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Abstract

Knowledge discovery from data with fuzzy modelling is currently an active research

area in the field of computational intelligence. Fuzzy modelling describes systems

by establishing relationships between input and output variables with fuzzy logic

and fuzzy set theory. One of the main advantages of fuzzy modelling lies in the in-

terpretability, such that they can formulate the knowledge with linguistic fuzzy rules

to gain insights into behaviours of a complex system. However, the interpretability

is not automatically given due to only using fuzzy rules. Unlike accuracy that can be

used to objectively assess performance of the underlying system, interpretability is

a subjective property that may be affected by a range of practical issues, especially

regarding the representation of the underlying concepts and domain knowledge.

Despite of no commonly accepted mechanism to adjudge interpretability, the incorpo-

ration of domain expertise encoded as predefined fuzzy sets is desirable to effectively

interpret a fuzzy model. This facilitates enhanced transparency in both learning the

models and the inferences performed with the learned models.

In light of this, the thesis is focused on the automatic generation of accurate and

interpretable fuzzy models expressed as classification rules, where the use of fixed

and predefined quantity spaces is a must for semantic interpretability. In this thesis,

several approaches are presented with generated fuzzy rules being interpretable,

and achieving competitive performance in comparison to state-of-the-art methods.

These include: 1) the approach for the acquisition of fuzzy rules with quantifiers

following class-dependent simultaneous rule learning strategy; 2) the approach for

the acquisition of weighted fuzzy rules where heuristically generated fuzzy rules

are initialised, followed by the global search of optimal rule weights; and 3) the

approach that works by utilising existing crisp rules generated by a certain crisp

rule-based learning classifier, and then performs rule mapping, followed by global

genetic rule and condition selection. Furthermore, to enhance the capability of a

fuzzy classifier, the thesis also develops a classifier ensemble approach based on the

measure of nearest-neighbour-based reliability. Apart from benchmark data sets that

have been utilised for systematic experimental verification, the proposed techniques

are applied to a real-world problem of academic journal ranking, demonstrating the

efficacy of the present research.
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Chapter 1

Introduction

W ITH the staggering development of computer technology and the rapid com-

puterisation of business nowadays, huge volume of data is being accumulated

and collected at a dramatic pace across a variety of fields. However, raw data is

barely of direct interest unless potentially useful information is extracted. Knowledge

discovery in databases (KDD) refers to the overall process of extracting useful high-

level knowledge from low-level data, where data mining is a particular step among

others such as data preparation, data preprocessing, evaluation and interpretation

of mined results [110]. Being a computational process involving methods including

artificial intelligence, machine learning [109], statistics, and database systems [86],
data mining is generally about the application of specific algorithms for the extraction

of interesting and useful information by analysing data in large databases [162].

Typical data mining approaches find patterns in relational databases, where rows

correspond to objects to be analysed and columns represent values of properties or

attributes of underlying objects. Depending on the nature of mining tasks, there

are two main categories of data mining approaches. That is supervised learning

that induces models from class-labelled data for prediction and classification, and

unsupervised learning that induces interesting patterns from unlabelled data for

exploratory data analysis. Traditional statistics also provides numerous data analysis,

but may be prohibitive on very large data sets for their algorithmic complexity [51].
Instead many of the data mining methods are able to deal with very large data

sets in a very efficient way. More importantly, apart from the analytical languages

used in statistics, data mining methods also use other forms of formalisms, e.g.,

1



decision trees and rule sets, to present results of analysis in an appropriate and

human understandable way.

Soft computing (often also referred to as Computational Intelligence) aims to

provides inexact solutions to complex real-world problems where traditional mathe-

matical modelling may be ineffective, e.g., NP-complete problems or problems being

stochastic in nature. Various soft computing techniques have been developed and

applied to handle different challenges stemming from data mining. Being a corner-

stone of soft computing, fuzzy set theory (FST) [169, 141, 173] enables the tolerance

of imprecision, uncertainty and approximation, where many problems in real-life

cannot be handled with binary encoding. Fuzzy logic allowing for partial truth is the

foundation to perform approximate reasoning, which is closer to human reasoning

and aims to generate an inexact conclusion from inexact premises. Recalling that

many products in recent years claim to be intelligent, which is more of a property

attributed to human reasoning and decision making, demonstrating the efficacy of

computational intelligence in general and fuzzy systems in particular for data mining.

The tools and methods that have been developed in the framework of FST have the

potential to support all of the steps that comprise the process of KDD [67, 83, 85]. For

example, fuzzy set-based techniques have been used in data selection and preparation

phase to model vague data in terms of fuzzy sets [155], or to condense several

crisp observations into a single fuzzy one [92]. They have also been developed

for fuzzy extensions of certain well-known data mining methods without repeating

the original methods themselves [67]. For instance, fuzzy cluster analysis [15]
extends conventional clustering algorithms such as k-means that produces individual

clusters separated by sharp boundaries assigning every object to one cluster in an

unequivocal way. To overcome such boolean boundaries that are often not natural

or even counterintuitive, fuzzy clustering smoothes the transition between different

clusters, allowing an object belonging to differen clusters at the same time to various

degrees. With motivations closely resembling clustering analysis, alternative data

mining techniques (e.g., association rule mining and decision tree induction) are

also softened using fuzzy sets to avoid certain undesirable threshold effects.

Among those, fuzzy rule-based systems (FRBSs) [6, 89, 36] are one of the most

important applications of FST in data mining [102, 97]. A fuzzy rule-based model

consists of a set of fuzzy rules in the form of if-then statement “IF (antecedent), THEN

(consequent)”. The if-then statements specify what actions or behaviour should be

2



taken under given circumstances, providing a means to incorporate and formulate

human knowledge. This model structure is appealing in the sense that it is user-

friendly and intuitively reflects natural human thinking. In general, fuzzy systems

have been applied to a number of engineering and science areas [146, 145, 140],
e.g., in bioinformatics, control engineering, finance, medicine, robotics, and pattern

recognition.

Figure 1.1: Fuzzy rule-based engineering system

In designing and implementing engineering systems, apart from the information

obtained from physical sensory measurements and precise mathematical laws, infor-

mation from experts’ descriptions in terms of natural languages is often required to be

utilised. Fuzzy systems [117, 133, 138] allow combining both types of information

effectively into the system design, in an effort to precisely characterise key features of

the engineering systems, and to allow for trackable mathematical and computational

analysis.

The roles different entities play in a fuzzy rule-based engineering system may be

summarised using Figure 1.1. That is, the fuzzy rule-based engineering system should

be able to provide linguistic solutions to domain users, who are not necessarily experts

in fuzzy systems. Provided with interpretable and explainable IF-THEN statements

in natural languages, domain experts are able to verify the knowledge returned by

the rule base, which is constructed on top of their agreed principles and knowledge

encoded as domain knowledge. In the meanwhile, the fuzzy rule-based system

provides linguistic explanations in natural languages to help users easily understand

the domain problem and their solutions.

Being able to deal with vague concepts that are fundamental to natural languages

in practical reasoning and decision making, fuzzy rule-based systems facilitate the

foundation of knowledge in an intuitive way to both end-users with explainable

solutions and experts with transparent insights into the complex systems. The aim of

this thesis is therefore focused on the induction of accurate and interpretable fuzzy

rules.
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1.1. Interpretability Issues of Fuzzy Systems

1.1 Interpretability Issues of Fuzzy Systems

As indicated previously, one of the most important advantages of fuzzy systems lies

in their inherent interpretability as they support the explicit formulation of, and

inference with, domain knowledge, gaining insights into the complex systems and

facilitating the explanation of their operations. However, unlike criteria such as

accuracy that can be used to precisely and objectively measure how good a fuzzy

model is with respect to the real system, interpretability is a subjective property, which

largely depends on the person who makes the assessment. Due to the subjective

nature, interpretability may be affected by a range of practical issues, especially

regarding the representation of the underlying concepts and knowledge in the

problem domain. Different approaches [8, 108, 172, 84] have been proposed to

study interpretability within the general area of fuzzy systems. Although there is still

no commonly accepted mechanism to adjudge interpretability, complexity-based and

semantics-based methods are typically considered when designing a fuzzy system.

Complexity-based interpretability aims to reduce the complexity of a fuzzy model in

terms of the number of rules and the number of labels per rule. Semantics-based

interpretability aims to preserve the semantics of the membership functions (MFs),

such that the fuzzy rules make use of meaningful linguistic labels.

The incorporation of intuitive expert knowledge into linguistic rules through

the use of predefined fuzzy sets is desirable to effectively interpret a fuzzy model.

This allows for enhanced transparency in both the learned models themselves and

the inferences performed by running the learned models [28, 172, 107]. For many

real-world applications (e.g., medical diagnosis [142, 114] and intelligence data

analysis [101, 144]), the use of a fixed and predefined quantity space per variable is

indeed a must. Subsequently, semantic constraints over MFs are often imposed in

order to modify the definition of the fuzzy sets [108]. This may help improve the

accuracy of the resulting learned model, but such computation may adversely affect

the exactly prescribed meaning of the given labels and therefore, the interpretability

of the overall rule model that employs such modified linguistic labels. Using domain

expertise also makes it easier for experts to verify the obtained knowledge with fuzzy

systems, unlike black-box systems such as neural networks [164] that can achieve

high performance, but their solutions are difficult to explain.

For example, a masters’ student performance p in the UK higher education system

can be considered low if their score is below 50 (i.e., fail if p < 50), medium if
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between 50 and 60 (i.e., pass if 50 <= p < 60), high if between 60 and 70 (i.e.,

merit if 60 <= p < 70), very high if the score is greater than or equal to 70 (i.e.,

distinction if p >= 70). These definitions have been developed by education experts

and accepted by students and parents for a long period of time. The standard of

distinction should not be changed simply because no students from a certain module

can obtain very high scores in a single exam. Therefore, in situations where the

majority has universally agreed on the understanding of certain notations, re-defining

these concepts based on limited samples would lead to misleading conclusions. When

no students have achieved sufficient scores for distinction, the standard should not be

scaled just to fit those that achieve relatively high scores to give them a "distinction"

award. The conclusion should be the exam is either too difficult or the batch of the

students participating the exams have relatively weak background. Similar situation

could also exist when judging whether the blood glucose level of a patient is high or

not, where there are agreed principles that are based on long-term medical research,

which does not come from the glucose distribution of a certain experiment.

In the above case, it is essential that universally agreed knowledge from a certain

problem domain is a prior incorporated into system design. The labelled fuzzy terms

only make sense if the underlying definitions are consistent with people’s commonly

held notations. This leads to the induction of fuzzy rule-based systems where domain

expertise in terms of predefined fuzzy sets are required to incorporate and remain

unchanged. That means an iterative approach that induces a rule base utilising

knowledge from the database in the current iteration and then, alters the definitions

of the database by sending feedback from the newly built rule base is not feasible if

a prior incorporated domain expertise is required later. The induction of a rule base

in a fuzzy system is independent of the acquisition of the data base that specifies the

definitions of fuzzy sets for each variable and that is assumed a prior available.

1.2 Research Objectives and Contribution

Given the high desirability to incorporate domain expertise for the interpretation of a

fuzzy rule model, the main work of the thesis is therefore, the automatic generation

of accurate and interpretable fuzzy classification rules, where the use of fixed and

predefined quantity space is a must for semantic interpretability. Owing to the use

of fixed quantity space that comes from either domain expertise or static fuzzy set
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definitions, the resulting fuzzy rule base is likely to suffer from performance loss,

especially when distribution of the underlying training instances does not follow the

pre-specified and fixed fuzzy set definitions. The aim of the thesis is thus, focused on

exploring alternative means such that the resulting fuzzy rule base is able to achieve

satisfactory performance whilst reflecting domain expertise through the use of fixed

and predefined fuzzy sets.

In particular, the objective of the thesis is to develop methods that could induce

accurate and interpretable fuzzy rules from the following three different perspectives:

1. To address the aforementioned problem of performance loss due to the use of

fixed quantity space, work is proposed to utilise certain weighting schemes such

that the accuracy of the resulting fuzzy rule base may be improved by adjusting

the significance of certain fuzzy system components without disrupting the

definitions of the underlying fuzzy sets.

2. When fixed and predefined fuzzy sets are used to partition the input space,

the combination of all input and output variable values is likely to lead to the

problem of "curse of dimensionality” as the number of input feature increases.

An alternative research route in the thesis is to utilise a set of existing crisp

rules generated by a certain data-driven crisp rule-based learning mechanisms.

This is inspired by the observation that data-driven learning mechanisms are

able to omit the empty parts of the input space and focus on places covered by

existing training data. Making use of a set of data-driven crisp rules is able to

give a head start to a potential fuzzy classifier where the incorporation of fixed

and predefined fuzzy sets is a must.

3. Apart from the systematical verification with benchmark data sets, another

important goal of the thesis is to apply the proposed techniques into real world

problem. In particular, the problem of academic journal ranking is taken a case

study here, due to its increasing popularity and significance in the assessment

of research output quality.

Following on the initial research objectives as specified above, the thesis has

made contribution from the following aspects with all initial research goals achieved:
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• A weighting scheme by optimising weights at fuzzy rule level with Particle

Swarm Optimisation is proposed, which has achieved statistically significant

performance over rule bases without employing such optimised weights. The

generated fuzzy rule base is also competitive with popular fuzzy classifiers.

The proposed approach has been published in the 14th annual UK Workshop

on Computational Intelligence and the journal of Soft Computing.

• An alternative weighting scheme is proposed such that the significance of differ-

ent individual input features could be revealed by optimising fuzzy quantifiers

attached to linguistic variables. The resultant quantified fuzzy rules demon-

strate statistically significant performance over rule bases without employing

such fuzzy quantifiers. The proposed approach has been published in the 2015

IEEE International Conference on Fuzzy Systems.

• The third approach developed by the thesis utilises a set of existing data-

driven crisp rules, which are then transformed into fuzzy rules employing only

fixed and predefined fuzzy sets, followed by local rule selection and global

genetic optimisation. The resultant fuzzy rules achieve performance superior

or competitive to a number of state-of-the-art fuzzy and non-fuzzy classifiers.

Furthermore, this approach has been applied to the real world scenario of

academic journal ranking problem, demonstrating the transparency of the

resulting fuzzy rules and the efficacy of the proposed approach. This work is

currently under review for journal publication.

• Apart from fulfilling all pre-specified research objectives, the thesis further

develops a classifier ensemble approach to enhance the performance of an ex-

isting fuzzy classifier. This is achieve by the incorporation of nearest-neighbour-

guided reliability assessment, such that a reduced subset of base classifiers is

selected with minimal performance loss, thereby reducing overall running time

overheads. The approach has been published in the 2017 IEEE International

Conference on Fuzzy Systems.

1.3 Structure of Thesis

This section outlines the structure of the remainder of this thesis. Figure 1.2 illustrates

the relationships between the individual chapters (other than the introduction, the
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conclusion and the appendices). The direct dependencies between the chapters

are denoted using solid arrows. In a nutshell, Chapter 2 provides the background

knowledge of fuzzy systems together with the review of relevant literature; Chapter

3 presents the first weighting scheme by optimising weights at the rule level; Chapter

4 presents an alternative weighting scheme to learn quantified fuzzy rules; Chapter

5 then follows the second research route by transforming existing crisp rules into

accurate and interpretable fuzzy rules; Chapter 6 applies the technique developed in

Chapter 5 into the academic journal ranking problem; Chapter 7 further develops an

ensemble approach to enhance performance of an existing fuzzy classifier.

Chapter 2: Background

This chapter provides the background introduction to the thesis. Specifically, a

formal introduction of fuzzy sets, fuzzy logic, fuzzy rules and fuzzy modelling will

be presented that are the basis of fuzzy rule induction. In addition, the chapter gives

a brief introduction to evolutionary algorithms, including genetic algorithms and

particle swarm optimisation. Both have been utilised as the optimisation techniques

to search for optimal fuzzy rules in the thesis. This chapter also introduces a range

of approaches for the induction of an FRBCS in the literature. These include fuzzy

decision tree-based approaches, fuzzy association rule-based classifiers, both of which

are capable of learning fuzzy rules directly from data with fixed and predefined fuzzy

sets. The reviewed literature also covers a number of hybrid methods that combine

fuzzy system design with evolutionary algorithms, known as evolutionary fuzzy

systems.

Chapter 3: Induction of Weighted Fuzzy Rules with Particle

Swarm Optimisation

To deal with situations where behaviour of the engineering system is readily available

with experts’ linguistic descriptions, this chapter proposes an approach to enhance

performance of the existing engineering system depicted with a fuzzy rule base

using fixed quantity spaces. This means that an initial rule fuzzy rule-base has

been built with predefined fuzzy sets, which are required to be maintained for the

purpose of consistent interpretability, both in the learned models and in the inference
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Figure 1.2: Relationships between thesis chapters

9



1.3. Structure of Thesis

results using such models. Compared to those modifying antecedent fuzzy sets in

the literature, which not only affects natural meanings of underlying concepts, but

involves the learning of a number of parameters for each membership function,

rule weight adjustment does not touch the definitions of predefined expertise and

is less complex with only one single parameter per rule to learn while gaining the

performance improvement for the existing rule base.

Chapter 4: Induction of Quantified Fuzzy Rules with Particle

Swarm Optimisation

In the case of utilising experts’ domain knowledge in terms of linguistic descriptions

towards building an engineering system, the performance of such a system may

not be satisfactory. This is because the possibly coarse descriptions may not able to

precisely capture the exact characteristics of the underlying problems. This chapter

proposes a weighting scheme with fuzzy quantifiers to adapt the interactions and

relationships of individual domain features that are not seen equally important in

contributing to a certain behaviour. Instead of using crisp weights with fuzzy terms,

which may lead to confusion regarding the linguistic interpretation, the use of fuzzy

quantifiers to modify the linguistic terms helps build fuzzy systems in a more natural

way, ensuring that the inferred results remain consistent in the fuzzy representation

adopted.

Chapter 5: Induction of Accurate and Interpretable Fuzzy Rules

from Preliminary Crisp Representation

To retain the exactly prescribed meaning of given labels and hence, the interpretabil-

ity of the overall rule models, the methods of generating fuzzy models utilising fixed

and predefined quantity spaces may lead to the problem of curse of dimensionality

as the input of input features increases. However, a data-driven rule generation

method should omit the empty parts of the input space. Motivated by this obser-

vation, this chapter proposes a novel approach to generating interpretable fuzzy

classification rules. For a given classification problem, simple crisp rules are utilised

for initialisation, with each of them pointing to the model sub-spaces where desirable
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fuzzy rules potentially exist. This is followed by a heuristic mapping procedure that

converts each preliminary crisp rule into a set of interpretable fuzzy rules involving

only the predefined fuzzy sets, thereby maintaining semantic interpretability. A

local rule selection method is then performed to obtain a compact subset of initially

mapped fuzzy rules that jointly generalise the capability of the underlying crisp rule.

A fine grain tuning of all selected subsets of fuzzy rules is finally carried out with a

conventional GA, resulting in an accurate and interpretable fuzzy rule-based classifier

with a simplified structure.

Chapter 6: Journal Ranking using Induced Interpretable Fuzzy

Rules

Given the promising results achieved with fuzzy rules generated from Chapter 6

on benchmark data sets, this chapter applies the proposed approach to the real-

world journal ranking problem, which is of practical importance to research quality

assessment in general and academic research output evaluation in particular.

Chapter 7: Ensemble of Fuzzy Classifiers with Data Reliability

For a general engineering system consisting of multiple sub-systems, each of them

has specific views on the problem domain and may make varied predictions for

certain samples. However, the synergetic cooperation of such multiple entities

usually outperform than any individual one. Yet, certain sub-systems, which may be

outdated or malfunctioned, are considered unreliable and should be discarded, for

they are likely to generate false or biased predictions. Making use of the detectable

trends that may emerge from local data structures, the method introduced in this

chapter measures the reliabilities of individual system components by calculating

similarities of each individual with regard to its neighbours. Being able to deliver

statistically equivalent performance, the reduced system is with a much smaller

cardinality, relieving space requirement and when implemented, making overall

engineering process more efficient.
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Chapter 8: Conclusion

This chapter summarises the key contributions made by the thesis, together with a

discussion of topics which form the basis for future research.

Appendices

Appendix A lists the publications arising from the work presented in this thesis,

containing both published papers, and one which is currently under review for

journal publication. Appendix B provides information regarding the benchmark data

sets employed in the thesis. Appendix C summarises the abbreviations employed

throughout the thesis.
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Chapter 2

Background

F Uzzy set theory enables the tolerance of imprecision, uncertainty and approxima-

tion, where many problems in real-life cannot be handled with binary encoding

to model. Fuzzy logic allowing for partial truth is the foundation to perform approxi-

mate reasoning, which is closer to human reasoning and aims to generate an inexact

conclusion from inexact premises. The induction of fuzzy rule-based systems is

appealing in the sense that fuzzy systems support the combination of those obtained

from physical sensory measurements and information from experts’ descriptions in

terms of natural languages, while outputing interpretable knowledge again in natural

languages for the transparent insights into the behaviour of a complex system.

In the fuzzy systems literature, there are many approaches that have been pro-

posed for the induction of a fuzzy rule-based classification system. The aim of this

chapter is to review those methods that induce interpretable fuzzy rules utilising

fixed and predefined fuzzy sets reflecting domain expertise. Before presenting the

review, technical details of a typical fuzzy rule base are decomposed and introduced

for better understanding of the work. The remainder of this chapter is structured as

follows. Section 2.1 introduces a number of important concepts in order to build

a fuzzy rule base, together with a literature review on well-known methods that

directly learn fuzzy rules with fixed and predefined fuzzy sets. Section 2.2 introduces

relevant paradigms of evolutionary algorithms, the combination of which with fuzzy

rule induction forms a popular hybrid approach in the recent literature as evolu-

tionary fuzzy systems. The induction of evolutionary fuzzy systems will be further

reviewed in Section 2.3 before summarising this chapter in Section 2.4.
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2.1. Fuzzy Sets and Systems

2.1 Fuzzy Sets and Systems

This section gives a detailed preliminary knowledge that is fundamental for subse-

quent fuzzy rule induction, as well as a review of well-known approaches in literature

that induces interpretable fuzzy rules.

2.1.1 Prerequisite

This section introduces the basis of a fuzzy rule-base system. In particular, fuzzy set

theory and fuzzy logic are first introduced as the fundamental building blocks of

approximate reasoning, before the presentation of how observations match against

individual fuzzy rules, and how conclusions are derived from the fuzzy rule base.

2.1.1.1 Fuzzy Sets

Fuzzy sets introduced by Zadeh [169] are sets whose elements have degrees of

memberships between 0 and 1. Fuzzy sets can be seen as an extension to classical set,

whose elements can either belong to (with membership degrees of 1) or not belong

to the set (with membership degrees of 0). By contrast, fuzzy sets allow gradual

assessment of the membership of elements in the a set. The idea of fuzzy set is based

on the premise that change in the real world is not catastrophic but gradual, thus

widely used in a wide range of domains where information is uncertain or imprecise,

such as medical diagnosis [134].

In particular, a fuzzy set is defined by a membership function. For instance, fuzzy

set A can be defined as the function of µA(x) : R→ [0, 1] that maps crisp value x ∈ R

to the value of [0,1]. Crisp set can be seen as a special type of fuzzy set valued

in {0,1}. Frequently used membership functions to define the fuzzy set include

triangular, trapezoidal and gaussian function. For example, the fuzzy set may be

defined as a triangular membership function µt r i according to Figure 2.1 as follows:

µt r i(x) =































0, if x ≤ a
x − a
b− a

, if a < x ≤ b

c − x
c − b

, if b < x ≤ c

0, if x > c

(2.1)
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Figure 2.1: Triangle membership function

2.1.1.2 Fuzzy Logic

Logic is the study of methods and principles of reasoning, which is about generating

new propositions from existing ones. Fuzzy logic generalises classical two-valued

logic to be a real number in the interval of [0, 1]. This lays the foundation to perform

approximate reasoning. In order to make deductive inferences, inference rules must

be used. Inferences rules are various forms of tautologies which are logic formulas

that are always true regardless of the truth values of atomic propositions. Three

fundamental principles in fuzzy logic have been proposed in literature in order to

perform approximate reasoning. These are generalised modus ponens, generalised

modus tollens, and generalised hypothetical syllogism.

For instance, generalised modus ponens states the rule of getting the new fuzzy val-

ue B′, given the fuzzy set A′ and fuzzy relation R : If x is A, Then y is B shorthanded

as A→ B. Formally, this can be defined as follows:

B′ = A′ ◦ RA→B (2.2)

where ◦ signifies the composition operation. Or,

µ′B(y) = supx∈U[µ
′
A(x) ? µA→B(x , y)] (2.3)

where ? is the t-norm operator and U refers to the universe of discourse.

Generalised modus ponens states the principle of inferring the conclusion based

on the observation and a single fuzzy rule (relation). However, a practical fuzzy
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rule base would contain more than one rule to make it work. Given a set of K fuzzy

rules R j, j = 1,2, · · · , K, there are two ways to perform deductive inference, i.e.,

composition based inference and individual-rule based inference.

Composition based inference combines all fuzzy rules in the rule base into a single

fuzzy relation, which can be viewed a single fuzzy production rule. The principle

of generalised modus ponens can then be performed for the combined fuzzy relation

the same way it is used for single fuzzy rule. In particular, the often used operator

chosen for combining the rules in literature is the union operator. This is based on

the argument that individual rules should be treated as independent conditional

statements, therefore the combined fuzzy relation should be defined as:

µR(x , y) = ∪K
k=1µRk

(x , y) (2.4)

where ∪ is the s-norm operator. The output of the fuzzy inference procedure given

fuzzy set A′ is then calculated as

µ′B(y) = supx∈U[µ
′
A(x) ? µR(x , y)] (2.5)

On the other hand, individual-rule based inference determines an output for each

fuzzy rule in the rule base and then combine those outputs together. Similarly, the

often adopted combination operator is the union operator. Therefore the output of

the fuzzy inference procedure given fuzzy set A′ is defined as

µ′B(y) = ∪
K
k=1µB′k

(y) (2.6)

where µB′k
(y), k = 1, 2, · · · , K is as follows:

µB′k
(y) = supx∈U[µA′k

(x) ? µRk
(x , y)] (2.7)

2.1.1.3 Fuzzy Production Pules

Approximate reasoning is a process where a possibly inexact conclusion is inferred

from a collection of inexact premises. Central to approximate reasoning is fuzzy

relation and fuzzy relation composition. A fuzzy relation R is defined in the cartesian

product of crisp sets X1, X2, · · · , Xn as a fuzzy set

R= {((x1, x2, · · · , xn),µR(x1, x2, · · · , xn))|

(x1, x2, · · · , xn) ∈ X1 × X2 × · · · × Xn}
(2.8)
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where µR(x1, x2, · · · , xn)) ∈ [0,1]. Approximate reasoning is built on a collection

of fuzzy production rules, which provide a formal approach to represent domain

knowledge obtained from empirical experiences. For instance, a fuzzy rule may be

defined as follows:

If x1 is A1 and x2 is A2, Then y is B (2.9)

This rule builds a relationship between premise variables x1, x2 and the consequent

variable y. A direct interpretation of such fuzzy rule is the translation as a fuzzy

relation. This is due to the fact the statement “ If x , Then y ′′ is written an implication

x → y in case of classical propositional logic. Similarly, in the case of fuzzy rule,

where classical (compound) propositions are replaced with fuzzy propositions, the

fuzzy statement can also be interpreted as an implication. As x → y is equivalent

to x̄ ∨ y or (x ∧ y)∨ x̄ with same truth values, the specific interpretation of fuzzy

statement may vary for a variety choices of fuzzy complement, fuzzy union, and fuzzy

intersection operators. Supported with the argument that fuzzy production rules are

local, Mamdani implications are the most widely used implications in fuzzy systems

and fuzzy control [158]. In particular, the fuzzy production rule is interpreted as a

fuzzy relation RM M or RM P in X × Y with the membership function

µRM M
= min(µX (x),µY (y)) (2.10)

or

µRM M
= µX (x)µY (y) (2.11)

where µX is the fuzzy set that describes the antecedent compound fuzzy proposition.

