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Vision research has been shaped by the seminal insight that we can understand the

higher-tier visual cortex from the perspective of multiple functional pathways with

different goals. In this paper, we try to give a computational account of the functional

organization of this system by reasoning from the perspective of multi-task deep neural

networks. Machine learning has shown that tasks become easier to solve when they are

decomposed into subtasks with their own cost function. We hypothesize that the visual

system optimizes multiple cost functions of unrelated tasks and this causes the emergence

of a ventral pathway dedicated to vision for perception, and a dorsal pathway dedicated to

vision for action.

To evaluate the functional organization in multi-task deep neural networks, we propose

a method that measures the contribution of a unit towards each task, applying it to two

networks that have been trained on either two related or two unrelated tasks, using an

identical stimulus set. Results show that the network trained on the unrelated tasks shows

a decreasing degree of feature representation sharing towards higher-tier layers while the

network trained on related tasks uniformly shows high degree of sharing.

We conjecture that the method we propose can be used to analyze the anatomical and

functional organization of the visual system and beyond. We predict that the degree to

which tasks are related is a good descriptor of the degree to which they share downstream

cortical-units.

© 2017 Elsevier Ltd. All rights reserved.
hology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018 WB, Amsterdam, The

.S. Scholte).

rved.

https://core.ac.uk/display/301642592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hsscholte@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2017.09.019&domain=pdf
www.sciencedirect.com/science/journal/00109452
www.elsevier.com/locate/cortex
https://doi.org/10.1016/j.cortex.2017.09.019
https://doi.org/10.1016/j.cortex.2017.09.019
https://doi.org/10.1016/j.cortex.2017.09.019


c o r t e x 9 8 ( 2 0 1 8 ) 2 4 9e2 6 1250
1. Introduction

The visual system is described as consisting of two parallel

pathways. Research by Gross, Mishkin et al, integrating in-

sights from lesion (Newcombe, 1969) and anatomical studies

(Schneider, 1969), showed that these pathways emerge

beyond the striate cortex with one involved in the identifica-

tion of objects projecting ventrally, and the other involved in

localization of objects, projecting to the parietal cortex (Gross

& Mishkin, 1977; Mishkin, Ungerleider, & Macko, 1983). From

the start of the dual-pathway theory, multiple pathways were

believed to be computationally efficient (Gross & Mishkin,

1977). Support for this idea comes from research using artifi-

cial networks with one hidden layer, showing that location

and identity are better learnedwhenunits in the hidden layers

are uniquely assigned to one of these functions (Jacobs,

Jordan, & Barto, 1991; Rueckl, Cave, & Kosslyn, 1989).

In the early nineties, Goodale & Milner argued that, on the

basis of neuropsychological, electrophysiological and behav-

ioral evidence, these pathways should be understood as have

different goals. The ventral pathway (“vision for perception”)

is involved in computing the transformations necessary for

the identification and recognition of objects. The dorsal

pathway (“vision for action”) is involved in sensorimotor

transformations for visually guided actions directed at these

objects (Goodale & Milner, 1992).

It was recently suggested that the brain uses a variety of

cost functions for learning (Marblestone, Wayne, & Kording,

2016). These cost functions can be highly diverse. The brain

must optimize a wide range of cost functions, such as

keeping body temperature constant or optimizing future

reward from social interactions. High-level cost functions, by

necessity, also shape other cost functions that determine the

organization of perception: a cost function that is being

optimized to minimize hunger affects the visual recognition

cost function as foods have to be recognized. Mechanisti-

cally, this could take place directly through, for instance, a

reward modulation of object recognition learning, or indi-

rectly through evolutionary pressure on the cost function

associated with object recognition learning. In this paper, we

try to understand how multiple pathways in the visual cortex

might evolve from the perspective of Deep Neural Networks

(DNNs, see Box 1) and cost functions (see Box 2), and what

this implies for how object information is stored in these

networks.

We start with a discussion of the relevance of DNNs

(LeCun, Bengio, & Hinton, 2015; Schmidhuber, 2015) and,

following Marblestone (Marblestone et al., 2016), of cost

functions for understanding the brain in Section 2. We extend

our discussion with the importance of optimizing different

cost functions simultaneously, presenting a hypothesis on the

relationship between relatedness of tasks and the degree of

feature representation sharing.

We test this hypothesis in a computational experiment

with DNNs in Section 3 to evaluate how much its feature rep-

resentations contribute to each task. In Section 4, we discuss

the degree to which we are able to translate our experimental

findings to the division between the ventral and dorsal

pathway, the multiple functions of the ventral cortex, and the
apparent co-occurrence of both distributed and modular rep-

resentations related to object recognition.

