3,432 research outputs found

    Learning coupled conditional random field for image decomposition : theory and application in object categorization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 171-180).The goal of this thesis is to build a computational system that is able to identify object categories within images. To this end, this thesis proposes a computational model of "recognition-through-decomposition-and-fusion" based on the psychophysical theories of information dissociation and integration in human visual perception. At the lowest level, contour and texture processes are defined and measured. In the mid-level, a novel coupled Conditional Random Field model is proposed to model and decompose the contour and texture processes in natural images. Various matching schemes are introduced to match the decomposed contour and texture channels in a dissociative manner. As a counterpart to the integrative process in the human visual system, adaptive combination is applied to fuse the perception in the decomposed contour and texture channels. The proposed coupled Conditional Random Field model is shown to be an important extension of popular single-layer Random Field models for modeling image processes, by dedicating a separate layer of random field grid to each individual image process and capturing the distinct properties of multiple visual processes. The decomposition enables the system to fully leverage each decomposed visual stimulus to its full potential in discriminating different object classes. Adaptive combination of multiple visual cues well mirrors the fact that different visual cues play different roles in distinguishing various object classes. Experimental results demonstrate that the proposed computational model of "recognition-through-decomposition-and-fusion" achieves better performance than most of the state-of-the-art methods in recognizing the objects in Caltech-101, especially when only a limited number of training samples are available, which conforms with the capability of learning to recognize a class of objects from a few sample images in the human visual system.by Xiaoxu Ma.Ph.D

    A hybrid algorithm for Bayesian network structure learning with application to multi-label learning

    Get PDF
    We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. The algorithm is based on divide-and-conquer constraint-based subroutines to learn the local structure around a target variable. We conduct two series of experimental comparisons of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning. First, we use eight well-known Bayesian network benchmarks with various data sizes to assess the quality of the learned structure returned by the algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit to new data and quality of the network structure with respect to the true dependence structure of the data. Second, we investigate H2PC's ability to solve the multi-label learning problem. We provide theoretical results to characterize and identify graphically the so-called minimal label powersets that appear as irreducible factors in the joint distribution under the faithfulness condition. The multi-label learning problem is then decomposed into a series of multi-class classification problems, where each multi-class variable encodes a label powerset. H2PC is shown to compare favorably to MMHC in terms of global classification accuracy over ten multi-label data sets covering different application domains. Overall, our experiments support the conclusions that local structural learning with H2PC in the form of local neighborhood induction is a theoretically well-motivated and empirically effective learning framework that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.Comment: arXiv admin note: text overlap with arXiv:1101.5184 by other author

    Unitization during Category Learning

    Get PDF
    Five experiments explored the question of whether new perceptual units can be developed if they are diagnostic for a category learning task, and if so, what are the constraints on this unitization process? During category learning, participants were required to attend either a single component or a conjunction of five components in order to correctly categorize an object. In Experiments 1-4, some evidence for unitization was found in that the conjunctive task becomes much easier with practice, and this improvement was not found for the single component task, or for conjunctive tasks where the components cannot be unitized. Influences of component order (Experiment 1), component contiguity (Experiment 2), component proximity (Experiment 3), and number of components (Experiment 4) on practice effects were found. Using a Fourier Transformation method for deconvolving response times (Experiment 5), prolonged practice effects yielded responses that were faster than expected by analytic model that integrate evidence from independently perceived components

    Ensemble deep learning: A review

    Get PDF
    Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie
    corecore