A compound fuzzy proposition x is X is a composition of atomic fuzzy propositions

connected with the connective and operator. In case of Rule 2.9, x1 is A1 and x2 is A2

are atomic fuzzy propositions valued in [0, 1]. Therefore, Rule 2.9 can be interpreted

with the membership function as follows:

µR(x1, x2, y) = min(µA1
(x1),µA2

(x2),µB(y)) (2.12)

where the connective “and” in antecedent conditions is interpreted as min operator.

2.1.1.4 Fuzzy Rule-based Modelling

A fuzzy rule-based model is composed of a set of fuzzy rules in the form of if-then

statement “IF (antecedent), THEN (consequent)”. The if-then statements specify
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what actions or behaviour should be taken under the circumstances, providing a

means to incorporate and formulate human knowledge. This model structure is

appealing in the sense that it is user-friendly and intuitively reflects natural human

thinking. Depending on how the consequent is represented, fuzzy rule-based systems

can be categorised into TSK fuzzy model [150] and Mamdani fuzzy model [103].

A TSK fuzzy rule is of the following form:

If x1 is A1, x2 is A2, Then y = f (x1, x2) (2.13)

where x1 and x2 are input variables, y is the output variable; A1 and A2 and B are

fuzzy sets to describe the corresponding variables. Specifically, the consequent y is a

crisp function represented as a polynomial in the input variable x1 and x2. A first

order polynomial of the example can be:

If x1 is A1 and x2 is A2, Then y = px1 + qx2 + r (2.14)

TSK models are computationally efficient and work well with optimisation and

adaptive techniques. TSK fuzzy models have shown to be universal approximators in

the sense that they are able to approximate any smooth nonlinear functions to any

degree of accuracy in any convex compact region [48]. This provides a theoretical

foundation of using TSK models to approximate complex nonlinear systems, and

therefore they have been widely used in control problems [119], particularly for

dynamic nonlinear systems.

One the other hand, a typical Mamdani fuzzy rule is defined as follows:

If x1 is A1 and x2 is A2, Then y is B (2.15)

Unlike the polynomial function used to calculate the consequent in Eqn. 2.13, the

consequent y takes the value of B that is also a fuzzy set and can be attached with a

linguistic label. A practical example of such rule may be: If color is green and size is

small, Then the tomato is unripe. The fuzzy set green and small to describe tomato

color and size respectively provide an interface between a numerical value and a

symbolic description in terms of linguistic terms.

Unlike TSK models that describe rule consequent with a crisp function, a Mamdani

rule consequent is also made of a descriptive fuzzy set that can be attached with a

linguistic label. Due to the relatively simple structure and the interpretable nature
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of Mamdani fuzzy rules, they have been more widely used than TSK rules which

allow for more parameters to tune in the consequent [47]. This is also consistent

with one of the most important incentives of introducing fuzzy sets for modelling

complex systems that they can formulate the knowledge extracted from data with a

more transparent way to gain insights into the complex systems [172]. The main

aim of the thesis is therefore focused on the construction of Mamdani fuzzy rule-

based systems, specifically, the fuzzy rule-based classification system (FRBCSs) where

the rule consequent is crisp and discrete. An FRBCS can been as a special type of

Mamdani fuzzy model with rule consequent being a singleton fuzzy set.

2.1.2 Fuzzy System Architecture

A key contribution of fuzzy systems is to formulate human knowledge in a system-

atic manner, together with information coming from sensory measurements and

mathematical models. The transformation made by fuzzy systems makes it possible

to map human knowledge onto mathematical formulas for systematic analysis. In

order to better understand specifically what part the thesis is focused on, this section

gives a summary of previously introduced building blocks by outlining the general

architecture of a fuzzy rule-based system.

Figure 2.2: Architecture of a fuzzy system

There are five components in a classical knowledge-based fuzzy system as shown

in Figure 2.2. These include the fuzzifier, the inference engine, the defuzzifier, the

data base and the rule base.
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• The fuzzifier provides an interface to transform crisp inputs that are usually

obtained from physical measurement or derived from mathematical laws into

fuzzy sets. The fuzzifier makes it possible to represent crisp numerical values

in terms of linguistic words in natural languages with precise mathematical

definitions. The transformation is implemented by searching through a collec-

tion of semantic mappings that relates a crisp value with a set of predefined

fuzzy sets.

• The inference engine performs operations on the fuzzy values that are passed

from the fuzzifier. These fuzzy values of individual features fire fuzzy rules

stored in the rule base. Firing or matching degree with regard to each fuzzy

rule is calculated by applying fuzzy logical operators on membership values of

existing conditional antecedents. In case of multiple fuzzy rules fired simulta-

neously, these individual outputs are combined and aggregated before passing

onto the defuzzifier.

• The defuzzifier maps an aggregated fuzzy set from the inference engine into a

crisp set for subsequent operation. Often the required return for engineering

systems should be in form of real-valued outputs, same as that of input. There-

fore, the combined fuzzy set is mapped back into a crisp output through the

defuzzifier. A general idea of deriving such crisp value from a fuzzy set is to

find the representative point of a fuzzy set, e.g., centroid, maximum, etc.

• The data base stores the definitions of crisp values with regard to a number

of overlapping concepts defined as fuzzy membership functions for individual

attributes. The data base provides the mapping for converting crisp values into

fuzzy values for subsequent computation and converting fuzzy values back

to crisp values as engineering instructions for system operation. On top of

the definitions of membership functions it stores a set of linguistic labels that

are known to common human users and are fundamental in reasoning and

decision making.

• The rule base stores a collection of linguistic fuzzy rules that are central to the

fuzzy system in the sense that all other components are used to implement

the rules in an efficient and systematic manner. The structure of fuzzy rules

together with the inference procedure form the computation mechanism where

fuzzy set theory and fuzzy logic are employed. Traditionally, the construction

20



2.1. Fuzzy Sets and Systems

of a fuzzy rule base may be done by directly consulting domain experts who

can explicitly express their domain expertise by if-then statements. However,

in case of very complex problems or where domain expertise is not sufficient,

the information available may only be the input-output pairs. The thesis is

therefore focused on the induction of a fuzzy rule base from a collected set of

input-output data pairs.

2.1.3 Induction of Fuzzy Rule-based Systems

This section introduces the principles of two of the most commonly seen fuzzy

rule induction methods, i.e., fuzzy decision tree and fuzzy association rule-based

classifiers. As the thesis is working on the induction of interpretable fuzzy rules,

where fixed and predefined fuzzy sets are utilised reflecting domain expertise as

argued in Chapter 1, only the relevant literature that also holds onto this standpoint

is reviewed.

Depending on how predefined membership functions of corresponding fuzzy sets

are generated, this thesis categorises them into three cases.

1. Fuzzy sets that are defined by consulting domain experts. This is preferred

given the original motivation of incorporating human knowledge into system

design. However, it will have to take extra work consulting with domain

experts, who may sometimes not be available.

2. Fuzzy sets that are uniformly partitioned in the universe of discourse. In case of

no domain expertise available, membership functions could be built by dividing

the universe of discourse into several equal partitioned intervals. This has also

been considered being most interpretable from the shape point of view, as it

simultaneously satisfies the properties [108] of normality, distinguishability,

continuity, etc. Many interpretability indexes are constructed by measuring

the difference between the standard fuzzy sets built this way and optimised

fuzzy sets. However, the disadvantage is that the fuzzy sets may not reflect

the distribution of the underlying training data, which would result in great

performance loss.
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3. Fuzzy sets that are defined by taking advantage of characteristics of underlying

data. Again in case of no domain expertise available, it is also reasonable to

assume common domain knowledge being similar to that obtained by utilising

local data structure. A way to obtain such fuzzy sets is to discretise each feature

space into a number of fuzzy sets a prior. However, depending on how the

set of training instances is sampled from the problem domain, this may not

necessarily reflect the real characteristics of the problem.

2.1.3.1 Fuzzy Decision Trees

A decision tree is a tree-like structure but with root node on top. Each internal node

represents a test to the attribute of this node. Each branch so far corresponds to the

outcome of the test, i.e., a value of the current node. The branch is then connected to

next internal node or a leaf node, which comes with a decision label. A new example

is classified by submitting a series of tests from the root for the acquisition of the

decision label. Once the completion of decision tree construction, each path from the

root node to the leaf node can be directly translated to a rule. Hence, the induction

of decision trees can be seen as a straightforward means to obtain classification rules.

Basic Concepts

Central to the construction of a decision tree is the selection of a node that is of best

discrimination classifying the examples. Entropy is a commonly used metric originally

used in information theory that measures the impurity of a collection of examples.

Given a set of examples S consisted of K decision classes, Si, i = 1,2, · · · , K is the

subset of examples with decision label i, the entropy of the given set Ent rop y(S) is

defined as:

Ent rop y(S) =
K
∑

i=1

−
|Si|
|S|

log2
|Si|
|S|

(2.16)

Given the definition of entropy, the classification capability of attribute A can be

measured by taking the difference between entropy of original set S and an expected

entropy after partitioning S with attribute A. The expected entropy is defined as the

sum of entropies of each partitioned subset Sv, weighted by the fraction of examples
|Sv |
|S| . The difference called information gain is defined as:

Gain(S, A) = Ent rop y(S)−
∑

v∈Dom(A)

|Sv|
|S|

Ent rop y(Sv) (2.17)
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where v is the possible value that attribute A can take from the domain Dom(A); Sv

is the subset of S partitioned with A= v.

Once the attribute is selected, the expansion process is repeated recursively for

each nonterminal descendant node with examples associated with that node. The

branch does not stop growing until either of the two conditions met, i.e., examples

associated with this leaf node are pure with same class labels, or, all the attributes

have been used down the path.

In order to deal with the possible shortcomings that crisp decision trees (such as

ID3 [122], C4.5 [124]) encounter, the construction of fuzzy decision trees remains a

topic of interest. In classical decision trees, the use of crisp sets for nominal attributes

and crisp intervals for numerical attributes results in hard decision boundaries.

Therefore, crisp decision trees are vulnerable to the situation that small changes in

the attribute values of the examples being classified may result in sudden changes to

the assigned class labels. This can be improved if attributes are described by fuzzy

sets that permit gradual assessment of the membership of elements in the set.

The idea of building a fuzzy decision tree is the same as that of a crisp decision

tree in the sense that an optimal attribute is selected recursively and partition the

data based on the values of the attribute. This partition does not stop until some

certain conditions are met. One major distinction between fuzzy decision tree and

crisp decision tree is that the way the knowledge is represented has changed from

numerical values (for continuous variables) to fuzzy terms. For classical decision

tree, a numerical value can only fall into one of the partitioned intervals, while it can

match against several fuzzy terms to various degrees, given the nature of overlapping

fuzzy sets defined to describe concepts that are inherently vague or imprecise. Due

to this, an instance will match against several tree branches when classifying, which

leads to multiple terminal nodes. Therefore, the inference procedure embedded

in fuzzy decision tree requires adjustment compared to crisp decision tree, where

principles of fuzzy logic is necessary to be incorporated. Final decision comes from

the aggregation of these matched terminal nodes through some defuzzification

technique.

Another obvious extension to deal with fuzzy values is the fuzzy version of metric

that is used to recursively select the attribute. Classic entropy measures the (im)purity

of a node by calculating the weighted sum of instance counts that belong to different
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decision classes. In case of fuzzy decision trees, individual instance is counted by a

set of conjunctive fuzzy restrictions imposed from the root node to current node, each

of which is often only partially matched against the fuzzy term. This is different from

classical decision tree, where a instance can only belong to a certain tree branch.

In order to demonstrate the most natural metric extension, i.e., the adapted

information gain in fuzzy decision tree, the technique used in [80] is reviewed here.

For any node N to be expanded, the example count with regard to class k is calculated

as:

PN
k =

|E|
∑

j

= f2(χ
N
j ,µvc

k
(y j)) (2.18)

where E is the set of training examples; f2 calculates the satisfaction degree of the

consequent vc
k. This is propagated from the conjunctive restrictions from the root

down to current node, therefore, χN
j is the satisfaction degree of the combination

of these restrictions. Then the total example count is gathered summing example

count with regard to all decision classes:

PN =
|Dc |
∑

k=1

PN
k (2.19)

where |Dc| is the number of existing classes. As a result, the information of node N

can be measured following traditional entropy as:

IN = −
|Dc |
∑

k=1

(
PN

k

PN
· log

PN
k

PN
) (2.20)

To further partition the instance space, an attribute Vi from the set of remaining

attributes that have not been used in this branch is selected with the maximum

information gain. Given a fuzzy set v i
p ∈ Di, where Di is the term set defined

for Vi, each node branch is weighted by the proportion of examples counts with

corresponding attribute value in the training set as:

wi
p =

PN |v i
p

∑

v i
p∈Di

PN |v i
p

(2.21)

where PN |v i
p counts the branch given that Di = v i

p, which is similar to that of 2.18.

Similarly, the weighted information content with attribute Vi branching on node N

is:

ISN
Vi =
∑

v i
p∈Di

(wi
p · I

N |v i
p) (2.22)

24



2.1. Fuzzy Sets and Systems

where IN |v i
p is the information content down the branch given that Di = v i

p; the

calculation is similar to that of 2.20. The attribute Vmax is then selected that brings

the maximum information gain for current node.

Vmax = arg max
i
(ISN

Vi − IN ) (2.23)

Induction of Fuzzy Decision Trees

Apart from Fuzzy ID3-based decision tree [80, 61] that directly generalises ID3, there

are alternative approaches in literature. For example, it has been proposed in [168]
to incorporates cognitive uncertainties such as vagueness and ambiguity into the

induction of fuzzy decision trees, such that the attribute with the minimal ambiguity

of a possibility distribution is selected for splitting. Optimisation principles of fuzzy

decision trees based on minimising the total number and average depth of leaves

has been discussed in [161], which proposed to use clustering to merge branches.

More recently, Gini index has been utilised as splitting measure for choosing the

most appropriate attribute in [23], while fuzzifying the decision boundary without

converting the numerical attributes into fuzzy linguistic terms. Alternatively, the

method [22] is proposed to construct a fuzzy binary decision tree of significantly

reduced size based on the adaption of a fuzzy supervised learning in Quest (SLIQ)

decision tree. Furthermore, the paper [94] introduces the coherence membership

functions to describe fuzzy concepts that build upon the Axiomatic Fuzzy Set (AFS)

theory. The AFS decision tree is then built, in which the rules can be extracted and

pruned afterwards, where potential subjective bias is eliminated due to the coherence

membership functions and the underlying logic operators. A relatively dated review

regarding fuzzy decision tree can be found in [29].

Also utilising the tree structure that can naturally be translated into a rule base,

a fuzzy pattern-tree learning classifier as a novel machine learning method for classi-

fication has recently been introduced in [65, 135]. A pattern tree is a hierarchical,

tree-like structure, whose inner nodes are marked with generalised logical operators

and leaf nodes associated with fuzzy predicates on the input attributes. A pattern-tree

classifier is composed of an ensemble of such pattern trees, each of which is built for

one class. The fuzzy pattern-tree learning classifier is further generalised in [136],
where Ordered Weighted Averaging operators (OWA) are used at the inner nodes to
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increase flexibility. The improved algorithm works faster especially on large datasets

with many instances or attributes, where only a fixed number of most promising

candidates are considered instead of generating all expansions of a tree.

2.1.3.2 Fuzzy Association Rule-based classifier

Association rule mining (ARM) [1, 2] has been a very important approach in data

mining that aims to discover interesting, hidden patterns among items in large

database as an explorative data analysis. The relationship in association discovery

are represented by frequent item sets and association rules with the general form

being a X => Y implication. The antecedent of the rule X is a collection of frequent

item sets in the database, while the consequent Y is another set of frequent items

that such that X ∩ Y = φ. An association rule-based classifier (ARC) is when the

consequent contains only a class label. The hybridization of ARM and pattern

classification results in a new rule induction approach for classification problems.

However, ARM algorithms deal with binary or categorical data. In real world,

many data sets contain numerical features such that traditional ARM has to discretize

them into a number of crisp intervals in order for ARM to work. This leads to abrupt

transitions when the instances’ values are on the boundaries of discretised intervals.

As a result, the learnt rules are sensitive to small changes in attribute values, and are

especially vulnerable to noisy data. In order to remedy this situation, fuzzy set theory

has been incorporated into the ARM framework as the knowledge representation,

such that the universe of discourse can be partitioned into a number of overlapping

fuzzy sets. This could potentially relax the issue that arises from the sharp partitioned

boundaries, making resultant rule base more robust to data that is noisy or imprecise.

With the new knowledge granularity, the concepts from traditional ARM are required

to be fuzzified in order to generate fuzzy association rules. The generation of fuzzy

classification rules based on fuzzy association rule mining has attracted a lot of

attention and been extensively studied in the literature.

Basic Concepts

Association rule mining originates from market basket analysis. Let I = {i1, ..., ik..., in}
be a set of items. A collection of one or more items X ⊆ I is an itemset. Let
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T = {t1, ...t j, ..., tm} be a set of transactions, each of which is a subset of items

in I . An association rule is defined as an implication of the form X => Y where

X , Y ⊆ I , andX
⋂

Y = φ.

In order to select interesting rules, a number of metrics have been used to evaluate

rule significance. Among them, the most common ones are support and confidence.

The support of an itemset X with respect to the transaction T measures the frequen-

cy of the itemset occurrence in the database and is defined as the proportion of

transactions that contain X .

supp(X ) =
|{t ∈ T : X ⊆ t}|

|T |
(2.24)

An itemset whose support is greater than or equal to a minisupp threshold γ is called

a frequent itemset. Confidence is an indicator that measures how often the rule is

true. The confidence of a rule con f (X => Y ) with respect to transactions T , is the

proportion of the transactions that contain X which also contain Y . Confidence is

defined as:

con f (X => Y ) =
supp(X
⋃

Y )
supp(Y )

(2.25)

where supp(X
⋃

Y ) is the support of the union of items in X and Y . Thus confidence

can be interpreted as an estimate of the conditional probability of finding the itemset

on the right given that these transactions also contain itemset on the left. The task of

association rule mining is to discover rules whose support and confidence are greater

than the user defined threshold γ and minconf ε.

In order to deal with the possible abrupt transition resulting from the hard

partitioning of numerical features, fuzzy set theory is utilised as the knowledge

representation tool. To rephrase a general classification problem in the form of

relational database, let Ai, i = 1, . . . , n denote the underlying domain variables,

jointly defining the n-dimensional pattern space and respectively taking values from

Di. Let A ji ∈ Ai denotes a fuzzy set that the variable x i may take, which can be done

by consulting domain experts a prior, uniformly dividing the universe of discourse

into a number equal intervals or partitioning the attribute into fuzzy sets utilising

distribution of underlying feature space. Regardless of which approach to take, the

fact that definitions of the fuzzy sets are assumed available for subsequent mining

process forms a major approach for the induction of fuzzy rules with fixed and

predefined fuzzy sets.
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Formally, let Ẑ be a fuzzy itemset such that < Ẑ : A>= {< Ai1 : A ji1 >, ...,< Aiq :

A jiq >}, where Ai1 is the first attribute of the itemset Z and iq <= n denotes the

number of attribute-(fuzzy)term pairs in the itemset. The fuzzy support f supp(Ẑ)
of the fuzzy itemset Ẑ with regard to the set of transactions T is defined as:

f supp(Ẑ) =

∑

t∈T

∏

Ai :A ji
µA ji
(t i)

|T |
(2.26)

The fuzzy itemset < Ẑ : A> is a frequent item set if f supp(Ẑ) is higher than or equal

to a user-defined minimum fuzzy support threshold γ̂.

Similarly, a fuzzy association rule is an implication of the form < X̂ : A >⇒<
Ŷ : B >, where the itemset < X̂ : A> is the rule antecedent and < Ŷ : B > is the

consequent of the rule. The fuzzy confidence of the rule f con f (< X̂ : A>⇒< Ŷ : B >

is defined as

f con f (< X̂ : A>⇒< Ŷ : B >) =
f supp(< X̂ : A>

⋃

< Ŷ : B >)

f supp(X̂ : A)
(2.27)

A fuzzy association rule is a strong rule if the support and confidence values are both

higher than or equal the minimum fuzzy support γ̂ and minimum fuzzy confidence

threshold ε̂.

Principles of Association Rule Mining

In general, association rule mining is divided into two independent stages as below.

1. Search for all frequent itemsets whose support measures are bigger than or

equal a user-defined threshold.

2. Generate strong association rules from the frequent itemsets, such that the

confidence values of generate rules are bigger than or equal a user-defined

threshold.

It usually is the first step that forms the bottleneck of the rule mining procedure,

due to the exponential growth of the combination of attribute value pairs as the

dimensionality increases. In literature, there are two main approaches for the efficient

searching of frequent itemsets, i.e., Apriori algorithm being the initial approach to
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tackle the problem and boost the development and popularity of association rule

mining, and Frequent Pattern (FP) growth algorithm that significantly reduces the

running time with only couple of scans of the database.

The idea of Apriori algorithm is based on the fact that if an itemset is frequent,

then all of its subsets must also be frequent. Given that the support of an itemset

never exceeds the support of its subsets, Apriori principle is known as the anti-

monotone property of support. Specifically, Apriori algorithm uses a breadth first

search strategy such that frequent itemsets with cardinality being one L1 are first

searched by scanning through the database, candidate itemsets with cardinality

being Ck are then subsequently generated by a join step that combines the frequent

itemset Lk−1 with itself. Once the candidate set Ck is produced, the set of termsets

stored in the candidate set will go through a prune step, such that those termsets

whose subsets are not in the frequent itemset Lk−1 will be deleted directly from Ck

according to Apriori property. Remaining element of the candidate set will go through

the support check, and are kept if their support values are greater than or equal

to the user-defined threshold. The process goes on until Lk is empty. Association

rules can then be generated with each of the mined frequent itemsets by imposing

the minimum confidence constraint. The pseudocode of Apriori algorithm can be

described in Algorithm 2.1.1.

Despite that Apriori algorithm can successfully find all frequent itemsets from

the database, the overload of scanning the database repetitively with candidate

generation significantly increase computational cost as the increase of problem

dimensionality. To offset the candidate set generation-and-test approach, Frequent

Pattern (FP) tree-based approach [60] is utilised for storing compressed information

about frequent patterns, and FP-growth technique is proposed for efficient mining

of frequent patterns in large databases. Different from Apriori, FP-growth avoids

costly candidate generation and test by successively concatenating frequent 1-itemset

found in the FP-trees, and it applies a partitioning-based divide-and-conquer approach

which dramatically reduces the size of the subsequent conditional pattern bases and

conditional FP-trees. The FP-tree can be constructed in the following steps:

1. Scan the database once to collect the set of frequent items F and their supports.

Sort F in support descending order as L.

2. Create the root node of an FP-tree, T , and label it as ’null’. For each transaction

t, do the following:
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1: L1 = {frequent 1− itemset} (by counting the calculating the support of each
item set)

2: for k = 2; Lk−1 6= ;; k++ do
3: Ck = Join operation by generating candidates from Lk−1(p)× Lk−1(q):
4: {
5: Insert into Ck;
6: Select p.term1, p.term2, ..., p.termk−1, q.termk−1

7: From p, q
8: Where p.term1 = q.term1, p.term2 = q.term2, ..., p.termk−1 6= q.termk−1

9: }
10: for termset c ∈ Ck do
11: Check all the sub-termsets of all termsets in Ck, delete if they are not

frequent termsets in Lk−1

12: for (k− 1) subset s of c ∈ Ck do
13: if s 3 LK−1 then
14: Delete c from Ck

15: end if
16: end for
17: end for
18: for termset c ∈ Ck do
19: Calculate support value
20: if supp(c)>= minisupp then
21: insert c into Lk

22: end if
23: end for
24: end for

Algorithm 2.1.1: Apriori algorithm

a) Select and sort the frequent items in t based on the order of L. Let the

sorted frequent item list in t be [p|P], where p is the first element and P

is the remaining list. Call inser t_t ree([p|P], T )

b) The function inser t_t ree([p|P], T) is performed as follows. If T has a

child N such that N .i tem− name = p.i tem− name, then increment N ’s

count by 1; else create a new node N , and let its count be 1, its parent

link be linked to T , and its node-link be linked to the nodes with the

same item-name via the the node-link structure. If P is nonempty, call

inser t_t ree(P, N) recursively.

The FP-tree construction process needs exactly two scans of the database, i.e., to

collect the set of frequent items as the first scan, and then constructs the FP-tree.
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The algorithm for mining frequent patterns using FP-tree that has prove to be able to

find complete set of frequent itemsets can be described as follows

1 α : frequent itemset in the database;
2 B : α’s conditional pattern base;
3 β : an itemset in B;

1: FP-growth(Tree, α)
2: {
3: if Tree contains a single path P then
4: for each combination beta of the nodes in the path P do
5: generate pattern β

⋃

α with suppor t = minimum support of nodes in β;
6: end for
7: else
8: for ai in the header of Tree do
9: generate pattern β = ai

⋃

α with suppor t = ai.suppor t
10: construct β ’s conditional pattern base and then β ’s conditional FP-tree

Treeβ
11: if Treeβ 6= ; then
12: call FP-growth(Treeβ ,β)
13: end if
14: end for
15: end if
16: }

Algorithm 2.1.2: Initialisation of fuzzy rule refinement

Induction of Fuzzy Association Rules

In order to smooth the abrupt transitions that come from crisp partitioning of con-

tinuous variables, the induction of fuzzy association rules have been studied in the

literature, with the incorporation of fuzzy set theory into the framework of associa-

tion rule mining. Given that the fuzzy set generation stage is done a priori, being

independent of the rule mining process, this forms an alternative major category

of inducing fuzzy rules for classification problems utilising fixed and predefined

expertise in terms of fuzzy sets.

A fuzzy associative classifier is introduced in [30] to induce fuzzy classification

association rules (CARs). The approach is based on the framework of Apriori algo-

rithm, and extends the notions of support, confidence, redundancy and rule conflict

for fuzzy knowledge representation. Similarly, [116] proposes an Apriori-based fuzzy

31



2.2. Evolutionary Algorithms

associative classification model with different methods for the initial partitioning

of feature space. A fuzzy version of CBA [99], being a first association rule-based

classifier that applies associative classification models to build recommender systems,

is proposed in [98].

More recently, [100] proposes an fuzzy extension of gain-based association rule

classifier, which learns the initial fuzzy partitioning utilising simulated annealing

optimisation algorithm. A novel efficient fuzzy associative approach based on the

framework of FP-growth is introduced in [10]. Another approach [7] presents an

induction method to obtain fuzzy association rules consisting of three steps. Short

fuzzy association rules are first mined following Apriori algorithm. A pre-selection

process then selects most interesting rules, reducing the size of candidate rules. This

is followed by a single objective genetic tuning process for the acquisition of a compact

set of fuzzy association rules. This method is further extended in [46] with the use of

multi-objective evolutionary algorithm for the post-processing stage, together with

a new partitioning algorithm taking attribute partitioning interdependencies into

consideration.

Finally, note that this section covers fuzzy association rule learning for its rel-

evance to the learning mechanisms that are to be utilised in the subsequent de-

velopment. However, the fuzzy association rule learning is not directly exploited.

Further readings regarding this and other approaches to fuzzy learning (e.g., fuzzy

neural networks) that are not included in the following review on evolutionary fuzzy

systems can be found in [38, 159].