We finish this paper with a discussion of how this frame-

work can be used experimentally to understand the human

brain while elaborating on the limitations of DNNs and cost

functions. For brevity, we do not consider models of recurrent

processing.
2. Multi-task DNNs as models of neural
information processing in the brain

Artificial neural networks are inspired by computational

principles of biological neuronal networks and are part of a

large class of machine learning models that learn feature

representations from data by optimizing a cost function. In

this section, we discuss why we believe models based on

optimizing cost functions, such as DNNs, are relevant for

understanding brain function.

2.1. Similarities in architecture and behavior between
DNNs and the brain

Alexnet (Krizhevsky, Sutskever, & Hinton, 2012), a model that

is has been used extensively in research relating DNN's to the

brain, consists of 7 layers (see Box 1). The first layer consists of

filters with small kernels that are applied to each position of

the input. In the subsequent four layers this procedure is

repeated using the output of the preceding layer. This results

in an increase in receptive field (RF) size and concurrently an

increase in the specificity of tuning (Zeiler & Fergus, 2014).

This increase of receptive field size and tuning specificity

traversing the layers resemble the general architecture of

feed-forward visual representations in the human brain

(DiCarlo, Zoccolan, & Rust, 2012; Lamme & Roelfsema, 2000).

A number of BOLD-MRI studies have revealed that the

neural activation's in early areas of visual cortex show the best

correspondence with the early layers of DNNs and that

higher-tier cortical areas show the best correspondence with

higher-tier DNN layers (Eickenberg, Gramfort, Varoquaux, &

Thirion, 2017; Güçlü & van Gerven, 2015). MEG/EEG studies

have furthermore shown that early layers of DNNs have a

peak explained variance that is earlier than higher-tier DNN

layers (Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016;

Ramakrishnan, Scholte, Smeulders, & Ghebreab, 2016). In

addition, the DNN model has been shown to predict neural

responses in IT, both fromhumans andmacaque,much better

than any other computational model (Khaligh-Razavi &

Kriegeskorte, 2014; Yamins et al., 2014).

The correspondence between DNNs and the brain begs the

question of the degree to which DNNs show ‘behavior’ similar

to humans. Early results indicate that humans andDNNs have

a similar pattern of performance in terms of the kinds of

variation (size, rotation) that make object recognition harder

or simpler (Kheradpisheh, Ghodrati, Ganjtabesh, &

Masquelier, 2016). It has also been shown that higher-tier

layers of DNNs follow human perceptual shape similarity

while the lower-tier layers strictly abide by physical similarity

(Kubilius, Bracci, & Op de Beeck, 2016). On the other hand,

DNNs are, for instance, muchmore susceptible to the addition
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Box 1
Deep Neural Networks

Artificial neural networks refer to a large class of models loosely inspired by the way brain solves problems with a large

number of interconnected units (neurons). The basic computation of a neural network unit is a weighted sum of incoming

inputs followed by an activation function i.e, a static nonlinearity (Rumelhart, McClelland, Group, & Others, 1988).

Composing a network ofmany of these basic computational units inmore than 3 layers results inwhat is usually referred

to as deep neural network (DNN). While the exact architecture of a DNN varies across applications, the one we are focusing

on is the convolutional DNN, specifically designed for inputs with high spatially-local correlation like natural images.

Convolution is hereby the process of applying a filter to each position in the image. In the first layer, these filters are able to

detect for instance edges and very simple shapes, but composing a hierarchy of these filters allows for great compositional

power to express complex features and is an important reason DNNs have proven to be so successful.

Fig. Box 1.1. Essential architecture of DNN AlexNet and filter visualization. AlexNet consists of 5 convolutional layers

represented by boxes and 3 fully connected layers of which the last is the output layer with 1000 units. The number of filters

in a layer as well as the filter dimension is noted under each box. Below are selected filters visualized to show the increasing

complexity of features they represent (adopted from Zeil & Fergus, 2014).

As determining these filters by hand is practically impossible DNNs are trained by backpropagation (LeCun et al., 1989), a

standard machine learning optimization method based on gradient descent. Given a cost function that determines for an

input and an expected output a single error value, backpropagation allows to assign a credit to each single unit in the

network to specify how much it contributed to the error.

Recent state-of-the-art neural networks have increased depth, ranging from 16 (Simonyan& Zisserman, 2014) to 152 (He,

Zhang, Ren, & Sun, 2015) layers (combined with some architectural advances). While the brain is clearly not shallow, its

depth is limited to substantially fewer computational layers considering feed-forward processing (Lamme & Roelfsema,

2000). However, it has not yet been investigated how the layers of a very deep neural network map to the human brain.

c o r t e x 9 8 ( 2 0 1 8 ) 2 4 9e2 6 1 251
of noise to input images than humans (Jang, McCormack, &

Tong, 2017) and the exact degree to which the behavior of

DNNs and humans overlap is currently a central topic of

research.

