43 research outputs found

    Curse of Dimensionality for TSK Fuzzy Neural Networks: Explanation and Solutions

    Full text link
    Takagi-Sugeno-Kang (TSK) fuzzy system with Gaussian membership functions (MFs) is one of the most widely used fuzzy systems in machine learning. However, it usually has difficulty handling high-dimensional datasets. This paper explores why TSK fuzzy systems with Gaussian MFs may fail on high-dimensional inputs. After transforming defuzzification to an equivalent form of softmax function, we find that the poor performance is due to the saturation of softmax. We show that two defuzzification operations, LogTSK and HTSK, the latter of which is first proposed in this paper, can avoid the saturation. Experimental results on datasets with various dimensionalities validated our analysis and demonstrated the effectiveness of LogTSK and HTSK

    Fuzzy-Granular Based Data Mining for Effective Decision Support in Biomedical Applications

    Get PDF
    Due to complexity of biomedical problems, adaptive and intelligent knowledge discovery and data mining systems are highly needed to help humans to understand the inherent mechanism of diseases. For biomedical classification problems, typically it is impossible to build a perfect classifier with 100% prediction accuracy. Hence a more realistic target is to build an effective Decision Support System (DSS). In this dissertation, a novel adaptive Fuzzy Association Rules (FARs) mining algorithm, named FARM-DS, is proposed to build such a DSS for binary classification problems in the biomedical domain. Empirical studies show that FARM-DS is competitive to state-of-the-art classifiers in terms of prediction accuracy. More importantly, FARs can provide strong decision support on disease diagnoses due to their easy interpretability. This dissertation also proposes a fuzzy-granular method to select informative and discriminative genes from huge microarray gene expression data. With fuzzy granulation, information loss in the process of gene selection is decreased. As a result, more informative genes for cancer classification are selected and more accurate classifiers can be modeled. Empirical studies show that the proposed method is more accurate than traditional algorithms for cancer classification. And hence we expect that genes being selected can be more helpful for further biological studies

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Management System for the Fattening Process of Bovines in Rotational Grazing using Diagnosis and Recommendation Systems

    Get PDF
    Cattle breeding has been one of the most important industrial sectors in the world since it is related to food security and the survival of the human race. Management of the cattle fattening process is a fundamental procedure for cattle breeders because it allows them to make strategic decisions, such as timely treatment in case of any abnormality (e.g., weight gain in herds, in their paddocks). This article aims to present a management system for the cattle fattening process under a rotational grazing scheme, considering the health status of the animal and the pasture, which should diagnose weight loss or gain in bovines and recommend actions when is required. The diagnostic process is based on a fuzzy system that defines rules that characterize the diagnostic process to determine the current situation given an input. Furthermore, the fuzzy classifier optimizes its rules by means of genetic algorithms by modifying its membership functions, providing a more accurate system for diagnosis. On the other hand, the recommendation system is based on a classification model of pasture crops, in which the best pasture is recommended given the soil variables. We tested our proposal with experimental cases, with promising results. For the fuzzy classifier, the accuracy metrics are very good, with values of accuracy close to 100% and of Area Under the Curve close to 1. For the classification model were used several machine learning techniques, resulting in the best classifier the random forest technique, with an accuracy of 98.61%

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    Relational clustering models for knowledge discovery and recommender systems

    Get PDF
    Cluster analysis is a fundamental research field in Knowledge Discovery and Data Mining (KDD). It aims at partitioning a given dataset into some homogeneous clusters so as to reflect the natural hidden data structure. Various heuristic or statistical approaches have been developed for analyzing propositional datasets. Nevertheless, in relational clustering the existence of multi-type relationships will greatly degrade the performance of traditional clustering algorithms. This issue motivates us to find more effective algorithms to conduct the cluster analysis upon relational datasets. In this thesis we comprehensively study the idea of Representative Objects for approximating data distribution and then design a multi-phase clustering framework for analyzing relational datasets with high effectiveness and efficiency. The second task considered in this thesis is to provide some better data models for people as well as machines to browse and navigate a dataset. The hierarchical taxonomy is widely used for this purpose. Compared with manually created taxonomies, automatically derived ones are more appealing because of their low creation/maintenance cost and high scalability. Up to now, the taxonomy generation techniques are mainly used to organize document corpus. We investigate the possibility of utilizing them upon relational datasets and then propose some algorithmic improvements. Another non-trivial problem is how to assign suitable labels for the taxonomic nodes so as to credibly summarize the content of each node. Unfortunately, this field has not been investigated sufficiently to the best of our knowledge, and so we attempt to fill the gap by proposing some novel approaches. The final goal of our cluster analysis and taxonomy generation techniques is to improve the scalability of recommender systems that are developed to tackle the problem of information overload. Recent research in recommender systems integrates the exploitation of domain knowledge to improve the recommendation quality, which however reduces the scalability of the whole system at the same time. We address this issue by applying the automatically derived taxonomy to preserve the pair-wise similarities between items, and then modeling the user visits by another hierarchical structure. Experimental results show that the computational complexity of the recommendation procedure can be greatly reduced and thus the system scalability be improved
    corecore