2.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) refer to a set of generic population-based metaheuristic

optimisation algorithms, which are inspired by the principles of Darwin’s biological

evolution. A generic EA typically works by randomly generating population of

individuals for the first generation. Individuals with better qualities evaluated with

a fitness function are then selected for reproduction. Offsprings are bred via genetic

operations such as crossover and mutation in order to maintain diversity. These

generated offsprings are then evaluated with better ones more likely to be selected
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for the generation of next iteration. The process goes on until certain termination

conditions are met.

EAs have been successfully and extensively applied to a broad range of combina-

torial and search problems for two main reasons. First, a wide range of problems

can be approximated well with EAs, for their powerful search capabilities without

making assumptions of underlying fitness landscape. Second, it is simple and straight

forward to encode specific problems with EAs that require little of domain knowledge.

Due to the power of EAs and their being relatively problem-independent, EAs have

been intensively studied and utilised for the identification of fuzzy rule-based systems.

This sub-chapter reviews two particular approaches to EAs: Genetic Algorithm and

Particle Swarm Optimisation that have been used in the thesis for the design for fuzzy

rule-based systems for complete purpose, among many others [40, 42]. Further

details regarding EAs in general can be found in [111], but are omitted herein.

2.2.1 Genetic Algorithm

Genetic algorithm (GA) [56] inspired by the process of natural selection is one of the

most popular EAs. In a GA, the population is made up of a collection of individuals,

each of which represents an underlying solution to the problem [24, 27]. A solution

is consisted of a number of chromosomes, each of which encodes a certain trait of

the problem, e.g., blood type of a person. Traditionally the solutions are represented

with binary strings, i.e., 0s and 1s to indicate certain characteristics being on or off.

Depending on the types of problems, it also works for GAs to deal with numerical

values.

The GA evolution starts with a randomly generated population, and is an iterative

process such that population from each generation is evolved towards better solutions,

where the solutions are evaluated with objective functions that include targets, e.g.,

accuracy, complexity, to be optimised. Better solutions from generation to generation

are created due to the use of genetic operators such as crossover and mutation.

Crossover is performed on a pair of parent solutions such that a new child solution

can be created by sharing characteristics of the parents. Different from crossover

that inherit traits from parents, mutation randomly changes the states of some pieces

of the chromosomes such that the generated solutions may be entirely different from

previous ones. Individuals with better qualities from the pool of current iteration
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are selected for future generation, thus guaranteeing average fitness will increase

generation by generation especially when elitism is used.

The general process of a GA works as follows:

1 t = 0;

2 initialise P(t = 0);
3 evaluate P(t = 0);
4 while condition is true do

5 while |Pt+1|< |P| do

6 // select parents;

7 parents = selec t ion_method(Pt);
8 if crossover_rate then

9 child ren= crossover_method(parents);
10 else

11 child ren= parents;

12 if mutation_rate then

13 child ren= mutation_method(child ren);

14 evaluate(children);

15 Pt+1.add(child ren);

16 t = t + 1;

Algorithm 2.2.1: Genetic algorithm

2.2.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) was first introduced in [87], and was intended

for simulating the flocking and schooling patterns of birds and fish. PSO is a meta-

heuristic population-based algorithm, and has been successfully applied to various

applications (e.g., [25, 24, 3]). PSO optimises a problem with a population of

particles representing candidate solutions. These candidate solutions are updated

stochastically with a guide towards the previously best known positions in the search

space.

Two primary operations are involved in particular, for the update of PSO process-

es: velocity update and position update. During each updating iteration, termed
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generation, every particle’s movement is influenced by its local position as well as by

the currently known best global position in the search space. A new velocity vector

is then computed for each particle based on its current velocity, the distance from its

previous best position, and the distance from the global best position so far. The new

velocity is in turn used to calculate the next position for each particle in the search

space.

More formally, the velocity update for each generation is implemented through

the following assignment:

vx = wvx + c1r1(x gBest − x) + c2r2(xpBest − x) (2.28)

where w is the so-called inertia weight that affects the trade-off between conver-

gence and exploration-exploitation in the PSO updating process; c1 and c2 are two

positive constants, termed social and cognitive scaling parameter in the literature,

respectively; r1 and r2 are two random numbers within the range [0, 1], introduc-

ing the stochastic nature during the update; x is the position of a certain particle

dimension (or the fitness of the rule weight of a certain rule that leads to the current

classification accuracy, in terms of the present application problem); x gBest is the

global best position of all particles (namely the fitness of the rule weights currently

capable of achieving the highest classification accuracy overall); and xpBest is the best

individual position where the particular particle p achieves the current best position.

The position is itself updated by the assignment:

x = x + εvx (2.29)

where ε is a further real-valued parameter used to control the evolving speed. The

interaction between PSO positions and PSO velocities is illustrated in Figure 2.3.

Both the global best position and the best individual position are used during the

update process, with the swarm collectively moving towards the overall best position.

The process is iterated for a set of times or until a minimal error is achieved. The

overall PSO process can be illustrated as shown in Algorithm 2.2.2.

2.3 Evolutionary Fuzzy Systems

Owing to the powerful capability of EAs for optimisation problems and their context-

free encoding, EAs have been intensively utilised for the identification of fuzzy
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Figure 2.3: Update of PSO velocity and position

rule-based systems. An evolutionary-based fuzzy system (EFS) [32, 47, 49] is a

fuzzy system that is augmented by a learning process for the identification of FRBCS

components based on EA. A large amount of research has been developed to learn

Mamdani type linguistic fuzzy models. Relating to this thesis is the literature that

learns FRBCS based on a set of fixed and predefined fuzzy sets reflecting domain

expertise.

In particular, MOGUL [34] is a genetic fuzzy rule-based system, following an iter-

ative rule learning approach with additional simplification and fine-tuning processes.

A fuzzy rule is generated for each example by evaluating all the global fuzzy rules.

The obtained rule is added to the final set of fuzzy rules. The data covered by current

rule set to a certain degree is removed and not considered for future iterations. The

iterative process ends up when no more uncovered training data remains. Then the

genetic simplification process is performed based on a binary-coded GA with fixed-

length chromosomes, followed by a genetic tuning process based on a real-coded GA

algorithm in which each individual represents a complete data base.
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1: for each particle do
2: Initialise particle
3: end for
4: while maximum iterations or minimum error not attained do
5: for each particle do
6: Calculate fitness value
7: if the fitness value is better than pBest then
8: Set pBest = current fitness value
9: end if

10: if pBest is better than gBest then
11: Set gBest = pBest
12: end if
13: end for
14: for each particle do
15: Calculate particle velocity according to the velocity update equation (8)
16: Calculate particle position according to the position update equation (9)
17: end for
18: end while

Algorithm 2.2.2: PSO update process

The work of [76] formulates rule base learning problem as a combinatorial

optimisation problem with a fixed fuzzy partition of the feature space. An initial

fuzzy rule base is generated by a heuristic procedure such that individuals of first

GA generation are already able to obtain a reasonable performance to speed up the

subsequent evolvement. Optimisation is first achieved by a single objective GA that

only takes accuracy into consideration. This is further enhanced by a two-objective

GA [70] that considers a weighted combination of targets, i.e., the minimisation of

rule numbers and maximisation of performance, followed by a three-objective GA

approach [73] that additionally considers the total number of rule antecedents.

In order to deal with high dimensional problems that would result in a large

number of initial rules with the heuristic rule generation method, it is proposed in

[72] to use a ’don’t care’ fuzzy set that leads to the full matching degree regardless

of the input value. This ’don’t care’ label adds an important option for genetic

selection process, such that fuzzy rules with attributes being labels are shortened

and the resultant fuzzy rule base exhibits more flexibility and higher interpretability.

A prescreening procedure [69] of candidate rules is also proposed to filter the initial

rule base based on the number of antecedents per rule.

More recently, in [78], a hybrid algorithm FH-GBML of two fuzzy genetics-

based approaches is proposed. It uses the Pittsburgh style to encode a set of fuzzy
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rules as an individual, while using the Michigan style for partially modifying each

rule set as heuristic mutation. FH-GBML has been further expanded into a parallel

distributed model [68] to decrease computation time significantly, where a population

of individuals is divided into multiple islands based on the island model. The

partitioned training data subsets are periodically rotated over the islands, with the

best rule set in each island migrating periodically as well.

SLAVE [58, 59] is a well-known fuzzy rule induction approach in the literature

that learns rules of a disjunctive normal form through an iterative algorithm. Each

iteration a single fuzzy rule is extracted by a GA that best represents the system

and incorporated into the final rule set. In order to obtain new and different rules,

examples covered by the learned rules are removed. The iterative scheme is repeated

until the set of rules obtained adequately represent the training data. SLAVE2 [57]
is an improved version in the sense that it includes more information in the process

of learning individuals rules, utilising the proposed calculus of the positive and

negative examples, as well as new fitness functions and genetic operators. A number

of different versions of SLAVE over the years have recently been reviewed in [54],
but this is beyond the scope of this thesis.

GP-COACH [14] is a genetic programming-based learning approach, which also

learns rules of a disjunctive normal form with a coding scheme that expresses one rule

per tree. GP-COACH relies on the cooperative-competitive learning strategy, where

the population constitutes the rule base. It uses a token competition mechanism

to maintain the diversity of the population and this obliges the rules to compete

and cooperate among themselves and allows the obtaining of a compact set of fuzzy

rules. SGERD [105] proposes a novel steady-state GA-based algorithm to extract

a compact set of fuzzy rules. The selection mechanism is nonrandom, such that

only the best individuals can survive. To select the rules with high generalisation

capabilities, SGERD makes use of rule and data dependent parameters, as well as an

enhancing function that modifies the rule evaluation measures in order to assess the

candidate rules more effectively before selection.

2.4 Summary

This chapter has first introduced a number of important concepts relating to fuzzy rule

induction by decomposing a fuzzy rule base into finer granularities for explanation.
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Linguistic variables and fuzzy sets that are defined with membership functions

constitute atomic fuzzy propositions. A conjunctive set of fuzzy propositions forming

the rule antecedent with a class label as the rule consequent makes up a typical fuzzy

classification rule. With the aid of fuzzy logic, a conclusion can be drawn when a

observation comes simultaneously firing multiple fuzzy rules.

In addition, this chapter also reviews fuzzy decision trees and fuzzy association

rule-based classifiers, being two of the most popular fuzzy rule induction approaches,

which directly induce fuzzy rules with the incorporation of fixed and predefined fuzzy

sets reflecting domain expertise. Given recent popularity combining evolutionary

algorithms into fuzzy system design, this chapter briefly introduces paradigms of

GA and PSO in particular, given that both will be utilised in following chapters

as optimisation algorithms to induce fuzzy rules. Well-known evolutionary fuzzy

systems are then reviewed, a number of which will be compared with the proposed

work in subsequent chapters.
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Chapter 3

Fuzzy Rule Weight Modification with

Particle Swarm Optimisation

AMajor challenge in learning FRBCSs often exists where the membership functions

defining the antecedent fuzzy sets are prefixed, with each having a specific

linguistic meaning pre-specified by domain experts (and typically also known to the

user). Due to the need of maintaining the interpretability [96, 52, 19] of a learned

model, any learned fuzzy classification rule is required to use one of these fuzzy sets

to specify the value of each attribute. Yet, using a fixed quantity space consisting of

such given fuzzy sets limits the accuracy of the learnt rules. Fortunately, this problem

can be tackled by modifying the weights associated with the individual rules.

Rule weights intuitively reveal the relative importance amongst all the rules in

a given rule base. The greater the rule weight of a fuzzy if-then rule is, the more

likely it will be chosen to classify an unseen pattern amongst all the fuzzy rules

that cover the subspace of that pattern. The modification of a rule’s weight is in

effect equivalent to the adjustment of the membership functions of those antecedent

fuzzy sets in the rule [113]. Interestingly, the adjustment of rule weights is much

easier than directly modifying the antecedent fuzzy sets (which would involve the

learning of a number of parameters for each membership function), since there is

only one single parameter (namely, the weight itself) per rule to learn [79]. This

also has the benefits where a practical fuzzy rule-based system has already been in

use while a set of newly collected data needs to be promoted into rules, such that the
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promotion can be independently done without disrupting the existing rule base. A

method is thus required to improve the performance of such constructed rule-base by

carefully adjusting the rule weights, instead of learning a set of dynamic membership

functions.

In [115], a seminal method of leaning rule weights is proposed by the use of an

error correction-based learning procedure with post pruning, through a “Reward

and Punishment (R&P)” scheme. It works by increasing the weight when a pattern

is correctly classified by the current rule, and decreasing the rule weight otherwise.

Another weighting approach is reported in [104], by dividing the covering subspace

of each fuzzy rule into two subdivisions based on a given threshold. The association

degree of any pattern with a so-called compatibility grade above the threshold is

enhanced by increasing the weight. The splitting threshold for each rule is found by

exploiting the distribution of patterns in the subspace covered by that rule. Other

rule weight learning methods for building FRBCSs include [79] and [174]. The

importance and effects of learning rule weights in FRBCSs have been discussed

and highlighted in [71], and a number of heuristic methods for fuzzy rule weight

specifications can also be found in [77].

The performance of a particular fuzzy rule may be improved by directly adjusting

its rule weight. However, the performance of its neighbouring fuzzy rules (i.e.,

those that also cover the same given pattern) may be deteriorated or even become

useless due to the propagation of such modifications to the rest of the rule base. The

overall consequence is thus unpredictable when all the rule weights are changing

successively. Instead of solely using heuristic weighting functions to tune fuzzy

if-then rule weights, this chapter proposes an evolutionary algorithm-based approach

to modifying rule weights in FRBCSs. In particular, Particle Swarm Optimisation

(PSO) [87] is employed as the evolutionary algorithm to evolve rule weights in order

to improve the classification accuracy.

The reminder of this chapter is organised as follows. Section 3.1 presents the

method for the generation of an initial fuzzy rule base. Section 3.2 demonstrates the

approach of fuzzy rule weight refinement with PSO. Section 3.3 conducts a number

of experiments demonstrating the efficacy of the proposed approach. Section 3.4

concludes this approach.
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3.1. Generation of An Initial Fuzzy Rule Base

3.1 Generation of An Initial Fuzzy Rule Base

The task of learning from or generalising a given problem description, by the use

of fuzzy logic and fuzzy sets, is to find a finite set of fuzzy if-then rules capable of

reproducing the input-output behaviour of a given system (or process). Without

losing generality, the system to be learnt is herein assumed to be a multiple-input-

single-output, containing n inputs and one output and involving m patterns for

an M -class problem. A fuzzy if-then rule R j, j = 1,2, ..., N , for such a system is

represented as follows:

If x1 is A j1 and ... and xn is A jn then class is Ch with w j (3.1)

where x1, x2, ..., xn are the underlying linguistic variables, jointly defining an n-

dimensional pattern space (with N denoting the number of such fuzzy rules); A ji,

i ∈ {1,2, ..., n}, is the fuzzy value of the corresponding antecedent x i; Ch, h ∈
{1, 2, ..., M}, is the consequent class for the M class problem; and w j is the rule weight

of fuzzy rule R j indicating the strength that any input pattern X p = [xp1, xp2, ..., xpn],
p ∈ {1, 2, ..., m} within the fuzzy subspace delimited by the given antecedent values

is deemed to belong to the consequent class Ch.

In order to generate an initial set of fuzzy if-then rules, each dimension of the

pattern space is divided into K (K ≥ 2) subsets {AK
1 , AK

2 , ...,AK
K}. Practically speaking,

partitioning the input space and defining the corresponding fuzzy sets are typically

done by the domain experts (even though such specification may reflect a certain

biased view of particular individuals). In many cases [79, 104, 74, 75], simple fuzzy

grid partition of input space is adopted in order to generate an initial rule base. Of

course, the performance of a resulting learnt classifier may vary in relation to the

variation of the partition of the input space, especially regarding the number of the

partitions made. When the fuzzy partition is too coarse in the sense that the number

of generated fuzzy subspaces is too small, the performance of the corresponding fuzzy

classifier may be low. On the other hand, if the partitioning of the fuzzy subspace is

too fine such that the number of generated fuzzy subspaces is too large, the testing

data may not be fully covered by the resulting rules, due to there being not sufficient

data points at the training phrase [74]. Moreover, the finer the partition is, the more

likely that more rules will be generated in the initial rule base, which will in turn lead

to more complex computation in achieving the classification task using the resultant
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3.1. Generation of An Initial Fuzzy Rule Base

rules. Note that the impact of the size of a rule base upon the performance of a

learning classifier will be further investigated later by examining the effects of using

different partitions of a given problem domain.

In this work, for simplicity and also for unbiased comparison, other than the

two delimiting values (which are defined as rectangular triangular fuzzy sets) each

dimension is simply divided equally into K fuzzy regions with the corresponding

fuzzy membership values being determined by the symmetric triangular functions as

shown in Figure 3.1, where a and b represent the minimum and maximum value of

xpi taken from the training examples, respectively. The vertex location of a symmetric

triangular is calculated according to its position within the K partitions. Membership

values of xpi in a new pattern below a or above b are set to 1. Each partition is

identified by a fuzzy rule if there is at least one training pattern in that pattern

subspace [74]. That is, given an input partitioning of pattern space, a fuzzy rule

will be generated only when there is a training pattern covered by this rule. Thus, a

problem with m training patterns, m rules will be generated at most.

Figure 3.1: Partitioning of each pattern space dimension

There are a number of different approaches to specifying fuzzy rule weights [77].
This work adopts the classical method of [75] owing to its maturity. Following this

approach, the consequent class Ch of fuzzy rule R j and the corresponding rule weight

w j are determined by the following procedure, where rule generation is a direct

by-product:
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3.1. Generation of An Initial Fuzzy Rule Base

1. Calculate the matching degree for each class Ch with respect to the possible

antecedents such that

βCh
=
∑

Xp∈Ch

n
∏

i=1

µA ji
(xpi) (3.2)

where X p are the training patterns defined with the corresponding n-dimensional

fuzzy subspace A j = A j1×A j2×· · ·×A jn, and µA ji
(·) is the membership function

of the antecedent fuzzy set A ji.

2. Find βCT
, T = 1, 2, ..., M , such that

βCT
= max{βC1

,βC2
, ...βCM

} (3.3)

where CT is the class of the maximum matching degree with regard to the

antecedent fuzzy sets, forming a candidate if-then rule relating the antecedents

and the class.

3. Set the rule weight w j to a candidate rule with the following value if its class

CT is the unique one that takes the maximum matching degree in Eq. (3.3):

w j = (βCT
− β)/

M
∑

h=1

βCh
(3.4)

β =
∑

Ch 6=CT

βCh
/(M − 1) (3.5)

where β is the sum of the matching degrees for all training patterns belonging

to the same fuzzy subspace, except those covered by CT . Otherwise, discard

the corresponding candidate rule when two or more classes take the maximum

value in Eq. (3.3) or all the βCT
are zero, since it cannot be uniquely determined

or there is no training pattern in support of this rule.

4. Promote all remaining candidate rules as the members of the learnt rule base,

with their corresponding rule weights assigned.

Note that the above method for rule generation and rule weight specification

is straightforward when a two-class problem is considered. For instance, assuming

that βC1
> βC2

, the consequent class is determined to be Class 1 and its weight will

be (βC1
− βC2

)/(βC1
+ βC2

). Interestingly, suppose that there are almost no Class 2
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3.2. Rule Weight Refinement with PSO

patterns in the training data set, the result will be βC1
>> βC2

≈ 0 and w j ≈ 1. If

however, the total matching degrees of patterns for Class 1 and Class 2 are very

similar to each other βC1
≈ βC2

, then w j ≈ 0.

A popular and easy to understand, and perhaps also the simplest method for

classifying a new pattern is based on the strategy of “single winner rule" or “winner

taking all" [70]. This is employed in this work (but others can be used alternatively if

preferred which can be found in [33]). The class CXp
of pattern X p is determined by

CXp
= arg max

Ch,h=1,2,...M
αCh

(3.6)

where αCh
is

αCh
=max{(

n
∏

i=1

µA ji
(xpi))w j|w j is associated with R j,

R j is associated with Ch, j = 1,2, ..., N}
(3.7)

The inferred class is the consequent of the fuzzy rule that has the maximum value

of antecedent matching degree by the corresponding rule weight. If two or more

classes take the maximum value in Eq. (4.10) or the matching degree is zero at X p,

then the pattern cannot be uniquely classified. To force a classification (if desired),

such a pattern may be assigned with a default class label that is associated with most

training instances.

3.2 Rule Weight Refinement with PSO

This section first illustrates how the classification boundary may be affected with a

set of rule weights taking different values, reinforcing the need for the development

of the current work. It then introduces how PSO is employed to refine rule weights

for FRBCSs, followed by a summarised description of the general structure of the

present work, including a brief analysis of the algorithm complexity.

3.2.1 Influence of Rule Weights on Classification Boundaries

A simple example will help demonstrate the effects of adjusting rules weights on

the accuracy of the resulting classification boundary. Consider the following case

45



3.2. Rule Weight Refinement with PSO

with a two-dimensional input space. For each of the two input variables, xp1 and

xp2, suppose that three descriptive fuzzy sets are defined such that xp1 may take

a value on either A11 = Small, A12 = Medium, or A13 = Lar ge, and xp2 on either

A21 = Shor t, A22 = Medium, or A23 = Long. The two-dimensional pattern space is

then divided into 32 = 9 fuzzy subspaces, as shown in Figure 3.2. Each of the input

subspace forms a possible fuzzy if-then rule. The dotted lines in Figure 3.2 also show

the classification boundaries.

Figure 3.2: Fuzzy subspace of a two-dimensional pattern space

A newly collected pattern X p is classified by first fuzzifying the attribute values

using the corresponding fuzzy membership functions, and then checking if there is

any match between the fuzzified value and the antecedent fuzzy sets of each given

rule. Based on the single winner rule principle, the pattern is identified with the

class label from the rule that is of the following maximum matching degree:

CXp
= arg max

Ch,h=1,2,...M
γCh

(3.8)
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where γCh
is of the same value as αCh

that is obtained from Eq. 3.7 when the value

of every rule weight is set to 1. This is generally depicted in Figure 3.3 (adapted

from [53]), where α(X p, Rh j) stands for the matching degree of the pattern X p and

the subspace of which is covered by those rules whose consequent is Ch.

Figure 3.3: Single winner rule

When there are patterns misclassified, classification boundaries can be adjust-

ed to recover the system performance by modifying the membership functions of

the linguistic values. Figure 3.4 shows the classification boundary is adjusted by

modifying the membership functions of fuzzy sets on x1 axis. Although modifying

potential membership functions can adjust the classification boundary and improve

the performance of a fuzzy rule-based system [35], it may destroy the potential

linguistic meanings given by the domain experts and hence, the interpretability of

the learnt model. Also, the entire learning process needs to be rerun when knowledge

derived from newly collected patterns is required to be combined with the existing

rule base.
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Figure 3.4: Modification of classification boundary on membership functions

According to Eq. (3.7), the class label for a new pattern X p is determined by

both the matching degree of its fuzzified value with the antecedent fuzzy sets and its

corresponding rule weight. It is possible for a pattern to be misclassified, however.

This is because a pattern may fall into one of the different neighbouring classes

implied by certain fuzzy rules, as shown in Figure 3.2 where the black dot is on

the edge of two fuzzy subspaces. For a two-dimensional problem, for instance, the

equation µA j
(X p)w j = µA j′

(X p)w j′ holds while deciding on which class a given pattern

may belong to. Thus, the classification boundary is determined by the ratio of w j and

w j′ only. Consequently, the areas dictated by any two neighbouring classification rules

may be linearly expanded or narrowed by the ratio of their rule weights. Consider

rules R j1, R j2, and R j3 as an example in Figure 3.5. Instead of modifying membership

functions, keeping the rule weights of w j1, w j3 unchanged but reducing the value

of w j2, the areas covered by R j2’s neighbouring rules R j1 and R j3 will be expanded

while the area covered by R j2 is contracted.

Heuristic rule weights indicate the exact decision areas originally depicted by the
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Figure 3.5: Modification of classification boundary by rule weights

predefined fuzzy sets [75]. The closer the value of a rule weight is to 1, the more

reliable or more significant the rule is. With the single winner rule as the reasoning

strategy, any modification of rule weights, through increasing or reducing the weight

value, is in fact equivalent to adjusting the reliability of the relevant individual

rules. This is in turn equivalent to reshaping the overall classification boundaries.

The adjustment of any two neighbouring rule weights is linear in determining new

classification boundaries, but the situation will become much more complicated if

the modification of all rule weights is performed simultaneously. Figure 3.6 shows an

example of one possible irregular classification boundary with various rules weights

[71].

In order to obtain a higher classification performance the rule weight of the

wining rule may be required to increase. However, adjusting the rule weight for any

individual rule also affects the classification boundaries of its neighbouring rules.

That is, whilst the performance of a certain fuzzy rule may be improved by directly

changing its rule weight, the performance of its neighbouring fuzzy rules may be
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Figure 3.6: Classification boundary of an irregular shape

deteriorated as a consequence. The overall consequence is thus unpredictable when

all the fuzzy rules are changing successively. A method is therefore required to deal

with all existing rule weights in a synchronised manner to achieve overall optimal

classification performance.

Broadly speaking, the process of finding an optimal combination of a full set of

rule weights appears similar to the behaviour of a particle swarm going towards the

best solution with each particle’s movement influenced by both its local best position

and the currently best known position amongst all rules, as with typical applications

of Particle Swarm Optimisation (PSO) [87]. Inspired by this observation and the

success of PSO in obtaining optimal solutions in multi-dimensional search space,

PSO is employed below to evolve the weights of a fuzzy rule set.
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3.2.2 Rule Weight Refinement with PSO

Further to the power of searching for optimal solutions in a discrete search space,

PSO can also deal with real numbers directly (and hence the term optimisation is

used). When it comes to adjusting real number encoded rule weights, inherent PSO

mechanism of updating particle positions and velocities (Eqn. 2.29 and 2.28) can also

make straightforward changes regarding rule weights. The dimensionality that each

particle can have is herein set to be the same as the number of the variables considered

in the problem. In utilising PSO for tuning the rule weights in an FRBCS, the PSO

only needs to maintain a single static population whose members are tweaked in

response to new discoveries about the search space. Each particle typically starts at a

random location [88], and is accelerated during the iterations towards the particles

that have achieved the previous best position and the global best position so far. The

position of a particle corresponds to the fitness measure that determines the quality

of the emerging solution.

For the present application, an initial fuzzy if-then rule base is firstly built with a

number of predefined fuzzy sets, each having a predefined meaning given by domain

experts. This is done via the use of Eq. (3.2) and (3.3) first, in order to obtain a

consequent class for a certain rule and then, Eq. (3.2), (3.4) and (3.5) are used to

create initial rule weights for the resulting rules. Tuning the rule weights is regarded

as an optimisation problem of concurrently finding the best combination of them.

To obtain an optimal set of rule weights with PSO, the problem needs to be

interpreted in terms of PSO specification. In particular, each of the existing weights

is encoded as one particle dimension, and one particle then represents the entire

set of the rule weights in the existing fuzzy if-then rules. Positions of the particles

in the first generation are initialised with the rule weights obtained by the use of

Eq. (3.2), (3.4) and (3.5). Particles are then iteratively modified towards the best

solution with regard to a given quality measure over the set of rule weights. The

fitness function of each particle is herein gauged by the classification accuracy that

is entailed by the renewed fuzzy if-then rules. In summary, the algorithm using PSO

to evolve the rule weights of an existing fuzzy classification system is presented in

Algorithm 3.2.1, supported by Algorithm 3.2.2.
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1 MAX_I T : number of maximum iterations;
2 GOAL : desired fitness value.