As others (Kriegeskorte, 2015; Yamins & DiCarlo, 2016), we

therefore believe that there is a strong case that DNNs can

serve as amodel for information processing in the brain. From

this perspective, using DNNs to understand the human brain

and behavior is similar to using an animal model. Like any

model, it is a far cry from a perfect reflection of reality, but it is

still useful, with unique possibilities to yield insights in the

computations underlying cortical function.

2.2. Cost functions as a metric to optimize tasks

While deep neural networks offer the representational power

to learn features from data, the actual learning process is
guided by an objective that quantifies the performance of the

model for each inputeoutput pair. Common practice in ma-

chine learning is to express such an objective as a cost func-

tion (Domingos, 2012). As Marblestone and colleagues argue,

the human brain can be thought of implementing something

very similar to cost functions to quantify the collective per-

formance of neurons and consequently to steer the learning of

representations in a direction that improves a global outcome

(Marblestone et al., 2016).

2.3. Problem simplification by task decomposition

While humans may act under a grand evolutionary objective

of staying alive long enough to reproduce, we accomplish

many small-scale objectives along the way, like guiding our

arms to our mouth to eat or plan our path through the city.

Each of these smaller objectives can be thought of as being

https://doi.org/10.1016/j.cortex.2017.09.019
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Fig. 1 e Hierarchy of tasks related to the objectives the

brain has to accomplish. To make the evolutionary goal of

Life tractable, the brain must be able to decompose it into

manageable subtasks (blue and yellow arcs). All tasks and

their cost functions effectively act on the same set of

parameters (gray semicircle), while there may be differing

degree of influence.

Box 2
Cost functions

A cost function maps a set of observable variables to a

real value representing the ‘loss’ of the system. Optimi-

zation then aims to minimize this loss, for instance by

changing tunable parameters q in the system.

While a cost function is defined as the composition of

mathematical operations, e.g., mean squared error, we

expand the definition here to include the set of observed

variables. This allows us to regard two cost functions

composed of the same mathematical operations as

distinct when the set of observed targets, in order to

solve two different objectives, is different. For a predic-

tive brain in a moving organism, the system tries to

optimize actions, and sequences thereof that minimize

one or more cost functions; these actions in turn are

specified by a plethora of parameters, like synaptic effi-

cacies and hormone levels. It is these parameters that

are adjusted to change the actions that the system takes

in a given environment to decrease the cost.

Mathematically, we can specify the collective sensory

input into the brain at any point in time as S, and the

joint output of muscle tensions as Ο. A cost function

maps the outputs Ο into a value, fðΟÞ, that is minimized

by adjusting the parameters q: learning. Multiple cost

functions arise naturally when different measured

quantities are to be optimized: if t ¼ fthirstðΟ;QÞ corre-

sponds to the degree of thirst, and the system also has to

optimize financial welfare d ¼ ffwðΟ;QÞ, the system has to

find the optimum values of theta that maximize both

functions. We can jointly optimize these two cost func-

tions by specifying a single combined cost function:

G ¼ ffwðΟ; qÞ þ lfthirstðΟ; qÞ, where l is a weight that mea-

sures the relative importance of the two cost functions.

Such joint cost functions can be learned with a single

network, where the degree to which shared representa-

tions (in the form of shared learned features) help or hurt

with the optimization task is variable (Caruana, 1998).

The shape of the cost has likely evolved such that they

help make most sense of our environment (Marblestone

et al., 2016): a loss may measure the absolute deviation

from some target value, or the square of this difference,

or any other mapping.
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governed by their own cost functions (see Fig. 1). These could

be embedded in the brain, either hard coded into the neural

substrate by evolution, by sovereign decision making, or as

part of meta-learning: learning to learn (Baxter, 1998).

It has been argued that a task becomes easier to solve if it

can be decomposed into simpler tasks (Jacobs et al., 1991;

Sutton, Precup, & Singh, 1999/8). To support their argument

they state that the simple problem of learning the absolute

value function can be decomposed into learning two linear

functions and a switching function, which leads to a model

with fewer parameters that can be trained faster.While such a

decomposition could be predefined through the neural sub-

strate, they observe in their experiments that such a
decomposition can naturally arise from competitive learning,

if the same set of parameters are optimized for multiple tasks.

As the decomposition of tasks is underdetermined, the learner

may come up with different decompositions, each time it is

trained.

