea is a self-supervised training objective that, given only a single 2D image, requires all unseen views of the object to be predictable from learned features. We implement this idea as an encoder-decoder convolutional neural network. The network maps an input image of an unknown category and unknown viewpoint to a latent space, from which a deconvolutional decoder can best "lift" the image to its complete viewgrid showing the object from all viewing angles. Our class-agnostic training procedure encourages the representation to capture fundamental shape primitives and semantic regularities in a data-driven manner---without manual semantic labels. Our results on two widely-used shape datasets show 1) our approach successfully learns to perform "mental rotation" even for objects unseen during training, and 2) the learned latent space is a powerful representation for object recognition, outperforming several existing unsupervised feature learning methods.Comment: To appear at ECCV 201
    • …
    corecore