1: Initialisation
2: repeat
3: for each particle i ∈ S do
4: if f (x i)< f (pBest i) then
5: pBest i = x i

6: end if
7: if f (pBest i)< f (gBest) then
8: gBest = pBest i

9: end if
10: end for
11: for each particle i ∈ S do
12: for each dimension d ∈ D do
13: vi,d = wvx + c1r1(x gBest − x) + c2r2(xpBest − x)
14: x i,d = x + εvi,d

15: end for
16: end for
17: i t++
18: until i t > MAX_I T or GOAL is achieved

Algorithm 3.2.1: Fuzzy rule refinement

1 S : number of particles;
2 D : number of dimensions equal to number of rules;
3 rd : dth rule weight from existing rule base;
4 f () : fitness function used to evaluate particles.

1: for each particle i ∈ S do
2: for each dimension d ∈ D do
3: x i,d = rd

4: vi,d = Rnd(−vmax/3, vmax/3)
5: end for
6: pBest i = x i

7: if f (pBest i)< f (gBest) then
8: gBest = pBest i

9: end if
10: end for

Algorithm 3.2.2: Initialisation of fuzzy rule refinement
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3.2.3 Learning Classifiers with PSO Refined Rule Weights

As a summary, Figure 3.7 shows the general framework of the proposed approach, for

situations where the interpretability of fuzzy sets pre-defined by domain experts is

required to remain unchanged. The initial rule base can be obtained by simple fuzzy

grid partitioning [74] or other data-driven based methods [138, 157]. Specification

of the initial rule weights can be obtained from a range of methods [77]. PSO is then

directed to perform rule weights modification with the aim of improving the overall

performance of the fuzzy classifier under consideration.

Figure 3.7: Framework of FRBCS with PSO refined rule weights

In terms of core algorithm complexity, during each PSO iteration a given set of

rules, each of which is associated with an updated rule weight (which may remain

the same as its original for certain rules), is reevaluated with regard to a global best

set of weights achieved. Each training sample is required to match against each fuzzy

rule with the updated rule weight to determine its classification result by the use of

single winning rule strategy. The total computation effort required to accomplish
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reevaluation is therefore in proportion to the product of the number of training data

by the number of fuzzy rules, denoted as m and N respectively, namely O(mN).

Obviously, in developing an FRBCS this way, a training data set is needed as input

to this learning system, for both the generation of the initial rule base and the process

of the rule weight refinement. For a given training set, the greater the number of

initially built fuzzy rules, the more computation is needed to complete a PSO update

process. The training of the FRBCS completes once the PSO-based refinement process

terminates. Unseen patterns can then be classified by the trained classifier. Although

the single winner rule strategy is adopted to classify patterns here, other inference

methods (e.g., weighted vote) may also be employed if preferred [33]. Note that if

after a training process is completed, a newly collected set of data becomes available

then this set can also be utilised to train the classifier, with new rules integrated into

the existing rule base. If implemented, the application of this idea would make the

resulting FRBCSs dynamically adaptive, but this implementation remains as further

work.

3.3 Experimentation and Validation

To demonstrate the potential of the proposed approach, a number of comparative

experiments are carried out. The results are reported and discussed here, in terms of

the effects of: (a) rule weighting schemes, (b) rule base sizes, and (c) rule learning

methods used.

3.3.1 Experimental Setup

The PSO parameters are empirically specified in Table 3.1. Similar settings can be

found in [40], with PSO parameter selection discussed in [129]. Note that as the

main aim of this study is to examine the efficacy of applying PSO for fuzzy rule

refinement instead of that of PSO itself, only the basic version of PSO is used in the

experiments. The parameter specification for PSO is not carefully adjusted, therefore,

simulation results could be further improved where more sophisticated versions of

PSO are used with carefully modified parameters.
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Table 3.1: Parameter values of PSO

w c1 c2 ε Max_Generation Par t icle_Numbers

0.8 2.0 2.0 1.0 200 30

Initial rule weights are calculated via Eq. (3.2), (3.4) and (3.5), classification

accuracies are computed with and without any initial heuristically produced rule

weights respectively, in order to show how the rule weight refinement may affect

the performance of the learned rules’ accuracy. The purpose of this experimental

design is to test how additional rule weight may affect the performance of a potential

classifier, and how the proposed method may help improve such performance. Note

that several popular rule-based learning classifiers are also selected for comparison.

This is to demonstrate that simple FRBCSs which employ a rule base whose individual

rule weights are modified with a PSO process are competitive in their performance

as with popular rule-based classifiers available in the literature.

In order to examine the effect of using PSO-refined rule weights upon the im-

provement of fuzzy partition quality, four different fuzzy partitions are tested, where

each of the pattern spaces is uniformly divided into K (K = 2, 3, 4, 5) triangular fuzzy

subsets in the same way as that shown in Figure 3.1. This allows the performance of

the proposed method to be investigated for fine fuzzy partitions as well as coarse

fuzzy partitions. In particular, the case of K = 2 represents a very rough partition,

while that of K = 5 represents a very detailed partition. Similar partitions can be

found in [79]. Note that given a K, in theory, the total number of fuzzy if-then

rules for each fuzzy partition would be Kn, where n stands for the number of input

attributes, however a fuzzy rule will only be generated when there is a training

pattern covered by an emerging rule. So, the total number of rules produced is

typically smaller.

Owing to a large amount of systematic experimental investigation being carried

out, only stratified twofold cross-validation (2-CV) is employed for data validation

in this work. In 2-CV, a given data set is partitioned into 2 subsets. One of the

subsets is used to train a fuzzy classifier, where the proposed approach is used to

refine corresponding fuzzy rule weights. Another divided subset is retained to testing

data to produce a single accuracy value. The process is then repeated 30 times by

initialising different, randomly assigned seeds to produce the final average outcomes.

Pairwise t-tests are run with p < 0.05. Results are thus measured in terms of the
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significance of differences between different learning classifiers, with the achieved

accuracy of PSO-FR (i.e., the proposed approach) as the reference in each experiment.

Those results that are significantly better, worse or of no difference are marked with

“(v)”, “(∗)”, or “(−)”, respectively.

3.3.2 Effect of Rule Weighting Scheme

In Table 3.2, PSO-FR, FR, and H-FR stand for the application of fuzzy rules with

PSO-refined rule weights, that of fuzzy rules without rule weights, and that of fuzzy

rules with heuristic rule weights initially provided, respectively. Experiments are

performed on 12 real-valued benchmark data sets [11], the characteristics of which

can be found in Appendix B.

As shown in Table 3.2, H-FR outperforms FR in terms of average classification

accuracy, regardless of the number of fuzzy partitions, for 7 out of 12 data sets

(including ecoli, iris, image, liver-disorders, new-thyroid, parkinsons, and prnn-

synth). For the other 5 data sets, the results of H-FR are competitive to those of FR.

This is not surprising since the rule weights used in H-FR are heuristically initialised,

reflecting the fact that general information on the significance of the corresponding

rules has been exploited in building the rule-based learning classifier. This conforms

to what is explained in Chapter 3.2.1 regarding the influence of rule weights upon

classification boundaries.

Although H-FR generally achieves better results than FR, the performance of

H-FR is still far from ideal. Fortunately, as illustrated in Table 3.2, the results of

PSO-FR are significantly better those achievable by H-FR for 33 times and worse for

just once, with 14 ties. This superior performance of learnt fuzzy classifiers with

PSO refined rule weights is reinforced by Figure 3.8, which systematically depicts

the relation between the PSO iteration number and the accuracy of a learnt classifier

for each of the simulated data sets. In this figure, 12 sets of plots are shown each

representing the results on one data set for both training and testing performance

using 4 different fuzzy partitions, namely k = 2, 3, 4, 5. Generally, for both training

and testing data, each FRBCS with the current PSO-returned rule weights starts from

their initial performance, through an oscillatory process, and then reaches a steady

state with a noticeable degree of improvement.
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Table 3.2: Comparison using 30 × 2 cross-validation with respect to classification
accuracy (%), where v, − or ∗ indicate statistically better, same or worse results,
respectively, and bold figures signify overall best results for each data set with a
certain partition number.

Data Sets K Rule Number PSO-FR FR H-FR J48 PTTD QSBA

ecoli 2 25.97 78.28±1.97 72.83±1.29(*) 75.98±1.65(*) 74.97±1.29(*) 76.21±2.19(*) 23.29±6.54(*)

3 39.30 80.49±2.10 72.21±1.39(*) 74.99±1.49(*) 77.40±1.93(*) 76.24±1.48(*) 19.59±7.86(*)

4 56.58 81.53±1.75 80.78±1.86(*) 81.47±1.51(-) 75.34±2.40(*) 78.53±2.02(*) 58.64±3.09(*)

5 84.42 79.58±1.84 79.04±2.37(*) 79.65±2.18(-) 75.65±1.90(*) 77.97±1.92(*) 69.03±3.19(*)

glass 2 23.98 60.67±4.77 49.42±3.22(*) 52.23±4.11(*) 52.13±2.62(*) 59.14±2.88(*) 28.30±4.56(*)

3 31.48 61.12±2.50 57.90±2.40(*) 55.51±4.21(*) 59.03±3.11(*) 61.57±4.01(*) 36.08±3.88(*)

4 40.82 54.25±4.41 48.33±3.44(*) 49.10±3.37(*) 57.99±3.37(v) 59.31±4.00(v) 37.88±3.90(*)

5 56.70 58.07±3.03 54.31±2.95(*) 58.47±2.91(-) 57.54±3.89(-) 63.93±3.63(v) 45.83±4.34(*)

haberman 2 3.57 74.07±1.07 73.10±0.27(*) 73.27±0.43(*) 73.35±0.48(*) 72.41±1.63(*) 72.57±4.23(*)

3 6.50 74.02±1.47 73.28±1.05(*) 73.14±0.74(*) 73.33±0.67(*) 73.35±1.43(*) 74.32±1.16(-)

4 8.87 73.65±1.39 75.52±1.17(v) 74.18± 1.10(v) 73.24±0.67(-) 74.90±1.38(v) 73.77±2.87(-)

5 13.47 74.18±1.64 73.33±1.51(*) 73.77±1.39(*) 73.16±0.80(*) 73.81 ±1.08(-) 73.29±1.29(*)

image 2 37.05 72.49±3.33 69.41±3.53(*) 70.37±3.23(*) 74.78±2.13(v) 64.98±3.92(*) 55.32±1.55(*)

3 65.15 74.68±2.38 70.86±2.59(*) 73.54±2.45(*) 76.49±2.70(v) 80.98±2.57(v) 59.14±6.81(*)

4 86.60 76.44±2.74 76.57±2.89 (-) 76.57±2.74(-) 82.70±2.28(v) 80.97±2.37(v) 72.09±7.56(*)

5 93.07 72.41±2.11 72.40±2.06(-) 72.51±2.11(-) 80.46 ±2.53(v) 83.68±2.15(v) 74.45±6.92(-)

iris 2 7.98 92.33±2.90 72.04±2.00(*) 84.58±2.64(*) 76.65±2.76(*) 77.49±2.27(*) 66.67±0.00(*)

3 14.75 95.16±1.60 91.56±1.37(*) 93.89±0.91(*) 95.33±1.19(-) 92.18±0.89(*) 62.11±1.63(*)

4 22.38 93.02±1.93 78.18±2.36(*) 85.60±2.75(*) 90.09±3.12(*) 90.78±3.80(*) 62.11±1.71(*)

5 30.60 93.09±1.66 93.00±1.33(-) 93.22±0.89(-) 91.53±2.37(*) 94.73 ±0.98(v) 94.91±0.93(v)

liver-disorders 2 13.97 58.45±2.07 56.10±1.40(*) 57.72±1.53(*) 56.98±1.62(*) 58.20±2.01(-) 47.18±3.03(*)

3 35.80 59.07±2.89 52.10±2.59(*) 56.45±2.41(*) 56.91±1.40(*) 59.71±3.16(-) 46.07±1.54(*)

4 56.53 59.52±3.08 54.64±2.93(*) 56.26±2.80(*) 56.25±2.26(*) 60.03±2.55(-) 53.07±3.22(*)

5 82.30 58.14±2.67 56.24±2.55(*) 56.75±1.91(*) 56.11±2.34(*) 63.51±2.78(-) 57.92±3.33(-)

new-thyroid 2 6.87 91.18±1.49 83.97±1.19(*) 85.13±1.26(*) 84.85±1.79(*) 83.71±0.68(*) 87.21±2.76(*)

3 16.88 91.13±2.31 88.34±1.40(*) 89.30±1.41(*) 86.25±1.62(*) 87.06±1.09(*) 89.71±2.61(*)

4 25.78 91.92±1.77 90.32±1.54 (*) 91.60±1.03(-) 88.50±2.41(*) 92.34±0.87(-) 93.38±0.70(v)

5 33.33 91.16±1.44 88.65±1.95(*) 91.09±1.34(-) 90.90±1.56 (-) 89.61±1.35(*) 92.67±0.80(v)

parkinsons 2 57.07 86.10±2.19 79.15±2.12(*) 83.85±2.29(*) 82.37±2.47(*) 86.19±1.35(-) 54.75±5.06(*)

3 79.67 81.47±2.45 79.83±2.11(*) 80.72±2.48(*) 86.61±2.01(v) 83.72±1.44(v) 77.09±0.86(*)

4 88.12 84.74±3.27 84.80±2.82(-) 84.86 ±2.92(-) 84.35±2.89(-) 85.39±1.87(-) 76.97±0.90(*)

5 93.38 84.78±3.77 84.71±3.80(-) 84.75±3.77(-) 84.48±2.02(-) 86.46±1.87(v) 77.88±1.74(*)

pima-diabetes 2 36.32 73.19±1.57 66.57±1.13(*) 69.34±0.92(*) 68.09±1.28(*) 69.65±1.40(*) 70.53±0.66(*)

3 84.08 70.30 ±1.38 70.72±1.56(-) 69.83±1.41(*) 72.70±1.00(v) 73.83±0.44(v) 61.52±1.60(*)

4 201.70 69.67±1.66 68.14±1.34(*) 69.51±1.60(-) 73.94±0.82(v) 71.85±1.66(v) 58.29±1.34(*)

5 269.70 67.59±1.86 66.65±1.85(*) 67.50±1.86(-) 74.40±1.04(v) 73.55±1.05(v) 69.05±0.71(*)

prnn-synth 2 4.00 83.67±1.83 80.97±0.20(*) 81.25±1.54(*) 81.83±1.12(*) 81.83±1.12(*) 51.68±1.99(*)

3 7.90 83.45±1.29 70.08±3.46(*) 80.47±1.13(*) 77.03±2.19(*) 72.04±2.47(*) 71.20±3.40(*)

4 12.52 83.32±2.21 82.28±0.91(*) 84.23±1.15 (v) 83.28±1.78(-) 84.24±1.21(v) 83.19±1.29(-)

5 16.52 82.65±1.63 79.36±2.35(*) 83.29±1.21(v) 82.76±1.52(-) 80.60±2.12(*) 83.52±1.04(v)

seeds 2 16.22 90.06±1.86 88.21±0.98(*) 86.49±1.26(*) 87.33±1.79(*) 92.16±1.34(v) 33.39±0.35(*)

3 41.92 89.98±1.83 79.67±1.55(*) 85.95±2.26(*) 84.44±2.06(*) 86.35±1.55(*) 41.13±1.27(*)

4 56.17 89.49±1.74 88.08±1.24(*) 88.95±1.38(*) 87.84±2.47(*) 88.35±1.55(*) 62.22±1.45(*)

5 75.57 88.70±1.61 87.89±1.71(*) 88.06±1.67(*) 86.94±1.56(*) 88.78±1.52(-) 73.08±1.61(*)

yeast 2 34.40 47.58±1.84 38.49±0.51(*) 38.79±2.53(*) 39.57±1.79(*) 50.78±0.92(v) 14.22±3.87(*)

3 83.73 54.90±0.95 51.56±0.66(*) 53.17±0.97(*) 52.34±1.49(*) 50.63±1.67(*) 10.45±2.15(*)

4 90.42 52.70±1.16 42.05±0.92(*) 49.76±1.23(*) 51.32±1.68(*) 52.19±1.21(-) 32.53±2.36(*)

5 164.65 50.33±1.45 47.31±1.29(*) 48.30±1.04(*) 49.42±1.49(*) 51.90±1.98(v) 46.89±1.66(*)
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3.3.3 Effect of Rule Base Size

From Figure 3.8, further observations can be obtained. For better viewing, the

accuracy of each classifier is displayed for every 3 iterations within a total of 100

iterations, each point is the average of the results from 30 runs of 2-CV. As can be seen,

after an initial period of oscillations, generally the trend of the training performance

for all FRBCSs tend to converge at around 40th-60th iteration regardless of the

number of fuzzy partitions. In terms of testing accuracies, the curves are generally

more oscillatory than the training ones. Although the testing accuracies do not reach

so high as that is achievable over the training phase, they are significantly improved

over the original performance.

Looking more carefully, it is interesting to note that in general, fuzzy classifiers

modelled with a lower number of partitions tend to have a poor performance at the

beginning for both training and testing curves, likely due to the coarse partitioning

of the input spaces. However, in terms of testing curves, although coarse partitioned

ones (e.g., K = 2) have a lower start, their performance can outperform the finer

partitioned ones (e.g., K = 5), not just catching up with them, particularly for

diabetes, glass, haberman, liver-disorders, parkinsons, prnn-synth, seeds, and thyroid

(8 out of 12 data sets). For finer partitions, which generally have a better start

in performance, the classification accuracy does not improve so much as lower

partitioned ones when converged, and even underperformed than those models with

a lower number of partitions in 11 out of 12 data sets: diabetes, ecoli, glass, iris,

image, liver-disorders, parkinsons, prnn-synth, seeds, thyroid, and yeast. Although a

finer partitioned fuzzy classifier with more initial rules is likely to have a head start

regarding performance, the resultant larger search space may in turn make final

solutions converge in a local minimal, thus achieving even worse results than those

of coarsely partitioned ones.

With simple fuzzy grid partitioning in the generation of the initial rule base, finer

partitions of the input spaces lead to more fuzzy rules, as clearly indicated from

the rule numbers in Table 3.2. The more fuzzy rules generated initially, the more

rule weights need to be modified, and hence the larger the search space is and the

higher the computational complexity the PSO process involves. Besides, as observed

above, a finer partitioned fuzzy classifier normally achieves worse performance.

One possible reason for such seemingly unintuitive results is overfitting during the
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Figure 3.8: Relation between PSO iteration number and classification performance
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training. Therefore, it would be worthwhile to consider the number of fuzzy rules

as part of the criteria in constructing the fitness function, by penalising emerging

models that consist of more rules or by filtering poor quality individual rules (e.g.,

low coverage or low performance). The implementation of such ideas remains as

future work.

3.3.4 Effect of Rule Learning Method

Three classifier learning algorithms that generate models in the form of a rule set

are chosen to perform classification tasks for comparison purpose. These are: the

popular C4.5 decision tree learner (J48) [124], the top-down fuzzy pattern trees

(PTTD) [135], and the fuzzy subsethood-based rule models with quantifiers (QSBA)

[127]. In order to reduce the runtime of PTTD and to have a fair comparison, only

the algebraic t-norm and maximum s-norm are chosen as fuzzy operators in this

work, which are similar to the operators used in the proposed approach herein

(see Eq. (4.10), (3.7)). Fuzzy quantifier-based models are generated using fuzzy

quantification to replace crisp weights in subsethood-based fuzzy rule models, which

are not only interpretable but also practically applicable [125], [126]. Note that the

same fuzzy pre-partition of the input space is adopted for both PTTD and QSBA as

that for the proposed method, whereas the same partitioning interval is chosen as the

corresponding variable discretisation for J48. All these algorithms are implemented

within the WEKA machine learning framework [162] with default parameter setting

unless otherwise stated previously.

The winning results in terms of achieving the highest classification accuracy per

learning classifiers are highlighted in boldface in Table 3.2. It is important to note

that the proposed method (PSO-FR) has 18 wins, compared with 17 wins by PTTD,

6 wins by J48, and 5 wins by QSBA. Obviously the proposed approach significantly

outperforms J48 and QSBA, and is competitive to PTTD. Between the two better

performers, PSO-FR and PTTD, a specific comparison can be made from the results

obtained. Statistically, the proposed method wins 22 times and loses 16 times with

10 ties over PTTD. These results jointly demonstrate that the present work is at least

competitive to the state-of-the-art rule-based classifiers in the literature regarding

classification accuracy.
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3.3.5 Effect of Imbalanced Data

Conventional evaluation of classification performance using a criterion like the

overall accuracy does not always provide adequate assessment in cases that involve

imbalanced data. In order to examine the performance of the proposed approach

with regard to imbalanced data sets (e.g., the yeast dataset seen earlier), confusion

matrices (also known as contingency tables) are typically used. A confusion matrix

is an M × M matrix with each column representing the number of instances in a

predicted class, and each row representing the number of instances in an actual

class.

Motivated by the above, this section further reports, as an example, a further

experimental investigation of the present work, based on the confusion matrices

computed over the yeast dataset. This dataset is selected because it includes 10

imbalanced classes. Tables 3.3 and 3.4 show the results obtained from the runs

with the partition number (K) set to 2, for the input space using H-FR and PSO-FR,

respectively.

As can be seen, the proposed method improves the results greatly mainly in

classes of majority instances (e.g., Class 1 with total 463 instances from 177 to 310,

and Class 2 with total 429 instances from 191 to 229). For classes with minority

instances, results remain almost the same or even deteriorate (e.g., Class 8 with

total 30 instances from 0 to 0, Class 7 with total 35 instances from 1 to 0). This is

due to the fact that the proposed algorithm employs overall accuracy as the fitness

function. One possible way to resolve this problem is to embed a cost matrix into

the calculation of accuracy as the fitness function, such that the objective of PSO

refinement becomes to develop a set of weights that minimise the overall cost on the

training set[62].

3.4 Summary

This chapter has proposed an approach for fuzzy rule weight refinement by the use

of PSO. The approach works for situations where an initial rule fuzzy rule-base has

been built with predefined fuzzy sets, which are required to be maintained for the

purpose of consistent interpretability, both in the learned models and in the inference
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Table 3.3: Confusion matrix of H − FR on yeast data set with a random seed and
K = 2 for input space

Class 1 2 3 4 5 6 7 8 9 10 Total
1 177 156 86 1 40 0 0 0 1 2 463
2 146 191 67 2 21 1 0 0 0 1 429
3 35 57 143 3 4 0 0 0 2 0 244
4 82 47 20 2 12 0 0 0 0 0 163
5 15 12 19 0 2 1 2 0 0 0 51
6 1 28 9 1 2 2 1 0 0 0 44
7 2 12 16 0 2 2 1 0 0 0 35
8 13 8 7 1 1 0 0 0 0 0 30
9 1 2 8 0 1 0 0 0 8 0 20
10 0 0 0 0 0 0 0 0 0 5 5

Total 472 513 375 10 85 6 4 0 11 8 1484

Table 3.4: Confusion matrix of PSO− FR on yeast data set with a random seed and
K = 2 for input space

Class 1 2 3 4 5 6 7 8 9 10 Total
1 310 112 31 0 0 9 0 0 1 0 463
2 161 229 31 0 0 6 0 0 0 2 429
3 72 26 134 0 0 10 0 0 2 0 244
4 68 78 7 0 0 10 0 0 0 0 163
5 29 3 10 0 0 9 0 0 0 0 51
6 0 0 7 0 0 37 0 0 0 0 44
7 6 1 3 0 1 24 0 0 0 0 35
8 16 6 2 0 0 6 0 0 0 0 30
9 6 1 4 0 0 0 0 0 9 0 20
10 0 0 0 0 0 0 0 0 0 5 5

Total 668 456 229 0 1 111 0 0 12 7 1484

results using such models. Systematic experimental results have demonstrated the

following:

1. The performance of a fuzzy rule-based classifier can be significantly improved

with rule weight refinement implemented by PSO.

2. The size of an initially built rule base may affect the performance of the

proposed method, although optimisation of the initial fuzzy quality space will

help reduce such influence.
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3. The proposed approach is at least competitive to typical state-of-the-art learning

classifiers even when only simple fuzzy grid partitioning is used to create the

initial rule base.
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Chapter 4

Induction of Quantified Fuzzy Rules

with Particle Swarm Optimisation

Q UANTIFICATION has been regarded as an important topic in fuzzy theory and

its applications [37]. The use of fuzzy quantifiers by attaching semantic labels

to fuzzy sets can be seen as flexible tools for the representation of natural language,

making the existing fuzzy models more readable and accurate [107]. Fuzzy quanti-

fiers could also be used to deal with situations where the information dealt with is

not equally important. For example, when evaluating a student performance, scores

of assignments and final exams will probably take different weights in determining

the student’s final grade. A certain weighting strategy to represent the degrees of

significance among antecedent attributes may therefore be necessary [63].

Crisp weights attached to fuzzy linguistic variables could be used to improve

the classification accuracy of fuzzy models. Yet the use of non-fuzzy values with

fuzzy terms may lead to confusion regarding the linguistic interpretation of a given

fuzzy model. Replacing crisp weights with fuzzy quantifiers also helps improve the

interpretability of the learned models, while guaranteeing any inferred results to

remain in consistent fuzzy representation. In the literature, a number of definitions

of fuzzy quantifiers have been proposed [37, 95], including both absolute and

relative quantifiers. An example of this is subsethood-based fuzzy rule modelling

that has been developed for classification tasks [127]. Furthermore, quantifier-based

fuzzy classification systems have been successfully applied in addressing different
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problems, including the evaluation of student academic performance [128] and

medical diagnosis [142]. Such applications not only provide promising classification

performance but also practically understandable rule sets for further reference.

Motivated from the potential of quantifier-based fuzzy classification, this chapter

proposes a metaheuristic algorithm-based approach that can learn a set of rules with

continuous fuzzy quantifiers. The work allows a set of quantified fuzzy rules to be

combined and evaluated simultaneously during the learning process. In particular,

Particle Swarm Optimisation [87] is employed as the metaheuristic algorithm to

evolve rule sets and fuzzy quantifiers subject to the overall quality of an emerging

rule base. As an initial implementation to test the ideas, the performance of resulting

fuzzy rules with and without fuzzy quantifiers is assessed on various UCI benchmark

data sets, in comparison to popular rule based learning classifiers. Experimental

results demonstrate that rule bases generated by the proposed approach can boost

classification performance as compared to those without fuzzy quantifiers while

being competitive to those popular rule based classifiers.

The reminder of this chapter is organised as follows. Section 4.1 introduces

fuzzy classification rules and the representation of continuous fuzzy quantifiers,

together with the class-dependent simultaneous rule induction strategy. Section 4.2

demonstrates how PSO particles may be used to encode fuzzy rule bases and how

each rule base is evaluated and updated. Section 4.3 presents and discusses the

experimental results. Section 4.4 concludes the chapter and outlines ideas for further

development.

4.1 Preliminaries

4.1.1 Fuzzy Quantifiers

The task of learning an FRBCS is to find a finite set of fuzzy if-then rules capable of

reproducing the input-output behaviour of a given system or process. Without losing

generality, the system to be modelled is herein assumed to be a multiple-input-single-

output, containing n inputs and one output and involving m patterns for an M -class

problem. A fuzzy if-then rule R j, j = 1,2, ..., N , for such a system is represented as

follows:

If x1 is A j1 and ... and xn is A jn then class is Ch (4.1)
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where x1, x2, ..., xn are the underlying linguistic variables, jointly defining an n-

dimensional pattern space (with N obviously denoting the number of such fuzzy

rules); A ji, i ∈ {1, 2, ..., n}, is the fuzzy value of the corresponding antecedent x i; Ch,

h ∈ {1,2, ..., M}, is the consequent class for the M class problem.