The notion of decomposition has been frequently used in

machine learning literature on reinforcement learning

(Dietterich, 2000) to increase learning speed and enable the

learning of task-local optima that can be reused to learn a

superordinate goal. Very often it is even impossible to specify

the objective for a complex task so that it is a necessity to

decompose it into tractable partial objectives. An example is

the objective of vision. Finding an objective for such a broad

and vague task appears futile so that it is easier to define a

subset of tasks like figure ground segmentation, saliency and

boundaries. A noteworthy implementation of such a decom-

position is the recent DNN ‘Uber-Net’ (Kokkinos, 2016), which

solves 7 vision related tasks (boundary, surface normals, sa-

liency, semantic segmentation, semantic boundary and

human parts detection) with a single multi-scale DNN

network to reduce the memory footprint. It can be assumed

that such a multi-task training improves convergence speed

and better generalization to unseen data, something that

already has been observed on other multi-task setups related

to speech processing, vision and maze navigation (Bilen &

Vedaldi, 2016; Caruana, 1998; Dietterich, Hild, & Bakiri, 1990,

1995; Mirowski et al., 2016).
3. Functional organization in multi-task
DNNs

One hypothesis for the emergence of different functional

pathways in the visual system is that learning and develop-

ment in the cortex is under pressure ofmultiple cost functions

induced by different objectives. It has been argued that the

brain can recruit local populations of neurons to assign local

cost functions that enable fast updating of these neurons

(Marblestone et al., 2016).

https://doi.org/10.1016/j.cortex.2017.09.019
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Fig. 2 e Task relatedness and feature representation sharing in deep neural networks. Given amulti-layered neural network

with a set of feature representations q (indicated by cells) that optimize differently related tasks, we conjecture that the

degree to which representations can be shared is dependent on the generalizability, which reduces with the depth of the

network for single modality inputs. The generalizability is indicated by the strength of the color. Gray tones indicate high

generalizability, while strong colors indicate features that are tuned to one respective cost function. A: Initial, untrained

network configuration with 5 layers for a single modality input q. Cost functions qA and qB have direct access to their

respective parameters qA and qB. B: Two strongly related tasks inducing features that are generalizable to both tasks. Little

function-specificity identifiable. C: Two largely unrelated tasks. While early simple features representations can be shared,

intermediate and higher level representations are likely to be exclusive to their respective cost function due to their task-

specificity.

2 The code, data and pretrained models are available here:
https://github.com/mlosch/FeatureSharing.
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We explore in this section the ramifications of multiple

cost functions acting on the same neurons by translating the

problem to instances of multi-task DNNs sharing the same

parameters. By observing the contributions each feature rep-

resentation in a DNN has to each task, we will draw conclu-

sions about the functional separation we observe in the visual

cortex in Section 4.

3.1. Hypothesis

Given two cost functions that optimized two related tasks,

which both put pressure on the same set of parameters, we

conjecture that the parameters learnedwill be general enough

to be used for both tasks (see Fig. 2B). In contrast, we speculate

that, when the tasks are unrelated, two subsets of parameters

will emerge during learning that each lie within their task-

respective feature domain (see Fig. 2C). Because the amount

of feature representation sharing is determined by the rela-

tion between tasks, and ultimately by the statistics of the

credit assignments, we predict an upper to lower tier gradient

of feature representation sharing with the least sharing in

higher tier layers.

3.2. Training models for multiple tasks

We test this hypothesis on feature representation sharing

with DNNs trained for two tasks simultaneously. We

construct two example setups involving a pair of related tasks

(whichwe call RelNN), namely the simultaneous classification

of ordinate and subordinate categories of objects in images,

and a pair of unrelated tasks (which we call UnrelNN) namely

the classification of objects and text labels in images (see

Fig. 3). As the relatedness of tasks is not clearly defined and an

open problem (Caruana, 1998; Zhang& Yeung, 2014), the tasks

were selected based on the assumption that text recognition
in UnrelNN is mostly independent of object recognition while

in contrast ordinate level classification in RelNN is highly

dependent on the feature representations formed for subor-

dinate level classification.

3.2.1. Training setup
Both setups were implemented by training a version of Alex-

Net (Krizhevsky et al., 2012) on approximately half a million

images from the ImageNet database (Russakovsky et al., 2015)

each2. To optimize the models for two tasks simultaneously,

the output layer of AlexNet was split into two independent

layers. Bothmodels were trained on an identical set of images

consisting of 15 ordinate classes further divided into 234

subordinate classes, each image augmented with an overlay

of 3 letter labels from 15 different classes (see Fig. 3, left). The

overlays were randomly scaled, colored and positioned while

ensuring that the text is contained within the image bound-

aries. Furthermore to enable the networks to classify two

tasks at once, the output layer was split in two independent

layers (see Fig. 3, right) for which each had its own softmax

activation. For classification performance results see Table 1.

3.2.2. Measuring feature representation contribution
To determine the degree of feature representation sharing in a

neural network we measure the contribution each feature

representation has to both tasks. Our method is inspired by

the attribute contribution decomposition (Robnik-Sikonja &

Kononenko, 2008) which has recently been used to visualize

the inner workings of deep convolutional networks (Zintgraf,

Cohen, & Welling, 2016). The method is used to marginalize

out features in the input image in the shape of small image

patches, to observe the impact on the classification. In

https://github.com/mlosch/FeatureSharing
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Fig. 3 eMulti-Task-Learning setup. Left: Two example images and their corresponding classification for our example setups

of related and unrelated tasks. Right: To classify an input into two categories from different domains using AlexNet, the

output layer is split in two where each split has its own softmax activation layer.