As with many existing techniques for representing weights, measures of weighting

are limited to the normal range of 0 to 1, with 0 representing the lowest weight and

1 the highest. Weights attached to linguistic terms provide a multiplication factor

in the compound fuzzy propositions. They reveal relative contributions made by

different linguistic terms (and thereby the underlying antecedent variables) towards

the conclusion drawn. Such a rule is represented as follows:

If x1 is w j1A j1 and ... and xn is w jnA jn then class is Ch (4.2)

where w ji, i ∈ {1,2, ..., n} is a crisp weight of the corresponding linguistic term A ji.

The interpretation of the compound fuzzy proposition (w j1 × A j1) is restricted

with respect to a practical application. In [127], fuzzy quantifiers are used to replace

crisp weights to improve the transparency of the learnt fuzzy systems. In general,

quantification in logic may be expressed as Q(x)A(x) where Q(x) is a quantifier and

A(x) is a predicate for variable x [37]. As small changes in the training set can cause

a change to the entire rule set, fuzzy models that employ continuous fuzzy quantifiers

may therefore be more appropriate compared to the use of two or multi-valued crisp

quantifiers.

In particular, a fuzzy relative quantifier Q, where µQ(q) ∈ [0, 1] with q defined on

real interval [0, 1], processes the non-decreasing behaviour: ∀q1, q2 ∈Q, q1 < q2→
µQ(q1)≤ µQ(q2). An example of a relative quantifier is “Most students who get a high

score are young”, where the “most” is the quantifier, and the “high” and “young” are

fuzzy values. In [156] a continuous fuzzy quantifier is proposed which applies linear

interpolation between the two classical, extreme cases of the existential quantifier ∃
and the universal quantifier ∀, such that:

Q(E, A) = (1−λQ).T∀,A/E +λQ.T∃,A/E (4.3)

In this definition, Q is the quantifier for the fuzzy set A relative to fuzzy set E and

λQ is the degree of orness [167] of the two extreme quantifiers. Following this, two
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popular quantifiers, the existential quantifier T∃,A/E and the universal quantifier T∀,A/E

can be represented as:

T∃,A/E =4N
K=1µ(ek)∇µ(ak) (4.4)

T∀,A/E =∇N
K=1(1−µ(ek))4µ(ak) (4.5)

where ak and ek are the membership functions of fuzzy sets A and E respectively, ∇
denotes the t-norm and 4 denotes the t-conorm.

The use of such fuzzy quantifiers enables the representation of a fuzzy rule in a

more natural way:

If x1 is Q j1A j1 and ... and xn is Q jnA jn then class is Ch (4.6)

where Q ji, i ∈ {1,2, ..., n} is a fuzzy quantifier modifying the linguistic term A ji.

Importantly, the use of t-norm operators to interpret ∇(Q ji, A ji) guarantees that the

inference results are also fuzzy sets.

4.1.2 Strategy of Simultaneous Rule Induction

The sequential covering algorithm or separate-and-conquer strategy is one of the most

widespread approaches to learning disjunctive sets of rules for classification problems

[50]. Generally, this covering algorithm takes each class in turn and seeks a set of

rules covering positive instances for a certain class. Positive instances covered by a

learned rule are removed, and subsequent rules are learnt based on the remaining

training instances. This procedure is iterated until all positive instances are covered

by the rules created so far. In literature, well-known rule induction approaches for

the generation of crisp rule bases developed on the basis of this strategy include

PRISM [20], FOIL [123], and RIPPER [31].

Despite the popularity of this strategy, a problem may be encountered when

trying to extend it to learning fuzzy rules for FRBCSs. Unlike crisp rules, all fuzzy

rules may match or cover all cases within a training set if fuzzy sets with an infinite

support such as those of a Gaussian form are used, but to varying degrees. This may

lead to a situation where a case requiring classification is closely matched by two or

more rules with different conclusions. Having a final rule base of complementary
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rules is therefore potentially beneficial to the fuzzy inference or classification process.

To reflect this observation, an approach is proposed in [53], which runs a number of

Ant Colony Optimisation (ACO) algorithms simultaneously, with each focusing on

finding descriptive rules for a specific class. After each class has had its associated

rules created during one iteration, all possible combinations of rules, with one from

each class are formed into a rule base and is re-tested on the training set. The rules

in the best performing rule base are used to update the pheromone levels, within the

underlying iterative ACO process. Such a simultaneous fuzzy rule induction strategy

is also adopted in this paper and is generally described in Algorithm 4.1.1.

1: for numInterations do
2: for each class do
3: each agent constructs a fuzzy rule
4: end for
5: for each combined rule base do
6: evaluate each rule base
7: end for
8: update agents with best rule base
9: end for

10: output best rule base
Algorithm 4.1.1: Strategy of Simultaneous Rule Induction

4.2 Induction of Quantified Fuzzy Rules with Particle

Swarm Optimisation

4.2.1 Encoding Quantified Fuzzy Rules with PSO Particles

As reviewed in Section 2.2.2, PSO [87] is able to provides a simple but effective

mechanism for conducting global search that requires minimum understanding of the

problem domain, while involving only simple real number encoding. It is therefore is

employed as the metaheuristic algorithm to evolve rule sets and fuzzy quantifiers. To

suit the present application, of obtaining an optimal set of rules, the PSO specification

needs adaptation. In particular, each of the PSO particles is set to encode a quantified

fuzzy rule base, with each particle dimension representing a single fuzzy rule with

quantifiers. As the first attempt to evaluate this initial work, a simplified version of
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the simultaneous rule induction strategy is adopted by just encoding one rule for

each class. This is based on the assumption that one rule is sufficient to describe

a class [53]. This assumption is realistic as all fuzzy rules may be presumed to

match or cover all cases, but to varying degrees. In theory, however, various particle

dimensions may be used to encode multiple fuzzy rules for each class.

Generally speaking, the proposed method adopts Pittsburgh-style representation,

which encodes an entire fuzzy rule base as a PSO particle. Each quantified fuzzy

rule is encoded by one PSO particle dimension. The dimensionality of a single PSO

particle is set to the same as that of rule base, which consists of multiple fuzzy

classification rules for different classes. As a simplified version with the assumption

of one rule per class, the dimensionality is simply set to the same as the number of

classes given for the problem domain. Each PSO particle dimension is initialised

with an array of positive real numbers, where each array element encodes a certain

linguistic term and its associated fuzzy quantifier, corresponding to a compound fuzzy

proposition. The dimensionality of a PSO particle dimension is therefore dependent

on the number of attributes provided.

In representation, each positive real number r ∈ R+ initialised as an element of

a PSO particle dimension, is separated into the integer part int(r) = bxc and the

fractional part f rac(r) = r−brc. The hierarchical structure of encoding a quantified

fuzzy rule with a PSO particle is specified in Figure 4.1. A certain PSO particle P l

denotes a fuzzy rule base, with P l
h being a PSO particle dimension representing a

quantified fuzzy rule for the consequent class h given an M -class problem, where

h ∈ {1, 2, ..., M}. Each PSO particle dimension representing rule R j is then initialised

with an array of positive real numbers, such that each array element P l
hi encodes

information for both the fuzzy set A ji and its quantifier Q ji. In particular, the integer

part denotes a corresponding fuzzy set A ji, where i = int(P l
hi), i ∈ {1,2, ..., n}, and

the fractional part represents the quantifier Q ji with regard to the fuzzy value A ji

as the degree of orness of one of the two extreme quantifiers (i.e., the existential

and universal quantifier). Such an encoding scheme therefore transforms the task of

finding an optimal set of fuzzy rules into that of obtaining an optimal PSO particle

regarding a linguistic rule base.
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Figure 4.1: Hierarchical structure of a quantified fuzzy rule encoded with PSO

4.2.2 Evaluating Quantified Fuzzy Rules

The matching degree of each instance is calculated, with regard to each quantified

fuzzy rule R j, initialised via an array of real numbers. The range of such a real number

is set to r ⊆ [0, K + 1), where K denotes the number of pre-defined fuzzy sets for an

antecedent attribute, with the interpretation that each integer int(r) corresponds

to the int(r)-th pre-defined fuzzy set. The membership degree of an attribute A ji is

retrieved from the quantity space with respect to the given integer. This situation is

excluded when int(r) = 0, indicating the absence of that particular attribute, with

the corresponding attribute matching degree set to 1, with the interpretation being

that the attribute is irrelevant. In terms of calculating the quantifier Q ji associated

with A ji, the fractional part is then used to represent the orness of the two extreme

quantifiers ∃ and ∀, following Eqn. 4.3. Thus, the quantifier Q ji is updated such that:

Q(E, A) = (1− f rac(x ji))T∀,A/E + f rac(x ji)T∃,A/E (4.7)
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where f rac(x ji) is the fractional part of that position, and the truth value of the

existential quantifier T∃,A/E and that of the universal quantifier T∀,A/E are calculated

according to Eqn. 4.4 and Eqn. 4.5, respectively. T-norm operators are then used to

interpret ∇(Q ji, A ji), which guarantees that the inference results are also fuzzy sets.

In general, the system to be modelled is assumed to involve n antecedent attributes

and M classes, with m training instances provided. The compatibility matching

degree of each training pattern xp = [xp1, xp2, ..., xpn], with respect to rule Rh j

for class Ch, h ∈ {1,2, ..., M} is defined within the n-dimensional fuzzy subspace

A j = A j1 × A j2 × · · · × A jn, such that:

α(xp, Rh j) =∇n
i=1∇(µA ji

(xpi),Q ji) (4.8)

where ∇ represents a predefined t-norm operator.

In complete implementation of the proposed approach, where multiple rules

Rh1, Rh2, ..., Rh j may be used to describe the same class Ch, the final matching degree

regarding to this sub-rule base Rh can be calculated as:

βCh
= f (α(xp, Rh j)) (4.9)

where f (.) is an aggregation operator (e.g., weighted vote, min or max), and

α(xp, Rh j) is the matching degree for each rule describing Ch from sub-rule base

Rh. As for the current simplified version, each sub-rule base for class Ch only contains

one single rule without the need of aggregation among rules from Rh.

To determine the final class label of a testing pattern, the popular single winner

rule policy is adopted, such that the pattern is identified with the class label from

the sub-rule base that is of the following maximum matching degree:

Cxp
= arg max

Ch,h=1,2,...M
βCh

(4.10)

If two or more classes take the same maximum value or the total compatibility

degree is zero at a certain variable xp, no pattern can be uniquely classified. To

force a classification (if desired), such a pattern may be assigned with a default class

label that is associated with most training instances. Such an inference strategy is

generally depicted in Figure 4.2 [33].
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Figure 4.2: Single winner rule

4.2.3 Updating Quantified Fuzzy Rules

The quality of each PSO particle is then gauged by the overall quality of its encoded

fuzzy rule base as reflected by the fitness function. In particular, as the entire rule base

is designed to consist of sub-rule bases classifying instances from different classes,

the overall quality of the whole rule base can thus be measured by decomposing it

into qualities of individual sub-rule bases.

In order to measure the quality of a fuzzy sub-rule base, F-score is adopted, which

combines a measure of both the sensitivity of a sub-rule base (its accuracy among

instances of the same class, namely, recall r) and the specificity of the sub-rule base

(its accuracy among instances of different classes, namely, precision p). Formally,

F-score F is interpreted as a weighted average of the precision and the recall, such

that:

F = 2 ·
p · r
p+ r

(4.11)

72



4.3. Experimentation and Validation

F may achieve its best value of 1 and worse score 0. From this, the overall quality

of a fuzzy rule base is deemed to be the sum of F-score values of individual fuzzy

sub-rule bases each describing a class label Ch, h ∈ {1,2, ..., M}, weighted by the

fraction of instances mh with class label Ch among all training instances m. The

fitness value for a PSO particle is thus calculated as follows:

fitness=
M
∑

h=1

mh

m
Fh (4.12)

where Fh is the F-score value for the fuzzy sub-rule base describing class Ch.

Particles are then iteratively modified towards the best solutions with regard to a

given quality measure over the set of fuzzy rules. For each generation, the so-called

particle velocity is calculated by the following assignment:

vx = wvx + c1r1(x gBest − x) + c2r2(xpBest − x) (4.13)

where w is the inertia weight affecting the trade-off between convergence and

exploration-exploitation in the PSO process; c1 and c2 are two positive constants,

termed social and cognitive scaling parameters in the literature, respectively; r1 and

r2 are two random numbers within the range [0, 1]; x is the position for one particle

dimension; x gBest is the global best position of all particles, namely the rule weights

currently capable of achieving the highest classification accuracy overall; and xpBest

is the best individual position where the particular particle p achieves the current

best classification accuracy. The position is updated by the assignment: x = x + εvx ,

where ε is an additional real-valued parameter used to control the evolving speed.

In summary, the algorithm using PSO to evolve and obtain an optimal set of fuzzy

rules with quantifiers is presented in Algorithm 4.2.1, supported by Algorithm 4.2.2.

4.3 Experimentation and Validation

4.3.1 Experimental Setup

The PSO parameters are specified in Table 4.1. Note that as the main aim of this

study is to examine the efficacy of applying PSO for the induction of a quantified
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1 MAX_I T : number of maximum iterations;
2 GOAL : desired fitness value.

1: Initialisation
2: repeat
3: for each particle l ∈ S do
4: if f (x l)< f (pBest l) then
5: pBest l = x l

6: end if
7: if f (pBest l)< f (gBest) then
8: gBest = pBest l

9: end if
10: end for
11: for each particle l ∈ S do
12: for each dimension d ∈ D do
13: for each sub-dimension i ∈ n do
14: v l

d,i = wv l
d,i + c1r1(x gBest − x l

d,i) + c2r2(xpBest − x l
d,i)

15: x l
d,i = x l

d,i + εv l
d,i

16: end for
17: end for
18: end for
19: i t++
20: until i t > MAX_I T or GOAL is achieved

Algorithm 4.2.1: Induction of Quantified Fuzzy Rules with PSO

fuzzy rule base instead of that of PSO itself, only the basic version of PSO is used

in the experiments. The parameter specification for PSO is not carefully adjusted,

therefore, simulation results could be further improved where more sophisticated

versions of PSO are used with carefully modified parameters.

In this work, for simplicity, each dimension of input space is divided into 5 fuzzy

regions with the fuzzy membership values calculated by corresponding triangu-

lar/trapezoid functions as shown in Figure 4.3. As can be seen, the parameters that

define these membership functions include the mean µ, standard deviation σ of

the corresponding input dimension and a threshold θ , such that a = µ− 2σ; b =
µ−σ; c = µ−θσ; d = µ+θσ; e = µ+σ; f = µ+2σ. In particular, the threshold is

empirically set to 0.7 consistently for all fuzzy sets, regardless of the problem do-

main. Simulation results may also be further improved with more carefully adjusted

parameters for pre-defined fuzzy sets, with regard to different data sets. Similar

methods of initialising fuzzy sets for each input space can be found in [85].
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1 S : number of particles;
2 D : number of dimensions equal to number of rules;
3 n : number of antecedent attributes;
4 K : number of predefined fuzzy sets;
5 Fd : F-measure score of dth particle dimension;
6 f () : fitness function used to evaluate particles.

1: for each particle l ∈ S do
2: for each dimension d ∈ D do
3: for each sub-dimension i ∈ n do
4: x l

d,i = Rnd(0, K + 1)
5: v l

d,i = Rnd(0, 1)
6: end for
7: Fd = 2 · precision(d)·recal l(d)

precision(d)+recal l(d)
8: end for
9: pBest l = f (l)

10: if f (pBest l)< f (gBest) then
11: gBest = pBest l

12: end if
13: end for

Algorithm 4.2.2: Initialisation of PSO particles

Stratified tenfold cross-validation (10-CV) is employed for validation. In 10-CV,

a given data set is partitioned into 10 subsets. One single subset is maintained

as the validation data for testing, and the remaining subsets are used for training.

The process is then repeated 30 times by initialising different, randomly assigned

seeds to produce the final average outcomes. In Table 4.2, PSO-QFR and PSO-FR

stand for PSO evolved fuzzy rules with quantifiers and PSO evloved fuzzy rules

without quantifiers, both of which are based on the class-dependent simultaneous

rule learning strategy. As an initial implementation to test the proposed approach,

only one fuzzy rule is generated for both PSO-QFR and PSO-FR. Pairwise t-tests are

run to measure results in terms of the significance of differences between different

learning classifiers with p < 0.05. Those results that are significantly better, worse

or of no difference are marked with “(v)”, “(∗)”, or “(−)”, respectively, with the

achieved accuracy of PSO-QFR as the reference in each experiment.

Table 4.1: Parameter values of PSO

w c1 c2 ε Max_Generation Par t icle_Numbers

0.85 2.0 2.0 1.0 500 30
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Figure 4.3: Partitioning of each pattern space dimensions

4.3.2 Results and Discussion

Experiments are performed on 6 real-valued benchmark data sets, the characteristics

of which can be found in Appendix B. As shown in Table 4.2, PSO-QFR achieves

better results than PSO-FR in terms of average classification accuracy, for 4 out of

6 data sets (including breast-cancer, glass, haberman, iris), together with one tie

(new-thyroid) and one loss (blood). Generally speaking, fuzzy rules with quantifiers

outperforms those without quantifiers in the experiment. This is not surprising

since fuzzy rules with quantifiers associated with linguistic terms provide a richer

information with regard to the relative importance among the antecedent attributes,

thereby affecting the classification performance of the learned fuzzy rule base.

Table 4.2: Comparison using 30 × 10 cross-validation with respect to classification
accuracy (%), where v, − or ∗ indicate statistically better, same or worse results,
respectively, and bold figures signify overall best results for each data set.

PSO-QFR PSO-FR QSBA QuickRules

blood 74.13 ± 0.49 76.21 ± 0.17 (v) 66.72 ± 1.24 (*) 75.87 ± 1.12 (v)

breast-cancer 92.33 ± 0.98 83.69 ± 2.01 (*) 95.65 ± 0.15 (v) 96.25 ± 0.28 (v)

glass 43.18 ± 2.60 39.12 ± 2.81 (*) 35.06 ± 1.55 (*) 44.89 ± 1.91 (v)

haberman 74.80 ± 0.49 73.26 ± 1.05 (*) 74.31 ± 1.56 (*) 71.54 ± 1.58 (*)

iris 91.86 ± 2.04 73.27 ± 4.20 (*) 91.67 ± 0.34 (-) 89.60 ± 1.63 (*)

Thyroid 87.76 ± 1.73 87.28 ± 2.16 (-) 93.15 ± 0.52 (v) 77.21 ± 8.48 (*)

From Figure 4.4, further observations can be obtained. For better viewing, the

accuracy of each classifier is displayed for every 5 iterations within a total of 200
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Figure 4.4: Relation between PSO iteration number and classification performance
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iterations, and each point is the average of the results from a single tenfold cross val-

idation run. As can be seen, after an initial period of oscillations, generally the trend

of the training performance for all FRBCSs tend to converge at a certain iteration,

with PSO-QFR outperforming PSO-FR, which also conforms to the experiment results

from Table 4.2. It is also interesting to note that the final point for each of the testing

curves on the blood, glass, and haberman datasets is even better than that achieved

during training for both classifiers. This is probably because the assumption for the

current implementation that one fuzzy rule is sufficient to adequately describe a

class, such that fuzzy rules generated from training set may not fit the training data

very well, especially with 10-CV when most of the data is used in the training phrase.

Two learning classifier algorithms that generate models in the form of a rule set

are chosen to perform classification tasks for comparison. They are: QSBA, a fuzzy

subsethood-based rule model with quantifiers [127]; QuickRules [82], a recently

proposed hybrid fuzzy-rough rule induction. Both classifiers are implemented within

the WEKA machine learning framework [162] with default parameter setting.

With only one rule per class in the implementation, the proposed method (PSO-

QFR) has 3 wins, 1 tie and 2 losses, compared to QSBA, and wins and loses 3 times

each compared to QuickRules. The winning results in terms of achieving the highest

classification accuracy per learning classifiers are also highlighted in boldface in

Table 4.2, showing that the proposed approach achieves 2 best results out of 6 data

sets among the 4 classifiers. These results jointly demonstrate that the present work

is at least competitive to popular rule-based classifiers in the literature regarding

classification accuracy, and that the rule bases generated by the proposed approach

boost classification performance as compared to those without fuzzy quantifiers.

4.4 Summary

This chapter has proposed a PSO-based approach that can learn a set of rules with

continuous fuzzy quantifiers, such that all fuzzy rules can be combined and evaluated

simultaneously. The approach works for situations where the information dealt with

is not equally important, better capturing the relative importance among antecedent

attributes by fuzzy continuous quantifiers. As an initial implementation of the

proposed method, only one rule is generated per class. Experimental results show
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that the rule bases generated by this method help boost the classification performance

when compared to those generated without the use of fuzzy quantifiers. In addition,

the performance of the proposed approach is at least competitive to popular rule-

based learning classifiers.
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Chapter 5

Induction of Accurate and

Interpretable Fuzzy Rules with

Preliminary Crisp Representation

O NE of the most important advantages of fuzzy systems lies in their inherent

interpretability as they support the explicit formulation of, and inference with,

domain knowledge, gaining insights into the complex systems and facilitating the

explanation of their operations. In order to maintain the transparency in both the

learned models themselves and the inferences performed by running the learned

models, this chapter presents an approach that promotes an alternative approach,

where a fuzzy model is initialised by utilising preliminary existing crisp rules that

have been generated by a certain crisp rule-based learning mechanism.

This is motivated by the observation that such a data-driven rule generation

method is able to omit the empty parts of the input space, which usually leads to curse

of dimensionality as number of input feature increases, when fixed and predefined

quantity space is required to maintain the exactly prescribed meaning of given labels

and interpretability of the overall rule models. Being fundamentally data-driven,

each of the generated crisp rules forms a certain partition of the entire problem

space, and points to those parts in which desirable fuzzy rules may potentially exist,

instead of considering all of the possible combinations of input and class variables.

Each crisp rule is then locally mapped onto a compact set of interpretable fuzzy

rules involving only predefined meaningful fuzzy labels. This is followed by a global
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genetic rule generalisation and selection procedure to produce a fuzzy model that

is of high performance and interpretability (in both model semantics and model

complexity). Note that the proposed approach is different from what is often done

when utilising crisp rule-based classifiers to initialise potential fuzzy classifiers, which

works by simply selecting the relevant input variables through the use of feature

selection techniques [9, 121], or by directly fitting and fine tuning the generated

crisp intervals into certain parameterised MFs [66, 120] (which would of course

result in semantic loss).

The reminder of this chapter is organised as follows. Section 5.1 maps individual

crisp rules into preliminary fuzzy rules for subsequent operations. Section 5.2 selects

a subset of preliminarily transformed fuzzy rules that collectively generalise the

corresponding original crisp rule. Section 5.3 performs global genetic rule and

condition selections of all locally selected fuzzy rules from previous step. Section 5.4

conducts complexity analysis for this approach.

5.1 Mapping Crisp Rules to Fuzzy Rules

5.1.1 Heuristic Mapping

To generate an accurate and compact set of interpretable fuzzy rules effectively and

efficiently, it is useful to have an initial focus on where the potentially meaningful

rules may reside without going through an exhaustive search. An easily conceived

way to implement this is to make use of an initial set of if-then crisp rules available

(e.g., generated by a certain learning mechanism or provided by domain experts),

even though such rules might not be very accurate. Without losing generality, suppose

that a crisp rule C j, j = 1,2, ..., N (with N denoting the number of all crisp rules

available) is given as follows:

If x1 is I j1 and ... and xn is I jn, Then class is yC j (5.1)

where x1, x2, ..., xn represent the underlying domain variables, jointly defining an

n-dimensional input pattern space; I ji, i ∈ {1,2, ..., n}, is the crisp interval of the

antecedent variable x i; and yC j is a class label, acting as the rule consequent (which

may be encoded as an integer for simplicity in implementation).
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In general, a fuzzy if-then rule F j can be represented as follows:

If x1 is Dj1 and ... and xn is Djn, Then class is y F j (5.2)

where j = 1, 2, .., N , with N denoting the number of all such fuzzy rules within the

system; x i, i = 1, . . . , n are the underlying domain variables, jointly defining the

n-dimensional pattern space and respectively taking values from X i; Dji ∈ X i denotes

a fuzzy set that the variable x i may take; and y F j ∈ Y is the consequent of the fuzzy

rule F j that is to be assigned to one of the M possible output classes.

Note that fuzzy rules adopted in this chapter do not involve the use of rule

weights. Their involvement could further improve classifier performance as can be

seen from previous two chapters, but may pay the price of affecting some semantic

transparency, as rule weights change the normality of antecedent fuzzy sets [5].
Importantly, unless otherwise stated, in this work, each Dji in the above description

is a semantic fuzzy set for the variable x i, which is predefined and fixed throughout

both the modelling and inference processes.

In order to approximate the modelling problem with a set of fuzzy rules as of

Eqn. (5.2), where variables are described with predefined fuzzy sets instead of crisp

intervals, a procedure is required to convert crisp intervals into the corresponding

fuzzy terms. The idea to implement such a mapping is to use a similarity measure

between a crisp interval and each of the predefined fuzzy sets describing the same

variable, such that only those fuzzy sets are considered valid whose similarity values

are above a user-defined threshold η.

A heuristic is employed herein to obtain the set of potentially useful interpretable

rules by mimicking the method of [107]. It builds up a layered graph, where a node

in a certain layer contains a number of predefined fuzzy sets in association with each

existing crisp interval per variable. A node is only generated if any of its predefined

fuzzy sets has a similarity measure with the original crisp interval above a given

threshold or confidence level. This process iterates until all the corresponding crisp

sets that are associated with all the nodes within each layer have been successfully

replaced by predefined fuzzy sets. A path from one layer to another can be built by

connecting one and only one node from each layer. As such, each resultant path can

be interpreted as a possible interpretable fuzzy rule which coarsely approximates

the given crisp rule under mapping.
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Note that crisp intervals in a crisp rule are themselves crisp sets, each of which

can be seen as a special case of fuzzy sets. Thus, the similarity between a crisp set

and a fuzzy set can be generalised as the similarity between two fuzzy sets. There are

many such similarity metrics available in the literature. The following set-theoretic

based similarity measure is adopted in this work (owing to its popularity though

others may be used as an alternative):

S(A, B) =
|A
⋂

B|
|A
⋃

B|
(5.3)

where A and B denote two fuzzy sets; |.| represents the cardinality of a fuzzy set;

and
⋂

and
⋃

denote set intersection and union operator, respectively.

From the above, the similarity between a predefined fuzzy set Dji and a crisp set

I ji regarding the i-th variable within a given rule C j can be rewritten as:

S(Dji, I ji) =

∑

x̄ p∈E i
j
[µDji

(x p
i )∧µI ji

(x p
i )]

∑

x̄ p∈E i
j
[µDji

(x p
i )∨µI ji

(x p
i )]

(5.4)

where ∧ and ∨ represent the minimum and maximum operator, respectively, and

E i
j = { x̄

p |
∏

k 6=i

µIk
(x p

k )> 0, x̄ p ∈ Etrn} (5.5)

where x̄ p stands for an instance from the training data set Etrn; and the check of

µIk
(x p

k) > 0 is to ensure that the training instance intersects with all antecedent

variables, except the one under consideration for mapping.

The computation effort required for this similarity measure is significantly lighter

than what it may appear at the first sight. This is because in general, the set of

training instances used for calculating the similarity is not the entire training set, but

the subset of training data specified by Eqn. (5.5). However, it does not necessarily

ensure a good coverage of the original crisp rule unless the threshold value is set

very low. Yet, a low threshold implies many matching nodes to be retained and

hence, many potential fuzzy rules to be created. A large number of rules not only

increases computational complexity but also deteriorates the interpretability of the

learned model. A way to reduce the impact of this sensitivity in parameter setting is

to introduce another user-defined parameter T such that a very low threshold value

may be set, but only those T most similar fuzzy sets may be retained per variable.
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5.1.2 Illustrative Example

To illustrate the basic idea of the above heuristic process, consider a crisp rule C

under mapping as follows:

If x1 is I1 and x2 is I2, Then class is yC (5.6)

where I1 and I2 are two crisp sets describing the two input variables x1 and x2,

respectively. Suppose that a collection of predefined fuzzy sets {Dji| j = 1,2, .., ki}
per variable (x i, i = 1, 2) is provided. For simplicity, let ki = 3, i = 1, 2. In particular,

the three semantic fuzzy sets are defined for each variable such that x1 may take a

value on either of D11 = low, D21 = medium, D31 = high, and x2 on either of D12 =
small, D22 = medium, D32 = large.