Table 1 e Classification errors. Comparison of the error
rates of RelNN and UnrelNN on a validation set of 11,800
images. The Top-5-error is defined as the correct
prediction not being under the 5 most likely predictions.
Both models were trained for 90 epochs until convergence
with Nesterov accelerated gradient descent (Nesterov,
1983) withmomentumof .9, startingwith a learning rate of
.01 and decreasing it every 30 epochs by a factor of 10.

Top-5-error Top-5-error

Subordinate-level
recognition

Ordinate-level/text
recognition

Chance 97.9% 66.7%

RelNN 14.0% 2.9%

UnrelNN 15.2% 4.9%
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comparison, our method considers feature representations

instead of features aswe are not interested in the contribution

of particular feature instances. The interested reader is

referred to Appendix A for the definition and derivation of the

task contribution.

3.2.3. Results
We visualize the layer-wise task contributions by unrolling

the feature representations of a layer on a rectangle and col-

oring each resulting cell by the composition of its contribu-

tion. Blue is used as indicator for the subordinate-level

recognition task and yellow as indicator for the text- and

basic-level-recognition task respectively. Equal contribution

to both tasks results in grayish to white tones while little

contribution to either task causes dark to black tones (see

Fig. 4 for the color coding). A high degree of feature repre-

sentation sharing would hereby generate cells colored in the

range from black and gray to white, while low degree of

sharing would result in more pronounced and clearly distin-

guishable colors of yellow and blue.

The two visualizations in Fig. 4 show a substantial differ-

ence in feature representation contribution as the represen-

tations in layer 2 to 5 of the RelNN contribute to both tasks

much more equally than the representations of the UnrelNN.

This is in line with our expectation depicted in Fig. 2 and our

choice of setups. Contrary to our prediction, the degree of
feature representation sharing in layer 1 of the UnrelNN is

lower than expected; this can be explained by assuming that

text recognition is mostly independent of all features but

horizontal and vertical lines. Note also that most of the rep-

resentations in the fully connected layers in both setups have

only little contribution. This might seem counter-intuitive at

first sight but is an effect of the abundance of representations

coupled with the training scheme involving dropout. Dropout

significantly reduces co-dependencies between units (Dahl,

Sainath, & Hinton, 2013) resulting in only small changes in

classification probability after marginalizing out a single

representation.

We also observe that there is a dominance of blue cells

expressing low contribution to the text- and basic-level-

recognition task but high contribution to the subordinate-

level-recognition task. We conjecture that this is because the

subordinate-level-recognition task uses a larger fraction of

units to distinguish between 200 classes.

Comparing the layers of both networks, it becomes evident

that there generally is a higher degree of feature representa-

tion sharing in the RelNN consistent with the idea that relat-

edness between tasks and therefore cost functions strongly

influences the degree of feature representation sharing across

layers. More importantly, these results demonstrate that

these types of ideas can be translated, using the right image

data-sets and task-labels, into quantifiable predictions on the

degree of feature sharing that might be observed in the brain.
4. Implications of models optimized for
multiple tasks for understanding the visual
system

In Section 3 we presented an example in which the degree to

which feature representations can be shared in a neural

network depended on the relatedness of the tasks they are

optimized for. In a neural population under pressure of the

optimization for two unrelated tasks and the pressure to

optimize the length of neuronal wiring (Chklovskii &

Koulakov, 2004), a spatial segregation is likely to occur,

resulting in anatomically and functionally separate pathways.

In this section we consider to what degree we can understand

https://doi.org/10.1016/j.cortex.2017.09.019
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Fig. 4 e Composition of feature representation contribution in DNNs to dual task. (Best viewed in color) Each cell represents a

feature representation in a neural network and its contribution. Task description and color coding of the contributions are

displayed in the top left corner of each visualization. The cells are ordered by contribution magnitude of the yellow task so

that the first cell in each layer displays the representation that contributes the least. Top: Contributions to RelNN,

subordinate- and ordinate-level-recognition. Bottom: Contributions to UnrelNN, subordinate-level- and text-recognition.
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the organization of the visual system from the perspective of a

DNN that has been trained onmultiple tasks and discuss three

hypotheses derived from the simulations.

4.1. The visual system optimizes two cost functions of
unrelated tasks

The early visual cortex has neurons that respond to properties

such as orientation, wavelength, contrast, disparity and
movement direction that are relevant for a broad range of

visual tasks (Wandell, 1995). Moving upwards from early cor-

tex we see a gradual increase in the tuning specificity of

neurons resulting in the dorsal and ventral pathways that

have, as has become clear the last 25 years, unrelated goals

(Goodale & Milner, 1992). The dorsal pathway renders the

representation of objects invariant to eye-centered trans-

formations in a range of reference frames to allow efficient

motor planning and control (Kakei, 1999), while the ventral

https://doi.org/10.1016/j.cortex.2017.09.019
https://doi.org/10.1016/j.cortex.2017.09.019
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pathway harbors object-centered, transformation invariant

features (Higgins et al., 2016; Leibo, Liao, Anselmi, & Poggio,

2015) to allow efficient object recognition.

These observations concur well with the predictions and

experimental results we made about feature representation

sharing in DNNs. Given that the two tasks, vision for recog-

nition and vision for action, are mostly unrelated we can un-

derstand the gradual emergence of functional and anatomical

separation between these systems from this perspective.

Nonetheless, we note that the functional units of the

pathways beyond the occipital lobe are not entirely separated

and cross-talk does exist between these pathways (Farivar,

2009; de Haan & Cowey, 2011; McIntosh & Schenk, 2009; van

Polanen & Davare, 2015): a phenomenon we also observed in

our experiment in Section 3. In the UnrelNN, there are feature

representations that contribute to both tasks throughout all

layers of the network. Consequently the brain might trade off

contribution and wiring length so that neurons that

contribute little are tolerable to have long wiring to the func-

tional epicenter.

As a whole the existence of two pathways guided by two

cost functions of unrelated tasks might be seen as an illus-

tration of the efficient decomposition of the overall vision

function.

4.2. The visual pathways contain further task
decompositions each with their own cost functions

We further generalize our perspective on cost function opti-

mization of the visual system via the general observation

made from machine learning that a complex task becomes

simpler to solve if it is decomposed into simpler smaller tasks

(see Section 2.3). Given that the tasks we assign to the visual

pathways are rather complex and vague we conjecture that

there might be a broad range of cost functions active in the

pathway regions to optimally decompose the task of vision

resulting in a schematic similar to Fig. 5.

The ventral and dorsal pathways are each involved in a

multitude of tasks serving the overall goals of vision for

perception and vision for action. Examples of subordinate
Fig. 5 e How functional pathways in the visual system could b

pathway in blue, vision for action pathway in yellow). Within th

cost functions which are a direct decomposition of the pathway

one task can still be used by units in the other pathway (crossta

either develop through the relation between tasks and/or evolu
tasks for vision for action are localization, distance, relative

position, position in egocentric space and motion and these

interact with the goals that are part of vision for action:

pointing, grasping, self-termination movements, saccades

and smooth pursuit (de Haan & Cowey, 2011). Sub-ordinate

tasks for vision for perception include contour integration,

processing of surface properties, shape discrimination, sur-

face depth and surface segmentation. These in turn interact

with executing the goals that are part of vision for perception:

categorization and identification of object but also scene un-

derstanding (Groen, Silson, & Baker, 2017).

Reasoning from this framework we can also understand

the existence of multiple ‘processing streams’within the dual

pathways. For instance, within ventral cortex there appears to

be a pathway for object recognition and a pathway for scene

perception. The object recognition pathway consists of areas

like V4 which responds to simple geometric shapes and the

anterior part of inferior temporal (aIT) that is sensitive for

complete objects (Kravitz, Saleem, Baker, Ungerleider, &

Mishkin, 2013). The scene recognition pathway contains

areas such as the occipital place area (OPA), involved in the

analyses of local scene elements and the parahippocampal

place area (PPA) which responds to configurations of these

elements (Kamps, Julian, Kubilius, Kanwisher, & Dilks, 2016).

The tasks of scene and object perception are closely related;

scenes consist of objects. However, scene perception involves

relating the positions of multiple objects to each other, scene

gist and navigability (Groen et al., 2017). From our framework

we would predict that an area like OPA is mainly involved in

the task of scene perception but has RFs that are also used for

object perception and the opposite pattern for V4. Crucially,

we believe this framework can be used to generate quantita-

tive predictions for this amount of sharing.

4.3. Distributed versus modal representations

How information is represented is one of the major questions

in cognitive neuroscience. When considering object based

representations both distributed (Avidan & Behrmann, 2009;

Haxby et al., 2001) and module-based representations
e associated with cost functions. (Vision for perception

e pathways are streams that develop under guidance from

s cost function. Feature representations that are learned for

lk arrows). Both pathways share the same input units that

tionary or developmental learning.
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(Cohen, Dehaene, Naccache, & Leh�ericy, 2000; Kanwisher,

2000; Puce, Allison, Gore, & McCarthy, 1995) have been

observed.

Module-based representations, and theories stressing their

importance, point to the existence of distinct cortical modules

specialized for the recognition of particular classes such as

words, faces and body parts. These modules encompass

different cortical areas and, in case of the fusiform face area

and visual word form area, even similar areas but in different

hemispheres (Plaut & Behrmann, 2011). Conversely, distrib-

uted theories of object recognition point to the possibility to

decode information from a multitude of classes from the

patterns of activity present in a range of cortical regions

(Avidan & Behrmann, 2009; Haxby et al., 2001).