Following the heuristic approach, the first layer of the hierarchical graph is set

to work on the crisp set of the first antecedent variable first, i.e., I1 in this case

(assuming the strategy of first come first served). Then, a node is created for each

of the predefined corresponding fuzzy sets Dj1, j = 1, 2, 3 if it has a similarity value

greater than a given threshold η (which is here set to 0 by default) to I1. Suppose that

S(I1, D11) = 0, S(I1, D21) = 0.75, and S(I1, D31) = 0.3. With the default threshold,

the nodes representing the two valid fuzzy sets of D21 and D31 are retained in the

graph. The similar process is repeated for the next antecedent variable. From which,

all retained nodes in a preceding layer are connected to those in the immediate

subsequent layer. The result of this mapping process for the example is shown in

Figure 5.1.

Once such a graph is generated, each path becomes an emerging fuzzy rule,

with the antecedent variables described by corresponding fuzzy sets, while the rule

consequent remains to be the same as that of the original crisp rule. This leads to a

set of possible fuzzy rules involving the use of only predefined fuzzy sets. For this

example, the resultant rules are:

Rule F1: If x1 is medium and x2 is small, Then yC

Rule F2: If x1 is medium and x2 is medium, Then yC

Rule F3: If x1 is high and x2 is small, Then yC

Rule F4: If x1 is high and x2 is medium, Then yC
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Figure 5.1: Example on heuristic mapping

5.2 Local Rule Selection

5.2.1 Functional Generalisation

With the use of similarity measure, the heuristic method generates a set of inter-

pretable fuzzy rules with respect to each existing crisp rule. However, the employment

of all such preliminarily mapped fuzzy rules does not necessarily optimally mimic

the capability of the original crisp rule. Unlike crisp rule-based environment, where

an instance is only covered by one crisp rule, each instance may now match with

multiple fuzzy rules to various degrees. Unfortunately, certain mapped fuzzy rules

may be conflicting with each other, and certain rules may be very similar with each

other (resulting in duplications). These issues must be addressed, not just to increase

computational efficiency but also to decrease potential model inconsistency and

complexity.
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A local rule selection procedure is proposed here to tackle these issues, by in-

troducing the constraint of functional generalisation. This constraint imposes that

in searching for a subset of initially mapped fuzzy rules to replace the full set of

the (possibly inconsistent and/or redundant) preliminary rules, the subset must

collectively generalise the capability of the original crisp rule from which they are

mapped while avoiding inconsistency and redundancy for the given data.

Suppose that there are N crisp rules C j, j = 1,2, ..., N , and that K j preliminary

fuzzy rules F ji, i = 1,2, ..., K j are mapped from C j using the heuristic method. For

each input pattern x̄ p ∈ Et rn, the rule firing degree µF ji
( x̄ p) with respect to the entire

set of fuzzy rules F ji is intuitively defined as the largest matching degree amongst

all:

µF ji
( x̄ p) =max{µF j1

( x̄ p), ...,µF ji
( x̄ p), ...,µF jK j

( x̄ p)} (5.7)

Let E j denote the set of instances selected to measure the quality of a selected

subset of fuzzy rules F ji′ , i′ = 1, 2, ..., S j, S j ≤ K j, which satisfies the following:

E j = { x̄ p|µF ji
( x̄ p)> 0, x̄ p ∈ Et rn, i = 1, . . . , K j} (5.8)

To ensure the desired functional generalisation, there are five cases to consider

regarding the different instances of a given E j:

(i) Instances that are covered and correctly classified by the original crisp rule C j:

E j1 = { x̄ p|y p = yC j ,µC j
( x̄ p) = 1, x̄ p ∈ E j} (5.9)

where y p is the underlying label of the instance x̄ p, and yC j is the rule consequent of

C j. It is desirable to maximise the firing degrees over these instances when using the

selected fuzzy rules, by imposing the requirement that such instances be still correctly

classified, while avoiding influence from other mapped fuzzy rules, especially those

whose rule consequents are inconsistent with the selected rules.

(ii) Instances that are covered, but wrongly classified by C j:

E j2 = { x̄ p|y p 6= yC j ,µC j
( x̄ p) = 1, x̄ p ∈ E j} (5.10)

It is desirable to minimise the firing degrees over these instances when using the

selected fuzzy rules, as much as possible, while improving the opportunity for them

to be classified by other mapped fuzzy rules with consistent class labels.
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(iii) Instances that are not covered by the original crisp rule C j, but by an alterna-

tive rule C j′ with correct classification which happens to be of the same consequent

as C j, and that are now to a certain extent matched with the fuzzy rules F ji that are

mapped from C j with consistent classification:

E j3 = { x̄ p|y p = yC j = yC j′ ,µC j′
( x̄ p) = 1, j′ 6= j, x̄ p ∈ E j} (5.11)

It is natural not to do anything in this case since the fuzzy rules mapped from C j

will provide the same correct class label as that inferred by certain other fuzzy rules

mapped from the other original crisp rule C j′ .

(iv) Instances that are otherwise regarded as the same as those in Case (iii),

except that they are incorrectly classified by C j′:

E j4 = { x̄ p|y p = yC j 6= yC j′ ,µC j′
( x̄ p) = 1, j′ 6= j, x̄ p ∈ E j} (5.12)

It is desirable to maximise the firing degrees over these instances when using the

fuzzy rules selected from those mapped from C j, as much as possible, while providing

additional support for those instances of Case (ii).

(v) Instances whose class labels are inconsistent with those of the original crisp

rule C j, but either they are correctly classified by an alternative rule C j′ with a

consistent rule consequent:

E j5a = { x̄ p|yC j 6= y p = yC j′ ,µC j′
( x̄ p) = 1, j′ 6= j, x̄ p ∈ E j} (5.13)

or they are incorrectly classified by an alternative rule C j′:

E j5b = { x̄ p|y p 6= yC j , y p 6= yC j′ ,µC j′
( x̄ p) = 1, j′ 6= j, x̄ p ∈ E j} (5.14)

It is desirable to minimise the firing degrees over these instances when using the

selected fuzzy rules, as much as possible, given that the consequents of such fuzzy

rules are not to be consistent with the true classes of these instances, while improving

the opportunity for them to be matched with rules that are mapped from other crisp

rules with correct classification. For simplicity in description later, introduce the

notion of E j5 such that E j5 = E j5a ∪ E j5b.

Figure 5.2 summarises the five types of instance and their associated appropriate

actions.
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Figure 5.2: Functional generalisation regarding instances from different cases

5.2.2 Search for Subset of Quality Mapped Rules

Given the above discussion, the quality Q(F ji′) of a subset of the fuzzy rules F ji′ , i′ =
1,2, ..., S j, S j ≤ K j, selected from the K j rules F ji, i = 1,2, ..., K j, mapped from the

preliminary crisp rule C j in relation to the data set E j, can be evaluated as follows:

Q(F ji′) =
∑

i

QE ji
(F ji′) (5.15)

where QE ji
(F ji′) ∈ [0,1], i = 1,2,4,5, denote the quality measures of the same sets

of fuzzy rules over the data instances that belong to Case i. Note that Case iii is not

included due to its nature as indicated previously.

The component quality measures QE ji
can be computed by adopting that often

applied in conventional classification techniques, using the following biased mean
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squared error:

QE ji
(F ji′) = 1−

1
|E ji|

∑

x̄ p∈E ji

(µF ji′
( x̄ p)− θ )2, (5.16)

where |E ji| is the cardinality of instances from Case i; µF ji′
( x̄ p) denotes the largest

matching degree of the instance x̄ p with the selected subset of fuzzy rules F ji′; θ ∈
{0.0, 1.0} represents the desired value (depending on whether it is for maximisation

or minimisation) regarding the instance x̄ p, that is, θ = 1.0 if x̄ p ∈ E j1∪ E j4, θ = 0.0

if x̄ p ∈ E j2 ∪ E j5.

Following the above approach the generalisation capability of the selected fuzzy

rules that are mapped from a given crisp rule C j is assessed with regard to an equal

weight over the five types of training data instance. This may not be the ideal in

general because not only the number of instances from different types can vary,

the matching degrees of individual instances are not the same either, where higher

matching degrees ought to be considered contributing more to the overall quality

than the lower ones.

To better address this issue, a weighted approach is taken here. In particular, the

weight w ji that is associated with an individual quality measure is specified as the

ratio between the sum of the matching degrees of the instances belonging to that

given type E ji and the total of the matching degrees of all instances in E j such that

w ji =

∑

x̄ p∈E ji
µF ji
( x̄ p)

∑

i=1,2,4,5

∑

x̄ p∈E ji
µF ji
( x̄ p)

(5.17)

where µF ji
( x̄ p) is the matching degree of the instance x̄ p regarding all K j preliminary

fuzzy rules as defined in Eqn. (5.7). In addition, to minimise redundant rules, the

following relative size S(F ji′) of the resultant fuzzy rules is also factored into the

overall quality measure:

S(F ji′) = 1−
|F ji′ |
|F ji|

(5.18)

Thus, the quality Q(F ji′) of a selected subset of the fuzzy rules F ji′ mapped from a

given crisp rule C j will be assessed as follows:

Q(F ji′) =
∑

i=1,2,4,5

w jiQE ji
(F ji′) +wsS(F ji′) (5.19)

where ws ∈ [0,1] is a parameter that allows for the adjustment of the relative

contribution of the size of the subset of selected fuzzy rules towards the quality of

that subset (which can be set to 1 by default in implementation).
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5.3 Tuning of Interpretable Fuzzy Rule Base

The above work ensures that a subset of fuzzy rules can be selected that collectively

generalise a given crisp rule. However, globally, the combination of all such locally

selected fuzzy rules does not necessarily result in an optimal and compact inter-

pretable rule base, especially from the ruleset complexity viewpoint. Although each

subset of rules may be optimised separately, the quality of any neighbouring subsets

(which share antecedent variables) may be deteriorated if they are not optimised at

the same time. The overall performance of the entire rule base is thus unpredictable

when all crisp rules are mapped simultaneously. With the aim to obtain a compact

ruleset with high performance, when given all of the selected fuzzy rules in response

to all existing crisp rules, a method is therefore required to search for an optimal set

of fuzzy rules globally.

For aforementioned purpose, genetic algorithms (GAs) are employed in this work

to implement the required global search owing to their practical popularity and

conceptual simplicity. GAs realise a population-based search meta-heuristic inspired

by the process of natural selection. Of course, other stochastic population-based

techniques may be adopted as alternative for implementation, if preferred.

Generally speaking, in applying GAs, a set of possible solutions are represented as

chromosomes, with better emerging solutions more likely to be selected as offsprings

according to their fitness, where new solutions are generated mainly based on

crossover and mutation operators. In order to allow more flexibility for ruleset

tuning, each encoded fuzzy rule is assumed to always include n antecedents, with

a don’t care label in place of void in the corresponding variable location within the

rule. Obviously, an emerging rule will be eliminated if don’t care appears as the value

for all antecedent variables. In so doing, for a problem involves an n-dimensional

pattern space, each variable x i, i ∈ {1, 2, ..., n}may take any fuzzy set from its domain

{D0, D1, ..., Ddi
} (whose cardinality is di), with D0 representing the notion of don’t care

(that has a specifically fixed membership value of 1). In implementation within this

work, the GA used adopts Pittsburgh style encapsulation, whereby the combination

of all selected fuzzy rules returned by the local rule selection process are encoded

within a single chromosome, where individuals of the first population are initialised

with an exact copy of the selected fuzzy rules.
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Recall that the ultimate goal of this tuning process is to obtain an accurate fuzzy

rule base that is interpretable in terms of both semantics and complexity. As the

semantic interpretability is already ensured by the consistent use of predefined fuzzy

sets, the fitness function takes both the accuracy and complexity of a resultant fuzzy

rule base into account, such that

Q =Qp −wiQ i (5.20)

where Qp measures the performance of the resultant rule base, defined as the accuracy

rate of correctly classified instances; Q i measures the structural complexity of the

rule base, defined as the size of the resulting rule base, penalising rule base with a

large number of rules or rules of many compound conditions; and wi is a weighting

factor to balance the expected contributions of the two quality indicators. As such,

this work follows a conceptually simple method that converts multiple objectives

into a compound single objective.

5.4 Complexity Analysis

Given a set of crisp rules {C j| j = 1,2, ..., N} (returned by a certain data-driven

existing crisp rule learner), and a fixed linguistic term set with underlying semantics

defined as fuzzy sets reflecting the domain expertise, the process of generating

an interpretable fuzzy rule base can be summarised into the following three-stage

process, as outlined in Figure 5.3.

1) Mapping crisp rules into interpretable fuzzy rules. For each crisp rule C j:

a) Generate the (sub-)data set E i
j relevant to each antecedent variable x i.

b) Compute similarity between crisp interval I ji and each of the predefined

fuzzy set Dji of x i.

c) Retain those fuzzy sets whose similarity values surpass user-defined

threshold η, resulting in a set of emerging interpretable fuzzy rules

F ji, i = 1, 2, ..., K j.

The cost incurred in this stage to generate the initial sets of fuzzy rules is O(N×Nint l×
d), where N denotes the number of given crisp rules, Nint l is the maximum number
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Figure 5.3: Generation of accurate and interpretable fuzzy model from a crisp rule
learner: Three stages
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of the existing crisp intervals for any crisp rule, and d is the maximum number of

predefined fuzzy sets for any attribute. In practice, Nint l is set to a small number to

allow for more general rules [66] whilst d is not large, which is typically at most 9

owing to psychological theory for the learned rules to be interpretable (although in

the experimentation later, this may be set to 14 in an effort to demonstrate that the

proposed method works even with larger than usual variable domains).

2) Selecting mapped fuzzy rules with functional generalisation. For each set of

fuzzy rules F ji, i = 1, 2, ..., K j mapped from C j:

a) Categorise instances from E j into five types.

b) Compute weights for each type.

c) Obtain a locally optimal selected subset of fuzzy rules F ji′ , i′ = 1, 2, ..., S j, S j ≤
K j with functional generalisation (which is also implemented with a sim-

ple GA in this work).

The cardinality of possible fuzzy rules generated in response to each crisp rule is

bounded by Nint l × T , where T is the maximum number of similar fuzzy sets that are

allowed per crisp interval. In practice, as with Nint l , T is set to a small number to

avoid potentially generating too many redundant rules. For each crisp rule, the cost

for rule evaluation over a subset of initially mapped fuzzy rules is bounded by 2Nint l×T .

The total computational effort at this stage is therefore, O(N × 2Nint l×T ), which can

be practically resolved by GA given that Nint l and T are both a small number.

3) Computing a globally compact and accurate fuzzy rule base with GA.

a) Encode all locally optimised fuzzy rules together in Pittsburgh style.

b) Optimise the interpretable fuzzy rule base, with performance and com-

plexity jointly encoded as the fitness function.

Suppose that the cardinality of the family of all selected fuzzy rules is Nr , then, the

cost for the final generic tuning is O(dn × Nr), where n is the number of antecedent

attributes in the domain. In practice, as the outcome of Stage 2 has already provided

a good solution and d is not large, the GA often converges very quickly at this stage

(which is also supported by experimental results as to be shown in Section IV-G).

Finally, note that at the end of each stage, appropriate conventional rule-pruning

mechanisms may be employed if desired, but this is beyond the scope.
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5.5 Experimentation and Validation

Systematic experiments using benchmark data sets are reported here to demonstrate

the efficacy of the proposed approach. Section 5.5.1 introduces the experimental

setup. Section 5.5.2 shows the generation of interpretable fuzzy rules, which are

initialised from crisp rules generated by two distinct learning mechanisms, and

compares the generated rules with those directly fuzzified by the use of the popular

FURIA algorithm [66]. Section 5.5.3 compares performance of the generated rule

bases with alternative fuzzy rule-based learning classifiers that only use fixed and

predefined fuzzy sets, with rule bases complexity analyses as shown in Section 5.5.4.

For completeness, Section 5.5.5 compares the proposed work with non-fuzzy-rule-

based learning approaches. Section 5.5.6 investigates the effect of local rule selection

in relation to functional generalisation.

5.5.1 Experimental Setup

To demonstrate the proposed approach at work, experiments are performed on 16

real-valued benchmark data sets, the characteristics of which can be found in Ap-

pendix B. Stratified tenfold cross-validation (10-CV) is employed for result validation.

In 10-CV, a given data set is partitioned into ten subsets. Of the ten, nine subsets are

used to perform training, where the proposed approach is used to generate an inter-

pretable fuzzy rule base, and the remaining single subset is retained as the testing

data for assessing the learned classifier’s performance. This cross-validation process

is then repeated ten times in order to lessen the impact of random factors; these

10 × 10 sets of evaluations are then averaged to produce each final experimental

outcome reported below (except for the particular investigation into the effect of

local rule selection as reported in Section 5.5.6).

Table 5.1: Parameter specifications of GA

Stage 2 ws = 0.1, Pop = 100, Pc = 0.95, Pm = 0.005, max I t r =
100, i t r_no_improve = 10

Stage 3 wi = 0, Pop = 100, Pc = 0.95, Pm = 0.005, max I t r =
500, i t r_no_improve = 30

For fair and systematic comparison, fixed and uniformly divided fuzzy sets are

used in the experiments. As the partition granularity for each variable is unknown in
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Table 5.2: Parameter specifications of the learning classifiers used for experimentation

Approach Parameter Specification
PTTD ε= 0.0025, numCandidates = 5, max Depth= 0

GP-COACH Labels = 5, Eval = 20000, Pop = 200,α = 0.7, Pc =
0.5, Pm = 0.2, Pdp = 0.15, Pi = 0.15, Tournament =
2, w1 = 0.8, w2 = w3 = 0.05, w4 = 0.1

SLAVE2 Pop = 20, I terchange = 500, Pbm = 0.5, Pbc = 0.1, Prm =
1.0, Prc = 0.2,λ= 0.8

MOGUL Labels = 5,ω = 0.05, K = 0.1,ε = 1.5, repeat_rules =
1, rule_t ype = 2, I terselection = 500, Popselection =
61,τ = 1.5,β = 0.5, Pcs = 0.6, Pms = 0.1, I tertuning =
1000, Poptuning = 61, a = 0.35, b = 5, Pc t = 0.6, Pmt = 0.1

FH-GBML Rules = 30, Sets = 200, Gens = 1000, Pc =
0.9, Pdont-care = 0.5, Pmichigan = 0.5

SGERD Qrules = 0(calculate heuristically), RuleEval = 2
QSBA Labels = 5, thres = 0.7, T norm= Algebraic
C4.5 Pruned = yes, con f idence = 0.25, minNumOb j =

2, numFolds = 3, reduced_er ror_pruned = yes
RIPPER Pruning = yes, Folds = 3, Noptimisations = 2

NB default
SMO c = 1.0,ε= 1.0× 10−12, tolerance = 0.001
IBk kNN = 1, search_al gori thm= linear search, window=

0
FRNN kNN = 10, T Norm = KD, Implicator =

KD, Similari t y = 1
NFC epoch= 100,σ = 5.0e−5,λ= 5.0e−7

C45-IFRC max Depth= 3, T = 3,η= 0, wi = 0
UR-IFRC max Depth= 5, T = 3,η= 0, wi = 0

advance, in this work, without any bias and for simplicity, four types of homogeneous

fuzzy partition with uniformly divided triangular MFs are employed, as shown in

Figure 5.4. That is, each antecedent variable may take one fuzzy set from the domain

{D2
1 , D2

2 , D3
1 , ..., D5

5} (in addition to the value that stands for don’t care). Given such

underlying value domains, 4 bits are required for encoding each variable in the

binary encoded chromosomes, with 0000 and 1111 reserved for the don’t care label,

and the rest for the 14 distinct fuzzy sets. The total length of a chromosome required

is 4nNr , where Nr is the cardinality of the family of all selected fuzzy rules after Stage

2 of the learning process. The fitness function is defined as given in Eqn. (5.20).

Each implemented GA utilises the steady-state with elitism selection strategy.

As the main aim of this investigation is to examine the efficacy of the proposed

approach for the acquisition of an interpretable rule base, instead of the performance
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Figure 5.4: Partitioning of pattern space

of a GA itself, only the basic version of GA is used in the experiments. The parameter

specification for GA is not purposefully adjusted and therefore, the experimental

results could be further improved where a more sophisticated version of GAs is

employed with carefully modified parameters. In fact, GAs with the same parameter

specifications as detailed in Table 5.1 are applied to generate fuzzy rules that are

initialised by two distinct crisp rule-based learning mechanisms. Parameter spec-

ification involved in the proposed approach and alternative learning classifiers is

summarised in Table 5.2. Note that the implementation of the compared approaches

can be found in WEKA [162] or KEEL [4].

5.5.2 Generating Fuzzy Rules with C4.5 and Unordered RIPPER

Two highly popular crisp rule-based classifier learners are each employed here to

act as the initial crisp rule generator to enrich the comparison. These are C4.5, a

classical decision tree learning algorithm, and an unordered version of RIPPER (UR)

[66]. Comparison is also made with FURIA [66], commonly served as the benchmark

that greedily transforms crisp rules into fuzzy rules by fitting initially generated crisp

intervals into parameterised trapezoid MFs, where C4.5 and UR are also separately

used as the initial rule generator. For conciseness, the resulting learned rule sets are
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shorthanded as C45-IFRC and UR-IFRC, for C4.5- and UR-initialised interpretable

fuzzy rule-based classifiers, and as C45-FURIA and UR-FURIA for C4.5- and UR-

initialised FURIA, respectively. Note that UR-FURIA is the exact FURIA algorithm

itself that converts UR rules directly into fuzzy rules, and is renamed purely for

meeting the eyes.

Table 5.3 presents the results with C4.5 used as the initial rule generator, where

the top performer in terms of classification accuracy is highlighted in boldface for

each data set, and pair-wise t-test (p = 0.05) results are identified to reflect their

statistical significance. As can be seen, performance improvement using the present

approach is statistically very significant with 10 wins, 4 ties and only 1 loss with an

average increased margin over 0.6%. In particular, C45-IFRC works well generally

across the data sets with a different dimensionality, achieving 12 top results out of 16.

Superiority in performance of the fuzzy rules produced using the proposed approach

over those generated by FURIA is also statistically reflected in the last column of

Table. 5.3, where C45-IFRC clearly beats C45-FURIA with 7 wins, 7 ties and only

1 loss. In contrast, the performance of the fuzzy rule bases generated by FURIA is

even worse than its original crisp counterpart, with t-test results barely being equal.

Table 5.4 lists the results with unordered RIPPER used as the initial rule generator.

The performance improvement owing to the use of the proposed algorithm is also

significant with 8 wins, 6 ties and 2 losses, albeit having 2 wins fewer than the number

achieved by FURIA. Different behaviours of FURIA in fuzzifying two different types

of crisp rule bases (returned by C4.5 and UR, respectively) can be observed. This is

because UR works by searching for fuzzified outcomes for one antecedent variable

at a time in a brute-force way, thereby meeting the underlying strategy taken by

FURIA, whilst C4.5 works over all individual attributes by one go. Nevertheless,

the proposed approach is shown to be able to work with both strategies, leading to

significant performance improvements.

As each of the original crisp rules points to different places where potentially

desirable fuzzy rules may exist, the quality of preliminary crisp rules has an obvious

impact upon the final generated fuzzy rules, as illustrated above. Thus, any direct

attempt to compare the performances between the two fuzzy rule bases produced

by C45-IFRC and UR-IFRC makes little sense, given their very different starting

points. What is important is that they both achieve improved performances using

only predefined fuzzy sets, producing models of inherent interpretability.
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Table 5.3: Rule base comparison with C4.5 as initial rule generator using 10× 10
cross-validation with respect to pair-wise t-test results (p = 0.05), where v, -, and
* indicate statistically better, same, and worse classification performance against
generated fuzzy rule base

Data Set C4.5 C45-IFRC C45-FURIA C45-
IFRC
v.s.

C45-
FURIA

appendicitis 82.79 ± 1.78 84.34 ± 2.63 (*) 73.47 ± 13.93 (v) (v)
banknote 97.96 ± 0.45 98.63 ± 0.34 (*) 98.16 ± 0.37 (*) (v)

blood 76.89 ± 0.82 77.53 ± 0.48 (*) 59.59 ± 12.28 (v) (v)
breast-cancer 94.13 ± 0.65 95.15 ± 0.68 (*) 94.81 ± 0.55 (*) (=)
column-2C 79.52 ± 1.74 80.16 ± 2.16 (=) 79.70 ± 1.77 (=) (=)
column-3C 79.81 ± 2.05 77.51 ± 1.90 (v) 79.93 ± 2.17 (=) (*)
ionosphere 87.00 ± 1.19 86.80 ± 0.72 (=) 86.62 ± 1.26 (v) (=)

iris 93.33 ± 1.30 95.32 ± 0.54 (*) 93.33 ± 1.17 (=) (v)
liver-disorders 63.08 ± 2.45 64.83 ± 1.64 (*) 63.16 ± 2.13 (=) (v)

mammographic 82.03 ± 0.66 79.13 ± 0.79 (v) 81.49 ± 1.04 (=) (*)
new-thyroid 91.35 ± 1.52 91.88 ± 1.20 (=) 91.54 ± 1.39 (=) (=)
parkinsons 84.48 ± 2.26 84.33 ± 1.11 (=) 84.42 ± 2.24 (=) (=)

pima-diabetes 73.89 ± 0.77 75.05 ± 0.89 (*) 74.22 ± 0.81 (*) (v)
seeds 90.38 ± 1.10 91.37 ± 1.25 (*) 90.61 ± 0.95 (=) (=)
sonar 70.23 ± 3.36 72.59 ± 4.21 (*) 70.67 ± 3.44 (=) (v)
wdbc 93.76 ± 0.64 94.30 ± 0.53 (*) 93.87 ± 0.64 (=) (=)

Summary (*/-/v) 83.789 84.308 (10/4/2) 82.224 (3/10/3) (2/7/7)

5.5.3 Comparison with Alternative Interpretable Fuzzy

Rule-based Learning Classifiers

Performance of both classifiers implemented using the two resultant fuzzy rule

bases (by C45-IFRC and UR-IFRC) is compared against 7 alternative fuzzy learning

classifiers which also induce interpretable fuzzy rules with only fixed and uniformly

divided quantity space, including: PTTD [136, 135], GP-COACH [14], SLAVE2

[54, 57], FH-GBML [68, 78], SGERD [105], MOGUL [34] and QSBA [142, 128],
which have been reviewed in Chapter 2.3. The results on classification accuracy

are summarised in Table 5.5, and the corresponding t-test outcomes are shown in

Table 5.6.
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Table 5.4: Rule base comparison with UR as initial rule generator using 10 × 10
cross-validation with respect to pair-wise t-test results (p = 0.05), where v, -, and
* indicate statistically better, same, and worse classification performance against
generated fuzzy rule base

Data Set UR UR-IFRC UR-FURIA UR-
IFRC
v.s.
UR-

FURIA
appendicitis 85.79 ± 1.80 86.83 ± 1.70 (*) 85.80 ± 1.92 (=) (*)

banknote 98.40 ± 0.22 98.75 ± 0.22 (*) 99.12 ± 0.22 (*) (v)
blood 78.02 ± 0.55 77.82 ± 1.11 (=) 78.02 ± 0.55 (=) (=)

breast-cancer 94.16 ± 0.47 95.90 ± 0.39 (*) 94.96 ± 0.41 (*) (*)
column-2C 81.90 ± 1.90 81.00 ± 2.07 (=) 82.39 ± 1.67 (*) (v)
column-3C 75.54 ± 0.88 78.76 ± 1.68 (*) 77.52 ± 1.57 (*) (*)
ionosphere 86.76 ± 1.07 85.58 ± 1.84 (=) 87.35 ± 1.37 (=) (v)

iris 92.59 ± 1.23 95.59 ± 0.56 (*) 94.33 ± 0.72 (*) (*)
liver-disorders 66.97 ± 2.18 64.86 ± 2.09 (v) 68.79 ± 2.00 (*) (v)

mammographic 82.31 ± 0.34 78.46 ± 1.09 (v) 82.53 ± 0.49 (=) (v)
new-thyroid 94.28 ± 0.72 94.29 ± 0.85 (=) 94.84 ± 0.86 (*) (=)
parkinsons 88.30 ± 1.98 87.02 ± 1.34 (=) 89.87 ± 1.32 (*) (v)

pima-diabetes 74.82 ± 0.87 75.27 ± 0.69 (=) 74.93 ± 1.03 (=) (=)
seeds 90.48 ± 0.78 92.66 ± 1.52 (*) 92.05 ± 0.68 (*) (=)
sonar 74.82 ± 2.26 77.39 ± 1.98 (*) 75.49 ± 2.09 (=) (*)
wdbc 94.44 ± 0.55 94.98 ± 0.73 (*) 94.99 ± 0.45 (*) (=)

Summary (*/-/v) 84.974 85.323 (8/6/2) 85.811 (10/6/0) (6/5/5)

5.5.3.1 C45-IFRC vs. Alternatives

Although regarding individual data sets C45-IFRC may not be a top performer, its

average performance across all tested datasets is higher than that achieved by any of

the seven alternatives. In terms of statistical t-test, it ties with the two (GP-COACH

and SLAVE2) and significantly beats the other five (e.g., C45-IFRC has 15 wins, 1 tie

and no losses as compared to SGERD). Yet, GP-COACH and SLAVE2 learn fuzzy rules

involving the use of disjunctive norm of fuzzy sets, i.e., they allow multiple fuzzy

sets to be compounded to describe a single domain variable. This not only greatly

expands the solution search space, but also causes the learned rules to become more

complicated and hence less comprehensible.
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5.5.3.2 UR-IFRC vs. Alternatives

The performance of UR-IFRC is even more superior than C45-IFRC in terms of their

relative performance against the seven alternatives. Again, it has achieved the

best average accuracy amongst all, and this is further supported with statistically

significant better results throughout, even beating GP-COACH and SLAVE2, the two

best performers amongst the seven, with substantially more wins than losses.