If we consider feature representations in the early and in-

termediate layers of the UnrelNN (Fig. 4) as a reasonable

approximation of representations in early/intermediate visual

areas, we note that most units are being shared by both

streams. However, some units contributemore to one than the

other task and are spatially intermingled at the same time. An

external observer, analyzing the activity of these representa-

tions under stimulation with pattern analysis would conclude

that information fromboth tasks ispresent, andconcludethata

distributed code is present. If the same observer would inves-

tigate the representations at the top of the stream the observer

wouldconclude that there isanareadedicated to theanalysis of

text and another to the analysis of the subordinate task.

Translated to the visual system this would mean that

distributed representations should be observed in areas such

as posterior inferior temporal (pIT), OPA and V4 because these

units are activated by multiple tasks but with a different

weighting. Vice versa, at the top of a pathway or stream the

network would show a strong module based pattern of acti-

vation. In sum, multi-task DNNs provide a framework in

which we can potentially understand that both modal and

distributed representations can be observed experimentally

but suggest that the patterns of activity should be interpreted

as emerging from the network as a whole.
5. Discussion

Following Marblestone and colleagues (Marblestone et al.,

2016), and the strength of the similarities between DNNs and

the visual brain, we hypothesize that cost functions, associ-

ated with different tasks, are a major driving force for the

emergence of different pathways.

A central insight from machine learning is that functions

become easier to learn when they are decomposed as a set of

unrelated subtasks. As a whole, the existence of two pathways

guided by two cost functionsof unrelated tasksmight be seen as

an illustrationof theefficientdecompositionof theoverall vision

function (Sutton et al., 1999/8). Observing thatDNNsdecompose

a problem inmultiple steps,with the earlier layers related to the

input and later layers related to outputs demanded for the task,

we hypothesized that the degree of feature representation

sharing between tasks, will be determined by the relatedness of

the tasks with an upper-to-lower tier gradient.

On this basis, we performed simulations that confirm that

units in a DNN show a strong degree of sharingwhen tasks are
strongly related and a separation between units when tasks

are unrelated. The degree to which this framework will be

useful depends on the degree to which understanding ele-

ments of brain function using DNNs is valid which is dis-

cussed in Section 5.1 and 5.2.

Subsequently, we will argue that having multiple path-

ways within a multi-task network might also help explaining

catastrophic forgetting, the phenomenon that an old task is

overwritten by learning a new task (Section 5.3). Next, we will

discuss the ‘vision for perception’ and ‘vision for action’

framework (Section 5.4), and finally we discuss the possibil-

ities of using multi-task for further understanding the brain

and ways in which our current analysis approach can be

extended (Section 5.5).

5.1. The biological realism of machine learning
mechanisms

While there has been much progress in the field of Deep

Learning, it remains a question how and if the weights of

neurons are updated in learning under the supervision of cost

functions in the brain, that is, what the actual learning rules of

the brain are.

DNNs are trained using back-propagation, an algorithm

believed to miss a basis in biology (Crick, 1989; Stork, 1989).

Some of the criticisms include the use in backpropagation of

symmetrical weight for the forward inference and backward

error propagation phase, the relative paucity of supervised

signals and the clear and strong unsupervised basis of much

learning. Recent research has shown that the symmetrical

weight requirement is not a specific requirement (Lillicrap,

Cownden, Tweed, & Akerman, 2016). Roelfsema and van

Ooyen (2005) already showed that an activation feedback

combined with a broadly distributed, dopamine-like error-

difference signal can on average learn error-backpropagation

in a reinforcement learning setting. Alternative learning

schemes, like Equilibrium Propagation (Scellier& Bengio, 2017)

have also been shown to approximate error-backpropagation

while effectively implementing basic STDP rules.

Alternatively, effective deep neural networks could be

learned through combination of efficient unsupervised dis-

covery of structure and reinforcement learning. Recent work

on predictive coding suggests this might indeed be feasible

(Whittington & Bogacz, 2017). Still, the learning rules that

underpin deep learning in biological systems are very much

an open issue.

5.2. Cost functions as the main driver of functional
organization

Reviewing literature on the computational perspective for

functional regions in the visual system,we conclude that each

region might be ultimately traced back to being under the

influence of some cost function that the brain optimizes and

its interplay or competition for neurons (Jacobs et al., 1991)

with other cost functions resulting in different degrees of

feature representation sharing. The domain-specific regions

in the ventral stream for example may be caused by a cost

function defined to optimize for invariance towards class-

specific transformations (Leibo et al., 2015), of which the

https://doi.org/10.1016/j.cortex.2017.09.019
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Fusiform Face Area could additionally be bootstrapped from a

rudimentary objective, hard coded by genetics, to detect the

pattern of two dots over a line e being the basic constellation

of a face (Marblestone et al., 2016; McKone, Crookes, Jeffery, &

Dilks, 2012). As we argued in Section 4, the functional sepa-

ration of the ventral and dorsal pathway can be associated

with two cost functions as well. We emphasize that the pre-

cise implementation of these cost functions is unknown and

note the concept of the task “vision for recognition” and

“vision for action” is merely a summary of all the subordinate

tasks that these two tasks have been decomposed into, as

argued in Section 2.3 and the cost function box. Finally, it is an

open question to what degree it will be possible link the

development of specialized pathways within these models to

studies (Dekker et al., 2015) focusing on the development of

the visual pathways.