5.5.4 Model Complexity

Table 5.7 presents an empirical analysis of the complexity of learned interpretable

fuzzy rule bases, in terms of average number of antecedent conditions (Cond) per

fuzzy rule, and average number of rules (Rul) per rule base.

For Cond, PTTD and SGERD return the most compact rules, with both learning

fuzzy rules involving fewer than 2 antecedent conditions. Following these two, C45-

IFRC also enjoys high structural interpretability, being able to learn rules of the third

shortest on average in length. UR-IFRC also learns short fuzzy rules employing only

fewer than 4 antecedent variables on average. In contrast, MOGUL and QSBA have

a fixed length of any fuzzy rule as it is set according to the problem dimensionality.

Note that for GP-COACH and SLAVE2, Cond only counts the number of the antecedent

variables appearing in the rule, not the additional complexity incurred due to their

use of compounded fuzzy terms in describing the variables.

For Rul, PTTD and QSBA return rule bases with the smallest size, due to their

imposed heuristic nature of setting the number of rules to the number of the classes.

However, the interpretability of QSBA model is poor since the rules it returns are very

complicated, involving all variables for each rule. In general, both PTTD and SGERD

tend to generate most compact rule bases with not only very small rule sizes but also

short rules. Yet, their classification performances are poor compared with that of

the proposed approach. C45-IFRC is able to learn rule bases of a small cardinality

(returning fewer than 12 rules required on average across the 16 data sets), simpler

than those returned by GP-COACH, MOGUL, and FH-GBML. One possible reason

that UR-IFRC learns rule bases with a bigger size may be due to the fact that UR

is set to generate rules with more antecedent variables using a bigger maxDepth

parameter value as indicated in Table 5.2.
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5.5. Experimentation and Validation

5.5.5 Comparison with Non-Fuzzy-Rule-Based Classifiers

In addition to comparing against alternative fuzzy learning classifiers, the perfor-

mance of the proposed approach is further compared with another 6 popular learning

classifiers which are non-fuzzy-rule-based. Table 5.8 summarises the classification

accuracy and Table 5.9 shows the t-test results. The six compared methods are: SMO

[137], a sequential optimisation algorithm for building support vector machines with

polynomial kernel function; IBk [153], the classical k-nearest neighbour approach,

where an instance is classified by a majority vote of its neighbours; FRNN [81], a

fuzzy-rough set-based nearest neighbour classification algorithm, which classifies

instances based on their membership to lower and upper approximations of the

decision classes; NB [112], a probabilistic learning classifier, based on direct applica-

tion of Bayesian theorem with strong independence assumptions; and RIPPER [31],
the classical rule induction algorithm, with rule pruning and optimisation process

performed to fine-tune the learned rules including a default rule added for the most

frequent class; and NFC [21], an optimised neuro-fuzzy classifier.

Compared with NB and RIPPER, UR-IFRC performs significantly better, in terms

of both the average accuracy and the t-test results. Such clear wins are also achieved

by C45-IFRC, compared to NB and RIPPER. The performance gap between C45-

IFRC and the well-designed and robust SVM classifier is only fewer than 0.1%,

with statistical results close to those of SVM and nearest neighbour-based learning

classifiers. Whereas UR-IFRC does not outperform the rest for any data set, it

achieves better average accuracy than SMO, IBK and FRNN, supported with better

statistical results, and a statistically equal performance with NFC. Collectively, the

resultant fuzzy rule bases have demonstrated a promising performance that is at

least comparable to the popular, well-established non-fuzzy-rule-based classifiers.

Importantly, such an excellent performance is achieved using only fixed quantity

space with interpretable inference results, forming a sharp contrast with SVM and

nearest neighbour-based learning classifiers.

5.5.6 Effect of Local Rule Selection

The above experimental results have demonstrated the promising performance of the

proposed approach, in terms of both classification accuracy and model interpretability
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5.5. Experimentation and Validation

(thanks to the use of only predefined fuzzy sets and the induction of compact rules

and rulesets). The high comprehensibility is achieved without embedding any

sophisticated criterion in the final GA-based tuning step (by setting wi = 0 as

indicated in Table 5.2). However, such compact and transparent rule bases cannot be

obtained without the stage of local rule selection through functional generalisation.

This is confirmed with the further experimental investigations as reported below.

In conducting this purposefully devised experimentation, 3 different assignments

for the interpretability weight wi, as given in Eqn. (5.20) are used, namely: 0.0, 0.1

and 1.0. A single 10-CV run is performed for 5 data sets with C45-IFRC. Results are

averaged, and analysed, in terms of: training accuracy ( Trn), testing accuracy (Tst),

average number of rules (R1) after Stage 1 (i.e., the average number of potential

fuzzy rules after heuristic mapping procedure), average number of rules (R2) after

Stage 2 (i.e., the number of all returned fuzzy rules with the local rule selection

procedure), and average number of rules (R3) after Stage 3 (i.e., the size of the final

ruleset). The average number of antecedent variables, or the conditions ( Cond),

per resultant rule is also recorded together with the execution time (Time) for each

complete 10-CV run.

As shown in Table 5.10, the reduction in the number of rules obtained after

local rule selection is significant, R2 is at least 10 times smaller than R1 (for the

data set column-3C, it is over 20 times smaller). Such reduction still results in a

highly compact rule base, even when the interpretability weight is not included in

the subsequent genetic tuning. The sizes of the resultant rule bases after running

Stage 2 are generally over 2 times smaller than those without when wi = 0.1, and

much less when wi = 0 (more than 10 times).

Recall that such substantial reduction is designed subject to functional generali-

sation, without loss in the performance of selected rules. However, if Stage 2 is not

run, when wi = 1, although a very small rule base with short rules may be returned,

the classification performance is significantly decreased. Better performances are

generally achieved when wi = 0 or wi = 0.1 in terms of accuracy, yet all of which

are still worse than those with Stage 2 running. In particular, regarding the data sets

column-2C and column-3C, the resultant classification accuracies are far worse than

those achievable with local selection procedure being on. As an example, Figure

5.5 shows a single GA run (with the compared settings as illustrated in the figure),

regarding both training and testing accuracy. When running with Stage 2 it only
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5.6. Summary

takes a few generations to converge. In situations where Stage 2 is not implement-

ed, the plot on the testing accuracy oscillates before it settles down around 20th

generation when wi = 0; it takes more than 100 generations to converge in case of

wi = 0.1; whereas when interpretability is weighted significantly higher, GA fails to

find solutions with good performance.

Running the local rule section procedure requires additional computation in

search, where GA needs to run multiple times (with the number depending on that

of the given crisp rules) as overheads. However, in real applications of the proposed

approach, such multiple search attempts can be realised in parallel in order to reduce

the otherwise required time for series implementation. Despite the time measured

in this experiment is obtained by running multiple GAs sequentially, the result is

very promising as such additional cost helps reduce the overall run time that the

final genetic tuning will spend. As shown by the results, the overall run time cost is

generally much smaller than that is required without running local rule selection

(when wi = 0 or wi = 0.1).

5.6 Summary

Owing to the necessity of incorporating consistent domain expertise by the use of

predefined fuzzy sets, this chapter has proposed a novel approach to generating

interpretable fuzzy classification rules. For a given classification problem, simple crisp

rules are utilised for initialisation, with each of them pointing to the model sub-spaces

where desirable fuzzy rules potentially exist. This is followed by a heuristic mapping

procedure that converts each preliminary crisp rule into a set of interpretable fuzzy

rules involving only the predefined fuzzy sets, ensuring semantic interpretability.

A local rule selection procedure is then performed to obtain a compact subset of

initially mapped fuzzy rules that jointly generalise the capability of the underlying

crisp rule. A fine grain tuning of all selected subsets of fuzzy rules is finally carried out

with a conventional GA, resulting in an accurate and interpretable fuzzy rule-based

classifier with a simplified structure.

Systematic experimental examinations of the proposed approach have been

carried out, involving the use of two different crisp rule generation mechanisms

for initialisation, over 16 benchmark datasets, in comparison with 7 alternative
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5.6. Summary

Figure 5.5: Example genetic tuning runs (on the data set column-2C)
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Table 5.10: Analysis of local rule selection

Data sets Setup Trn Tst R1 R2 R3 Cond Time

column-2C

with stage 2, wi = 0 81.5 77.1 101.1 7.5 5.8 2.2 29.4

without stage 2, wi = 0 75.9 71.6 101.1 101.1 48.4 2.7 109.1

without stage 2, wi = 0.1 74.4 70.3 101.1 101.1 16.6 2.7 35.7

without stage 2, wi = 1 64.8 61.6 101.1 101.1 1.6 1.0 3.4

column-3C

with stage 2, wi = 0 78.5 76.5 141.6 6.0 4.2 2.0 34.1

without stage 2, wi = 0 54.0 50.7 141.6 141.6 30.2 2.5 52.4

without stage 2, wi = 0.1 55.6 56.8 141.6 141.6 11.7 2.2 24.3

without stage 2, wi = 1 46.8 50.3 141.6 141.6 3.8 1.4 7.0

ionosphere

with stage 2, wi = 0 89.5 85.2 93.0 8.5 8.1 2.3 15.4

without stage 2, wi = 0 88.8 82.6 93.0 93.0 79.1 2.8 93.1

without stage 2, wi = 0.1 89.8 84.4 93.0 93.0 32.4 2.6 62.6

without stage 2, wi = 1 72.6 73.5 93.0 93.0 6.8 1.5 18.5

seeds

with stage 2, wi = 0 93.5 91.0 85.8 8.0 7.3 2.1 18.0

without stage 2, wi = 0 91.5 89.0 85.8 85.8 56.1 2.6 60.3

without stage 2, wi = 0.1 92.0 90.0 85.8 85.8 21.9 2.2 27.7

without stage 2, wi = 1 57.5 55.2 85.8 85.8 5.3 1.7 5.7

wdbc

with stage 2, wi = 0 95.3 94.2 133.2 12.8 9.7 2.5 78.1

without stage 2, wi = 0 95.1 93.3 133.2 133.2 100.6 2.8 258.1

without stage 2, wi = 0.1 95.0 93.0 133.2 133.2 23.2 2.5 110.9

without stage 2, wi = 1 77.7 78.8 133.2 133.2 5.6 1.6 24.7

fuzzy learning classifiers and 6 popular non-fuzzy-rule-based classifiers. The results

have revealed the overall superiority of the proposed approach over the rest. In

particular, the introduced functional generalisation method has proven effective

in the production of the fuzzy rule bases, which are of high interpretability, being

compact with short rules and exhibiting semantic comprehensibility.
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Chapter 6

Case Study: Journal Ranking with

Induced Fuzzy Rules

F Urther to te systematic investigation into the efficacy of the proposed approach

in Chapter 5, for dealing with benchmark datasets, this chapter presents a study

of applying the work to a real-world problem – academic journal ranking [144].
This is inspired by the fact that academic journal ranking has recently drawn much

attention in support of research quality assessment [12]. The rank of a journal

typically implies its prestige, impact and even difficulty level of having a paper

accepted for publication. Therefore, this chapter presents a case study, concentrating

on the exhibition of learned fuzzy rule models being indeed comprehensible, in terms

of both semantics and structure.

6.1 JCR Indicators and Expert-provided Journal

Ranking

The assessment of research output quality is a serious issue which relates to many

educational and financial problems such as evaluation of research projects and dis-

tribution of research funding. Recently, many countries have implemented their own

national projects for academic output assessment. Examples include the Research

Excellence Framework (REF) in the UK [152] and the Excellence in Research for
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Australia (ERA) [151]. One significant aspect of research quality assessment may

involve academic journal ranking, though the efficacy of using such information is

not universally agreed upon [41]. However, the rank of a journal typically implies

its prestige, impact, and even difficulty of having a paper accepted for publication in

it. Nevertheless, the general concept of academic journal quality is a multi-faceted

notion. Conventionally, assessing the quality of research publications is done through

peer-review that is carried out by experts in the relevant research areas. It is almost

inevitable that such expertise-based assessment is financially intensive and time

consuming. For example, in the ERA, over 700 experts were employed to make a

journal ranking list. Although the sophisticated results judged by the experts can be

very useful in, for instance, directing government research funding and reflecting

appropriate use of public funds, the running costs involved make it impracticable to

implement such approaches frequently.

The Journal Citation Report (JCR) [93] has a long history of applications for

researchers and librarians in choosing their reading lists. All impact indicator score

calculations in JCR are based on the same set of journals, namely journals which

are indexed by Web of Science. Six indicators that are reported in JCR (2010) are

selected as the indicators to construct journal ranking data sets. These are [13]:

• Total Cites (TC): number of times the journal was cited in a year;

• Impact Factor (IF): ratio of cites to recent articles to the number of recent

articles, with the recency being defined within a 2-year window;

• 5-year (5IF): the same as IF, but covering articles within a 5-year window;

• Immediacy Index (II): ratio of cites to the current articles over the number of

those articles;

• Eigenfactor (Ei): similar to IF, but eliminating self-referencing and weighting

journals by the amount of time elapsed before being cited;

• Article Influence (AI): ratio of the Eigenfactor score to the total number of

articles considered.

Generally, all these six indicators assign greater scores to journals with more

citations. Apart from the indicators included in JCR, many other indicators are
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available from various of academic publication databases. Note that these indicators

have their own characteristics. As briefly defined above, Eigenfactor is developed

to eliminate the effect of self-citation while IF and 5-IF include self-citation. AI

is developed to offset the size effect of journals while TC does not take the size

of a journal into consideration. However complex the interactions between these

indicators may appear, they are more likely to be complementary to one another than

to cause contradictions between each other. For example, an excellent journal can

have high scores both in Eigenfactor and IF, and a journal which performs badly in

TC may also perform badly in IF. In other cases, a journal could have higher scores in

several indicators than in others. Due to the fact that they are proposed to measure

journal quality with different focuses, direct comparison of the individual scores

owing to their use can be difficult.

The values of these objective impact indicators are given in the form of precise

numerical values. However, when ranking is done through human peer evaluation,

the values of these indicators, and also, the rankings themselves are commonly

referred to using linguistic terms, with subjective underlying semantics. To develop

a system that may imitate subjective human peer evaluation, the proposed approach

is herein utilised to generate a set of meaningful linguistic ranking rules, using

only expert-provided fuzzy term sets. To focus this justified experimentation, only

journals from the Computer Science subject category indexed by the Web of Science

(including Artificial Intelligence, Cybernetics, Hardware & Architecture, Information

Systems, Interdisciplinary Applications, Software Engineering, Theories & Methods)

are selected for this case study.

6.2 Fuzzy Set Partition Using Fuzzy c-means

In the absence of expert’s knowledge, uniformly divided fuzzy sets are often adopted

due to the common practice and being most interpretable from the shape point of

view [108] in the literature. However, uniform partition may not reflect the true

distribution of underlying data, therefore affecting the performance of the resulting

fuzzy rules. Despite distribution of underlying data may not necessarily reflect overall

domain expertise, it is still worth investigating the effect of predefined fuzzy sets

obtained by way of data-driven partition. This is carried out in comparison with

the uniform partitions previously employed before presenting rules that employ
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such data-driven defined fuzzy sets. In particular, fuzzy c-means (FCM) [149] is

herein employed to implement the fuzzification process, such that each of generated

clusters is treated as a predefined fuzzy set which may be artificially associated with

a linguistic label.

FCM is a method of clustering which allows a single data point to belong to

multiple clusters simultaneously, smoothing the abrupt boolean boundaries that are

often not natural or even counterintuitive. It is based on the minimisation of the

objective function:

Jm =
N
∑

i=1

C
∑

j=1

µm
i j ||x i − c j||2, 1¶ m<∞ (6.1)

where m is any real number greater than 1, ui j is the degree of membership of x i in

the cluster j, x i is the i-th of d-dimensional measured data, c j is the d-dimension

center of the cluster, and || ∗ || is any norm expressing the similarity between any

measured data and the center.

Fuzzy partitioning is carried out through an iterative optimisation of the objective

function, with the update of membership ui j and the cluster centers c j by:

µi j =
1
∑C

k=1(
||x i−c j ||
||x i−ck||

)
2

m−1

(6.2)

c j =

∑N
i=1µ

m
i j · x i
∑N

i=1µ
m
i j

(6.3)

The iteration will shop when maxi j{|µ
(k+1)
i j − µ(k)i j |} < ε, where ε is a termination

criterion between 0 and 1, whereas k are the iteration steps. The procedure converges

to a local minimum of the cost function.

Note that a possible drawback of employing FCM to implement fuzzification is

that a data point’s membership to a cluster is not monotonically decreasing along

with its distance to the cluster center. Therefore, a modification precess is applied,

ensuring that the membership does become monotonically deceasing with regard to

its distance to the cluster center. Such a modification process can be implemented

using the following two steps:

114



6.2. Fuzzy Set Partition Using Fuzzy c-means

1. Given a set of clusters Dl
ji, j = 1, · · · , l, generated for the variable x i, i ∈ 1, · · · , n,

where l specifies the partition granularity and is set to l = 2, · · · , 5, assign the

membership µDl
ji
(x p

i ) = 0 for each instance x̄ p if x p
i is smaller than the centre

of Dl
( j−1)i, j = 2, · · · , l; assign the membership µDl

ji
(x p

i ) = 0 if x p
i is greater than

the centre of Dl
( j+1)i, j = 1, · · · , l − 1.

2. For instance x p, update its memberships to all the clusters within granularity l

by normalisation:

µDl
ji
(x p

i ) =
µDl

ji
(x p

i )
∑l

j′=1µDl
j′ i
(x p

i )
(6.4)

6.2.1 Performance Comparison between Grid Partitioning and

Partitioning by FCM

To continue experiments from the preceding Chapter where Unordered Ripper (UR) is

used as the initial rule generator for 16 benchmark datasets. The results in Table 5.4

indicates that 8 data sets out of the 16 benchmarks have not been able to significantly

improve the performance while using the uniform partition. Therefore these 8

data sets are employed here for further exploitation, including blood, column2C,

ionosphere, mammographic, thyroid, parkinsons, diabetes. This choice is deliberately

made so as to illustrate the power of employing fine-tuned MFs in performing

classification. Of course, this experimentation has on purpose ignored the issue of

model interpretability.

Exact same experimental settings are used here as that used for uniform partition.

UR-IFRC(FCM) shows results employing FCM to implement the fuzzification process

as shown in Table. 6.1, where UR-IFRC presents the same results using uniform

partition as before. In terms of performance of resulting rule bases, UR-IFRC(FCM)

achieves 4 significantly statistical better results by employing FCM partitioned fuzzy

sets, with average accuracy improved over 1.1% overall. This is expected, as clustered

fuzzy sets better reflect underlying data distribution compared to heuristic uniformly

divided partition. This could potentially provide higher matching degrees when

mapping data-driven generated crisp intervals into predefined fuzzy sets, lessening

subsequent tuning steps with GA. This is also reflected in the complexity of generated

rule bases using FCM partitioned fuzzy sets, where average number of conditions
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needed for each rule across all data sets is significantly decreased from 3.8 to 2.53,

and rule base structure also has shrunk using over 2 rules fewer, generating more

concise rule bases, and hence, more compact knowledge. That is, by using data-

driven partitioned fuzzy sets that more reflect the distribution of underlying data, it

is likely to generate more accurate and compact rule bases.

Table 6.1: Performance comparison with FCM-partitioned fuzzy sets against that of
uniform partition

UR-IFRC UR-IFRC(FCM)
Data Sets Accu Rul Cond Accu Rul Cond

blood 77.82 ± 1.11 7.35 2.25 78.81 ± 0.86 (*) 7.31 1.84
column2C 81.00 ± 2.07 14.80 3.14 83.57 ± 1.40 (*) 14.58 2.42
ionosphere 85.58 ± 1.84 24.01 6.77 84.93 ± 2.46 (=) 16.47 2.88

bupa 64.86 ± 2.09 27.84 3.68 64.53 ± 2.77 (=) 28.92 3.30
mammographic 78.46 ± 1.09 5.46 2.79 82.45 ± 0.89 (*) 4.21 1.72

thyroid 94.29 ± 0.85 14.73 2.60 94.58 ± 1.12 (=) 11.39 2.29
parkinsons 87.02 ± 1.34 20.35 5.07 89.18 ± 2.19 (*) 17.01 2.56
diabetes 75.27 ± 0.69 24.01 4.08 75.11 ± 1.05 (=) 20.09 3.26
average 80.538 17.32 3.80 81.645 15.00 2.53

6.3 Journal Ranking with Interpretable Fuzzy Rules

Although much debate has surrounded the issue of subjective ranking of academic

journals, to verify the results of this experiment, the professional report on Ranked

Journal List (RJL) provided by ERA 2010 [151] from human experts is employed

as the ground truth. Each journal in RJL has a rank in the (ordered) domain Ranks

= {C, B, A, A*}, where rank A* indicates the top category of journals in a certain

research area. When combining the selected indictor scores from JCR and the ranked

result from RJL, only those journals that are both indexed by JCR and ranked in RJL

are considered as valid experimental data for fair comparison. The resultant data

contains 320 journals in total including 44 ranked as A*, 101 as A, 108 as B, and 67

as C.

Given of no direct expertise accessible in this work, FCM-partitioned fuzzy sets

that have been proven effective as demonstrated in Section 6.2 are employed here

to represent domain knowledge. This is clearly more intuitive than equally divided
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uniform partition in that impact indicators values are normally highly skewed. In

particular, each impact indicator is heuristically partitioned into 5 linguistically

labelled fuzzy sets. Figure 6.1 shows the 5 linguistically labelled fuzzy sets that

domain experts use to generate the FCM result on a selective set of journals in

Computer Science which are evaluated by the JCR of 2010. Figure 6.2 shows the

adjusted result by applying the filter process to ensure that the membership of a data

point to a cluster is monotonically decreasing with its distance to the cluster centre.

It is important to recall that though being data-driven, FCM-partitioned fuzzy sets

are obtained homogeneously for each impact indicator and remain fixed throughout

the modelling and inference processes. Note that, in practice, the required labelling

of generated fuzzy sets may be accomplished by consulting human experts in the

field, but in this work, they are assigned on the basis of common sense, due to the

unavailability of such direct expertise.

Figure 6.1: FCM-partitioned fuzzy sets on journal impact factors

To run the proposed approach without losing generality, suppose that C4.5 is used

to generate the required initial set of basic crisp rules, with the resultant crisp rules

given in Figure 6.3. Note that the exact same variables may be utilised multiple times

within a single crisp rule (e.g., AI is used twice in rule C1). Given these crisp rules, a

set of descriptive fuzzy rules is generated using the proposed approach, as shown

in Figure 6.4. Instead of using numerical intervals (which are hard to interpret) to

describe the impact indicators, this set of fuzzy rules use the linguistic labels and are
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Figure 6.2: Fuzzy sets used in journal ranking rules

readily readable. Interestingly, the number of resultant interpretable fuzzy rules is

fewer than that of the original crisp rules, with individual fuzzy rules being generally

much more compact also. This further enhances the structural interpretability of the

learned classifier, while reducing run-time computational cost. Furthermore, such

interpretability is not obtained by sacrificing the performance of the original crisp

rules as systematically demonstrated with the experiments in Chapter 5.

By further examining the generated fuzzy rule base it can be seen that 5IF and AI

are very heavily used in the resultant rules. However, this is not surprising since both

of these indicators are selected by C4.5 as the ones with most discriminating capability,

as shown in the first two conditions in all eight original crisp rules. Importantly, these

two indicators are also the most highly correlated features to the ranking in RJL,

which is further confirmed by the findings of [144]. Specifically, when both 5IF and

AI are low, the covered journal is likely to be ranked in the bottom category. Whereas

when AI is very high, the resultant journal ranks tend to be in the top category. For

journals with a medium IF, but high in terms of 5IF, they are still likely to be ranked

in category A. Whereas for journals with a medium 5IF, it is possible for them to be

classified into category B. Generally speaking, despite the learned fuzzy model being

compact and concise, the ranking outcomes based on the given impact indicators

seem to be consistent with the RJL ranks.
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Figure 6.3: Crisp rule base generated by C4.5
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Figure 6.4: Generated fuzzy rule base
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Running C4.5 on fixed intervals generated by homogeneously discretising nu-

merical attributes beforehand can help regain such interpretability, but this easily

results in performance loss. However, this works for fuzzy rules, which consists of

fuzzy sets that permit gradual assessment of the membership of elements in the set,

thereby resulting in more flexible decision boundaries (compared to those also using

fixed crisp intervals). Note that semantics-based interpretability is not automatically

obtained by just using fuzzy rules. Consider the following fuzzy rule generated by

fuzzifying C1 with the popular benchmark fuzzy classifier FURIA [66]:

If 5IF is [2.467,2.475,+∞,+∞] and AI is

[−∞,−∞, 1.247,1.258], Then A with CF= 0.43
(6.5)

where both generated fuzzy sets are of trapezoid MFs open to one side. The trapezoid

MF obtained for each attribute is obtained by searching for the support bound

with best purity, where the existing crisp interval fits the lower or upper bound

of the core. Each generated fuzzy set that is purely searched with regard to rule

performance may vary greatly, without fixed and uniformly consistent knowledge to

refer to. No consistent linguistic labels can therefore be attached to these generated

fuzzy sets, making sense only within individual fuzzy rules. Hence, the semantic

interpretability may be largely lost without global semantics. Needless to say, the

rule base transparency is even further deteriorated by utilising certainty factors [77]
as rule weights with weighted majority vote as inference methods.