5.3. Multiple pathways as a solution for catastrophic
forgetting

While joint cost functions can be learned when the quantities

needed by the cost functions are all present at the same time,

most animals are continually learning and different aspects of

cost functions are present at different times. Then, it is well

known that standard neural networks have great difficulty

learning a new task without forgetting an old task, so-called

catastrophic forgetting. Effectively, when training the network

for the new task, the parameters that are important for the old

task are changed aswell, with negative results.While very low

learning rates, in combination with an alternating learning

scheme, can mitigate this problem to some degree, this is

costly in terms of learning time. For essentially unmixed

outputs, like controlling body temperature and optimizing

financial welfare, an easy solution is to avoid shared param-

eters, resulting in separate neural networks, or “streams”.

Similarly, various properties can be derived from a single

stream, like visual aspects (depth, figure-ground separation,

segmentation), from an object recognition stream,where each

aspect sub-stream is learned via a separate cost function. For

tasks sharing outputs, and thus having overlap over different

tasks, evidence increasingly suggests that the brain selectively

“protects” synapses for modification by new tasks, effectively

“unsharing” these parameters between tasks (Kirkpatrick

et al., 2017).

5.4. What and where versus vision for action and
perception

Goodale&Milner argued that the concept of a ‘what andwhere’

pathway should be replaced by the idea that there are two

pathways with different computational goals, vision for

perception and vision for action, summarized as a ‘what’ and

‘how’ pathway (Goodale & Milner, 1992). Insights from the last

25 years of research in vision science have shown that the

original idea of a what and where pathway lack explanatory

power. It is clear that RFs in inferior temporal cortex are large

when objects are presented on a blank background (Gross,

Desimone, Albright, & Schwartz, 1985). However, these

become substantially smaller and thereby implicitly contain

positional information,whenmeasuredagainst anatural scene
background (Rolls, Aggelopoulos,& Zheng, 2003). Interestingly,

studies on DNNs have shown that approximate object locali-

zationcanbe inferred fromaCNNtrainedononlyclassification,

although the spatial extend of an object cannot not be esti-

mated (Oquab, Bottou, Laptev, & Sivic, 2015).

With regards to the dorsal pathways it has been observed

that there are cells relating to gripping an object that are

specific for object-classes (Brochier & Umilt�a, 2007) showing

that this pathway contains, in addition to positional infor-

mation, categorical information. These observations are in

direct opposition to one of the central assumptions, a strong

separation between identity and location processing, of the

‘what’ and ‘where’ hypothesis. It is now abundantly clear that

the move from ‘what’ and ‘where’ pathway to ‘what’ and

‘how’ pathways and moving from input to function fits

particularly well with vision as a multi-task DNN.

5.5. Future research

Originally DNNs were criticized for being “black” boxes, and

using DNNs to understand the brainwould equate to replacing

one black box with another. Recent years have shown a rapid

increase in our understanding of what makes a DNN work

(LeCun et al., 2015; Simonyan & Zisserman, 2014; Zeiler &

Fergus, 2014) and how to visualize the features (Zeiler &

Fergus, 2014; Zhou, Khosla, Lapedriza, Oliva, & Torralba,

2014; Zintgraf et al., 2016) that give DNNs its power. These

developments illustrate that DNNs are rapidly becomingmore

“gray” boxes, and are therefore a promising avenue into

increasing our understanding of the architecture and com-

putations used by the visual system and brain.

We therefore believe it is sensible to investigate to which

degree multi-task DNNs, trained using the same input, will

allowus tounderstand the functional organizationof thevisual

system. Using the analytical framework introduced in Section

3, we can generate a fingerprint for each of the layers in a

network based on the degree of feature representation sharing.

This can be subsequently related to the activation patterns,

evoked by different tasks observed within different cortical

areas. Alternatively it is possible to compare representational

dissimilarity matrices (Kriegeskorte, Mur, & Bandettini, 2008)

obtained from single and multitask-DNNs and determine

which better explain RDMs obtained from cortical areas.

An open question remains how subtasks and their asso-

ciated cost functions are learned from overall goals/general

cost functions, both in machine learning (Lakshminarayanan,

Krishnamurthy, Kumar, & Ravindran, 2016) and in neurosci-

ence (Botvinick, Niv, & Barto, 2009; Marblestone et al., 2016).
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