6.4 Summary

Due to the significance and popularity of journal ranking in research assessment,

this chapter has first given a brief introduction to journal impact indicators and

the potential problems of journal ranking typically done by human experts (mainly

being financial and time consuming). As an initial attempt to have a computer-based

solution, this chapter has collected statistics of Computer Science journals from

Web of Science and generated a set of interpretable fuzzy rules with approach from

Chapter 5. Empirical partitioning method via the use of FCM which has shown

to outperform equal partition via the use of generating fuzzy sets that form fixed

quantity space for this modelling task. The generated fuzzy rules are highly readable

and can help users understand the relationship between journal impact indicators

and their ranks.
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Chapter 7

Reliability-guided Fuzzy Classifier

Ensemble

I N human society, when there are important decisions to make, having a committee

of experts with different perspectives to vote against a certain motion offers

an effective way of decision-making, reducing if not completely avoiding any bias

which may otherwise be caused by a single expert. The development of classifier

ensembles has been motivated by this observation. The main idea is to weight

several individual classifiers, and combine them in order to obtain a classifier that

outperforms every one of them [130]. Different classifiers usually make different

predictions on certain samples, caused by their diverse internal modelling structures

and parameters. Combining such classifiers has become the natural way of trying to

increase the overall classification accuracy and hence, a focus of attention in current

research [39].

A typical approach to building classifier ensembles involves constructing a group

of classifiers with diverse training backgrounds [18], [64], before their decisions get

integrated to produce the final classification. Instead of adopting a simple majority

voting-based aggregation [91], ensemble stacking [44] has also been developed

that employ meta-level learners to combine the outputs of the base classifiers. As

each ensemble member may be trained using a subset of training samples, this may

also reduce the computational complexity that arises when a single classification

algorithm is applied to a very large dataset, while supporting potential parallel

implementation.
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Classifier ensemble selection (CES), i.e., an intermediate step between ensemble

construction and decision aggregation has drawn significant attention [154]. It

selects ensemble members from a pre-constructed pool of base classifiers, to form

a reduced subset of classifiers that can still deliver the same classification results

as the original full set of potential ensemble members [39]. Efficiency is one of

the obvious gains from CES. Having a reduced number of base classifiers helps

to reduce run-time overheads; having fewer models also implies relaxed memory

and storage requirements. In addition, removing unreliable ensemble members

decreases the adverse effect of a false or biased judgment within the emerging

ensemble, while increasing potential ensemble classification performance. Existing

approaches include techniques that employ clustering [55] to discover groups of

models that share similar predictions and subsequently prune each cluster separately,

and those that use reinforcement learning [118] and fuzzy-rough-based feature

selection [85, 39] to achieve removal of redundant base classifiers.

The intuitive idea of data reliability [16] has recently been incorporated into

the main stream of research on ordered weighted averaging (OWA) operators [166,

143, 148, 147]. In the process of combining multiple arguments, a precaution worth

noting is that unduly high/low or abnormal aggregated values may result from

a false or biased judgement. In such cases, a typical OWA operator may suffer

significantly from assigning the highest priority to just either the highest or the

lowest value. To address this problem, the reliability-oriented approach models the

aggregation behaviour in accordance with the underlying characteristics of the data

being aggregated. Different from the original dependent OWA (DOWA) operator

[165], where a normal distribution of argument values is presumed in order to

determine their reliability degrees, this approach assesses the significance of possible

trends that may emerge from a local structure involving a set of nearest neighbours

which are tightly clustered together [16].

This chapter further develops the idea of data reliability with application to

classifier ensemble. In particular, opinions from ensemble members of low reliabilities

should be naturally awarded low weights on their potential contribution to the final

decision making process. Instead of simply projecting decision labels of each classifier

member onto the training instances [39], an M -nary representation is proposed to

retain complete decision information from the ensemble member [39]. This is of

particular significance for building classifier ensembles using base classifiers that work
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on fuzzy rules [66, 26], where instances match against rules with different classes to

various degrees. Reliability measure guided by nearest-neighbour-based assessment

is then carried out for each ensemble member, such that ensemble members of a

low reliability are removed. The reliabilities of the remaining ensemble members

are perceived as a stress function, from which argument-dependent weights can be

generated, leading to the final aggregated classification decision.

The reminder of this chapter is organised as follows. Section 7.1 introduces the

background of OWA aggregation and the nearest-neighbour-based reliability measure.

Section 7.2 describes the proposed classifier ensemble selection by incorporating this

novel reliability measure. Section 7.3 presents and discusses experimental results,

and Section 7.4 concludes the paper and outlines ideas for further development.

7.1 Preliminaries

7.1.1 OWA Aggregation

When dealing with real-world problems, the opinions of different experts are usually

aggregated in order to provide more robust solutions. Similarly, numeric measures

of certain properties are also typically aggregated when addressing a given problem

[139, 40]. Apart from the classical aggregation operators (such as average, maximum

and minimum), another interesting and more general type of aggregation operator

is the family of OWA operators [166]. OWA is a parameterised operator based on

the ordering of extraneous variables to which it is applied. The fundamental aspect

of this family of operators is the reordering step in which the extraneous variables

are rearranged in descending order, with their values subsequently integrated into a

single aggregated one.

Formally, a mapping Aowa : Rv → R is called an OWA operator if

Aowa(a1, · · · , av) =
v
∑

i=1

wiaπ(i) (7.1)

where aπ(i) is a permutation of the values of ai, which satisfies that aπ(i) is the i-th

largest value of ai, and wi ∈ [0,1] is a collection of weights that jointly satisfy
∑

i wi = 1, i = 1, · · · , v, v > 1. For simplicity, let W = (w1, · · · , wv)T .
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Different specifications of the weighting vector W lead to different aggregation

results. The ordering of extraneous variables gives OWA a nonlinear feature. Three

special cases of the OWA operator are the classical mean, max and min. The mean

operator results by setting wi = 1/v, the max by w1 = 1 and wi = 0 for i 6= 1, and the

min by wv = 1 and wi = 0 for i 6= v. These weighting vectors are denoted as Wmean,

Wmax and Wmin respectively in the remainder of this paper. Obviously, an important

feature of the OWA operator is that it is a weighted average operator which satisfies

min{a1, · · · , av} ≤
v
∑

i=1

wiaπ(i) ≤max{a1, · · · , av} (7.2)

Such an operator provides aggregation between the maximum and the minimum of

the arguments. This boundedness implies that it is idempotent; that is, if all ai = a

then A(a1, · · · , av) = a.

A measure which is commonly employed to reflect the overall behaviour of

an OWA operator is orness [43]. It captures the design intention of whether an

aggregation operator behaves similarly to the interpretation of logical conjunction

(influenced by smaller inputs) or that of disjunction (influenced by larger inputs). In

particular, an orness measure of an OWA operator with the weighting vector W is

defined by [166]

orness(W ) =
1

v − 1

v
∑

i=1

((v − i)wi). (7.3)

The higher the orness value, the more similar the aggregated result is to that of

disjunction. Also, it can be calculated that orness(Wmean) = 0.5, orness(Wmax) = 1

and orness(Wmin) = 0.

7.1.2 Nearest Neighbour (NN) Based Reliability Measure

In combining multiple arguments using pre-defined weighting vectors in OWA, the

weight vector W is normally assumed to be argument-independent as the weights

are not necessarily related to the extraneous variables to which they are applied.

Therefore, the use of unduly high or low weights should be avoided. Otherwise, a

typical OWA operator may suffer from giving the highest priority to outlier variable
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values [17], leading to the generation of false or biased judgments when the operator

is in action.

To achieve more reliable outcomes, data-oriented operators such as the DOWA

[165] utilise centralised data structures to generate reliable weights for aggregating

information. An efficient nearest-neighbour-based method for the assessment of

data reliability (or sometimes referred to as relevance) has been proposed [16] in

which the local data structure that represents a strong agreement of consensus on

information can be explored. This reliability measure is effective to discriminate the

weights of different input arguments, with the previously adopted closest cluster

replaced by a set of K nearest neighbours.

More formally, given a collection of data arguments A= {a1, ..., av}, let N K
ai

denote

a set of K nearest neighbours of the argument ai, where N K
ai
⊂ A and ∀n j ∈ N K

ai
, n j 6=

ai, j = 1, ..., K . The reliability measure RK
ai
∈ [0, 1], i = 1, ..., v can be computed such

that:

RK
ai
= 1−

DK
ai

Dmax
(7.4)

DK
ai
=

1
K

∑

∀n j∈N K
ai

|ai − n j| (7.5)

where Dmax =maxap ,aq∈A,ap 6=aq|ap−aq|

The nearest-neighbour-based method has two main advantages over conventional

techniques. First, the otherwise required high computational cost for cluster-based

measuring of data reliability is reduced, decreasing both time and space complexity

from O(L3) to O(L2) and O(L2) to O(L), respectively. Second, the nature of the

distributed approach inherent in clustering is reinforced so that arguments being

very far away from the global centre can be considered reliable if they are close to

members of their local neighbour sets. Figure 7.1 illustrates the nearest-neighbour-

based approach, in which arguments (a1 and a2) that are far away from the global

centre are considered reliable if they are close to members of their local neighbour

sets (Na1
and Na2

, respectively).
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Figure 7.1: Sets of local neighbours Na1
and Na2

, (a) K = 1 and (b) K = 3

7.2 Reliability-guided Fuzzy Classifier Ensemble

7.2.1 Overview

The overall process of reliability-guided classifier ensemble is outlined in the flow

chart as shown in Figure 7.2, with each of the four main components described in

the subsequent subsections.

7.2.2 Base Classifier Pool Generation

Forming a set of diverse base classifiers is the first step in producing a working

classifier ensemble. Any preferred model-building strategies may be used to build the

base classifiers. As an initial implementation to test the proposed approach, only the

bagging strategy [18] is adopted here. Bagging randomly selects different subsets

of training samples in order to build diverse classifiers. Differences in the training

data present extra or missing information for different classifiers, thereby resulting

in models with different classification borders.

The bagging strategy is capable of introducing quality diversities in classification

model generation, even if just one single base classification method is employed.

Having taken notice of this, only the state of the art fuzzy rule-based classifier FURIA
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Figure 7.2: Flow chart of reliability-guided classifier ensemble
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[66] is used here to implement the individual base classifiers. FURIA is an extension

of the well-known crisp rule-based learner RIPPER [31]. Its working process can

be summarised as follows: Unordered crisp rule sets are first obtained by learning

rules initialised by RIPPER. Each generated crisp rule is then fuzzified by keeping

the same structure, but with crisp intervals replaced by fuzzy intervals. The optimal

bounds over the classification are greedily learned, with the learning process guided

by rule purity. In order to tackle instances that cannot be covered by any existing

rule, a rule stretching technique is subsequently applied.

7.2.3 Classifier Decision Transformation

Once the base classifiers are built, their decisions on the training instances can be

gathered. A new artificially transformed dataset can be constructed, with each

column representing a single base classifier and each row corresponding to a certain

training instance [39]. Thus, each cell of the transformed dataset stores the value

Di j, representing the decision of the base classifier C j, j = 1,2, .., NC with regard to

the instance Ii, i = 1, 2, ..., NI , where NC denotes the total number of base classifiers

generated, and NI is the total number of the given training instances. Such an

artificial dataset can be regarded as a decision matrix as shown in Table 7.1.

Table 7.1: Transformed decision matrix

C1 . . . C j . . . CNC

I1 D11 . . . D1 j . . . D1NC
...

...
...

...
...

...
Ii Di1 . . . Di j . . . DiNC
...

...
...

...
...

...
INI

DNI 1 . . . DNI j . . . DNI NC

Following the above approach, two issues may arise. The first is that it may

lead to information loss, especially for cases where fuzzy rule-based classifiers are

used as a certain given instance is likely to match multiple rules involving different

consequents, albeit to a different degree. Simply adopting the one with the maximum

degree obviously removes potential decision information regarding the other classes.

Similar situations may also occur in traditional classifiers (where an instance is

classified as the class with the maximum likelihood). The second issue is that ideally,
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the class labels representing different concepts should be completely independent of

each other. Namely, the distance between any pair of distinct classes should be the

same. Projecting class labels onto sequential numbers may lead to an unreasonable

situation, where the distances between different classes may be different, potentially

affecting the eventual classification results when ordered aggregation is utilised.

In order to tackle these issues, an M -ary representation for class labels is proposed,

where M represents the number of classes in a given classification problem. The

idea is to exploit an M -dimensional coordinate system with M planes perpendicular

with one another, such that each class label can be projected onto a coordinate axis

with full decision membership being 1.0. As each coordinate axis is perpendicular to

each other, the distance between any pair of class labels is obviously the same.

Figure 7.3: Example for M -ary representation
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Let t i j
M , i = 1,2, ..., NI , j = 1,2, .., NC be an M -ary tuple to represent complete

decision information of classifier C j with regard to instance Ii, for an M -class classifi-

cation problem, such that t i j
M = 〈µ

i j
1 , ...,µi j

m, ...,µi j
M〉, where µi j

m is the matching degree

or probability density with regard to class m. Consider an example, where a fuzzy

classifier that matches an instance against class-X with a degree of 0.1, class-Y with

0.8, and class-Z with 0.1. This can be represented using the M -ary representation

as 〈0.1,0.8,0.1〉 without information loss as shown in Figure 7.3. A transformed

M -nary-based decision matrix can therefore be constructed as shown in Table 7.2.

Table 7.2: Transformed decision matrix using M -ary representation

C1 . . . C j . . . CNC

I1 〈µ11
1 , ...,µ11

m , ...,µ11
M 〉 . . . 〈µ1 j

1 , ...,µ1 j
m , ...,µ1 j

M〉 . . . 〈µ1NC
1 , ...,µ1NC

m , ...,µ1NC
M 〉

...
...

...
...

...
...

Ii 〈µi1
1 , ...,µi1

m , ...,µi1
M〉 . . . 〈µi j

1 , ...,µi j
m, ...,µi j

M〉 . . . 〈µiNC
1 , ...,µiNC

m , ...,µiNC
M 〉

...
...

...
...

...
...

INI
〈µNI 1

1 , ...,µNI 1
m , ...,µNI 1

M 〉 . . . 〈µNI j
1 , ...,µNI j

m , ...,µi j
M〉 . . . 〈µNI NC

1 , ...,µNI NC
m , ...,µNI NC

M 〉

Consider a binary classification problem as an example, where a certain fuzzy

classification method is used to construct the base classifiers. Suppose that an instance

matches against the ensemble member C1 with 〈0.51,0.49〉, C2 with 〈0.49,0.51〉,
and C3 with 〈1.0, 0.0〉. Simply projecting decision labels for each ensemble member

would lead to a situation that the instance is classified by both C1 and C3 into the

first class, and the second class by C2. For the decision information of C1 or C2 with

regard to this instance, the matching degree for each class does not dominate one

or the other. This will lead to the situation where different labels are provided to

the same instance. However, the decision information of C1 appears to be more

similar to that of C2 than to C3, despite the fact that both C1 and C3 provide the

same decision labels. Such embedded differentiating information that is captured by

the fuzzy classifiers is therefore lost if only decision labels are utilised. This further

supports the proposal of employing the M -ary representation.

7.2.4 NN Based Reliability for Ensemble Member Selection

Having obtained the M -ary-based decision matrix, where complete decision informa-

tion is presented for each instance Ii on classifier C j, a simple heuristic method can
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be used to facilitate classifier ensemble selection, so that unreliable members can

be identified and removed. The computation process for this involves the following

three steps:

1. Calculate the reliability measure RK
t i j

M

of each M -ary tuple t i j
M with regard to its

K nearest neighbour, according to Eqns. 7.4 and 7.5. The distance between

the tuple t i j
M and its neighbour t i j′

M is computed by

d(t i j
M , t i j′

M ) =

√

√

√

M
∑

m=1

(µi j
m −µ

i j′
m )2 (7.6)

where µi j
m is the matching degree with regard to class m using the M -ary

representation.

2. Compute the accumulated reliability value CR j for each classifier ensemble

member C j, j = 1, 2, .., NC , by summing its reliability measures RK
t i j

M

with regard

to each of the instance Ii, i = 1,2, ..., NI , such that

CR j =
NI
∑

i=1

RK
t i j

M

(7.7)

3. Rank each classifier ensemble member based on their accumulated reliabil-

ity degrees. Intuitively, the higher the reliability is, the more convincible

the ensemble member becomes. Similar to the work of [39, 139], a simple

threshold-based selection method is adopted, such that the ensemble member

C j, j = 1, 2, .., NC is only included in the final ensemble list if its corresponding

reliability CR j exceeds a given threshold. To avoid being subjectively defined,

the threshold is empirically set using the average reliability CRaverage of all

ensemble members as:

CRaverage =
1

NC

NC
∑

j=1

CR j (7.8)

7.2.5 Ensemble Decision Aggregation

Once reliable ensemble members are obtained by removing unreliable ones from

the complete ensemble panel, their decision results can be aggregated to form

the final ensemble decision output. Suppose that the reliable ensemble members
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C j, j = 1,2, .., Nf are retained after filtering, where Nf is the number of remaining

ensemble members. Given the decision class m ∈ 1,2, .., M , with M being the

number of decision classes, classifier decisions can be viewed as a matrix of weighted

probability distributions {δ j Pjm}, such that {Pjm} indicates the classification from

the classifier C j for decision m and δ j is a weight associated with C j, indicating the

strength associated with the classification regarding C j. Here, δ j is generated by

taking the corresponding reliability measure CR j over the sum of all reliability values

from the remaining ensemble members.

Summarising the above, the total weighted probability Pm for decision class m

with regard to instance Ii is calculated as follows:

Pm =
N f
∑

j=1

δ jµ
i j
m (7.9)

where δ j =
CR j
∑Nf

j=1 CR j

, and µi j
m is the matching degree of classifier C j with regard to

class m. The final aggregated decision assigned is the winning class that has the

highest total weighted probability among all classes: arg max
m=1,2,..,M

Pm.

7.3 Experimentation and Discussion

7.3.1 Experimental Setup

As indicate previously, the ensemble construction method adopted here is the bagging

strategy, and the base classification mechanism is FURIA [66]. Stratified tenfold

cross-validation (10-CV) is employed for result validation. In 10-CV, a given dataset

is partitioned into ten subsets. Of the ten, nine subsets are used to perform a training

fold, where the proposed approach is used to generate a fuzzy rule base, and the

remaining single subset is retained as the testing data for assessing the learned

classifier’s performance. In the experimentation, 10-CV is performed ten times in

order to lessen the impact of random factors; these 10 × 10 sets of evaluations are

then averaged to produce each final experimental outcome reported below.
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Table 7.3: Comparison against fuzzy rule-based classifiers using 10 × 10 cross-
validation with respect to classification accuracy (%), where bold figures signify
overall top results per dataset

Dataset 1NN-DOWA Size Base Random Full

glass 78.12 ± 1.24 26.54 69.15 ± 1.70 (*) 75.88 ± 1.69 (*) 78.43 ± 1.22 (-)

ionosphere 90.28 ± 0.90 27.62 87.96 ± 1.25 (*) 89.98 ± 0.90 (-) 90.61 ± 1.07 (-)

leaf 71.03 ± 0.98 25.94 60.06 ± 1.29 (*) 70.11 ± 1.39 (*) 71.35 ± 0.95 (-)

libras 77.11 ± 1.28 25.78 60.75 ± 1.55 (*) 75.39 ± 1.36 (*) 77.58 ± 1.52 (-)

olitos 79.25 ± 1.39 26.79 68.50 ± 3.23 (*) 77.92 ± 1.54 (*) 79.83 ± 0.86 (-)

parkinsons 91.39 ± 1.08 28.09 88.80 ± 1.26 (*) 90.98 ± 0.89 (-) 91.55 ± 1.04 (-)

sonar 84.26 ± 1.92 26.86 76.44 ± 2.77 (*) 82.94 ± 2.07 (*) 84.96 ± 1.74 (-)

vehicle 76.09 ± 0.82 26.96 66.79 ± 1.06 (*) 76.06 ± 0.71 (-) 75.98 ± 0.77 (-)

yeast 61.51 ± 0.50 27.79 55.73 ± 0.50 (*) 60.93 ± 0.42 (*) 61.74 ± 0.60 (-)

7.3.2 Results and Discussion

For simplicity, when presenting experimental results, only those with K = 1 as the

number of nearest neighbours are exploited as shown in Table 7.3, where 1NN-

DOWA is the reduced classifier ensemble based on the use of 1NN-DOWA-based

reliability measure [16]. It will be shown later that the proposed approach is almost

independent of the parameter setting for K. For comparison purpose, results of:

a) the base algorithm itself, b) full ensemble classifier pool with size being 50,

and c) randomly constructed ensembles are also presented. Pairwise t-tests (p =
0.05) are run to gauge results in terms of the significance of statistical differences

between different classifiers. Those results that are significantly better, worse or of

no difference are marked with “(v)”, “(∗)”, or “(−)”, respectively, in comparison to

the achieved accuracy of the 1NN-DOWA-based classifier ensemble.

To demonstrate the proposed approach at work, experiments are performed

on 9 real-valued benchmark data sets, the characteristics of which can be found in

Appendix B. The results show that the 1NN-DOWA-based system achieves significantly

improved performance over the base classifiers statistically, across all employed

datasets. Compared to randomly formed ensembles, the proposed approach also

achieves better accuracy for all employed datasets, with 6 of which being statistically

better. It is interesting to notice that 5 out of 6 datasets with statistically significant

improvement using the proposed approach are those involving more than 3 classes,
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e.g., leaf (30), libras (15), yeast (10), glass (7), olitos (4). Thus, this work has an

empirical appeal to multi-class problems. One possible explanation for this is that

the number of classes for a given training dataset may have a direct impact upon the

proposed M -ary representation. The more classes there are, the richer the decision

information could potentially be represented. The artificially transformed datasets

can be more complex than those originated from the datasets with only 2 or 3 classes.

Therefore, they successfully help better discriminate the original ensemble members

that possess different degrees of reliability.

Comparison is further made with regard to full ensembles. Although the full

ensemble system achieves 8 best results out of 9 datasets, the reduced ensembles

maintain very similar classification accuracies – the accuracy of reduced ensembles

are statistically equivalent to that of the full ensemble for every dataset. Whereas

the size of reduced ensembles has significantly shrunk by about half of its original

size (i.e., 50), becoming computationally much more manageable. This reduction

rate in the size for each of the reduced is of course expected due to the use of the

heuristic threshold, where ensemble members are discarded if their reliabilities are

below the average. These experimental results have demonstrated that removing

potentially unreliable base classifiers with the proposed approach can significantly

reduce the size of a classifier ensemble, whilst maintaining classification accuracy,

making the ensemble more efficient.

Given that the underlying reliability measure is parameterised by a user-defined K

(the number of nearest neighbours), experiments are further conducted to reveal and

reflect the relationship between the improvement of nearest neighbour granularities

and the performance of the resultant classifier ensembles. Figure 7.4 depicts the

performance variation of a group of nearest neighbours with 10 different sizes, where

the x-axis describes the changes of K and y-axis shows the corresponding performance

in terms of accuracy. In general, the connected curve for each dataset approximates

a straight line without much oscillation, regardless of the number of decision classes.

This has demonstrated that performance of the selected ensemble using KNN-DOWA

is little affected by the number of nearest neighbours, being almost independent of

the setting of parameter K . This shows the robustness of the proposed approach.
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Figure 7.4: Performance variation in relation to parameter K

7.4 Summary

This chapter has proposed a new classifier ensemble selection approach based on

the measure of nearest-neighbour-based reliability. To maintain complete decision

information from each ensemble member, it has also introduced an M -ary repre-

sentation that projects decision labels into artificially transformed datasets. In this

approach, reliability guided by nearest-neighbour-based assessment is measured

for each ensemble member, and ensemble members that are with low reliabilities

(below average reliabilities of all ensemble members) are removed. Reliabilities

of remaining ensemble members are perceived as a stress function, from which

argument-dependent weights are generated for final aggregated classification.

Experimental results have demonstrated that removing potentially unreliable base

classifiers can significantly reduce the size of a classifier ensemble, whilst maintaining
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classification accuracy, making the ensemble system more efficient. It has also shown

that the nearest-neighbour-based reliability measure is robust to the setting of the

number of nearest neighbours as the performance of the resultant ensembles is not

sensitive to it.
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Chapter 8

Discussion and Conclusion

T HIS chapter presents a summary of the research as detailed in the preceding

chapters. Having introduced the theoretical basis for fuzzy rule induction

and reviewed approaches that directly learn interpretable fuzzy rules with fixed

and predefined fuzzy sets, as well as evolutionary fuzzy systems that utilise the

powerful evolutionary algorithms as problem-independent optimisation methods,

this thesis has proposed a number of techniques that have achieved promising results

compared to state-of-the-art algorithms. The proposed refinement to rule weights

significantly improves the performance of a heuristically initialised rule base with a

fixed quantity space. The induction of quantified fuzzy rules is able to learn a set

of rules with continuous fuzzy quantifiers. The approach that utilises crisp-based

learning classifiers transforms existing crisp rules into fuzzy rules with consulted

expertise in terms of predefined fuzzy sets, resulting in highly transparent fuzzy

rules, which is verified by applying them in the popular journal ranking problems.

The introduced fuzzy classifier ensemble method further improves performance of

an existing fuzzy ensemble by removing unreliable members, which releases space

storage and speeds up computation. Whilst the work is promising, this chapter also

points out some initial thoughts for further research given that there is much that

could be improved.
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8.1 Summary of Thesis

The theoretical foundation specifies the relationship between fuzzy sets, fuzzy rules,

fuzzy logic and fuzzy inference, which are building blocks of a fuzzy rule-based

system. As a traditional rule induction technique, fuzzy decision trees induce rules

by recursively shrinking the feature space. Different from traditional decision tree

techniques, observations simultaneously fire multiple paths, requiring the aid of

fuzzy logic for inference. Fuzzy association rule mining induces fuzzy rules based on

the fuzzified measures of the support and confidence framework while the mining

strategy still follows either Apriori algorithm or FP-Growth. Owing to the powerful

search capability of evolutionary algorithms and being problem independent, both

GA and PSO are reviewed given that they are intensively utilised as optimisation

technique for several methods in the thesis. In a nutshell, the introduction of the

knowledge building blocks of fuzzy systems and the review of relevant literature in

Chapter 2 lays the foundation for the subsequent theoretical development.

The approach proposed in Chapter 3 follows the first pre-specified research route,

i.e., to use a certain weighting scheme to boost performance of an existing fuzzy rule

base, where the use of fixed and predefined fuzzy sets is a must for semantic inter-

pretability. In particular, the approach works by optimising weights that are attached

at the rule level, such that the significance of existing rules could be adapted to

change classification boundary. Systematic experimental results have demonstrated

that the performance of a fuzzy rule-based classifier can be significantly improved

with rule weight refinement implemented by PSO. The size of an initially built rule

base may affect the performance of the proposed method, although optimisation

of the initial fuzzy quality space will help reduce such influence. The approach is

competitive to typical state-of-the-art learning classifiers even if only expertise in

terms of fixed and predefined fuzzy sets is used to create the initial rule base.

An alternative weighting-based approach is proposed in Chapter 4 that can learn

a set of rules with continuous fuzzy quantifiers, such that all fuzzy rules can be

combined and evaluated simultaneously. The approach works for situations where

the information dealt with is not equally important, better capturing the relative

importance among antecedent attributes by fuzzy continuous quantifiers. Instead

of using crisp weights with fuzzy terms, which may lead to confusion regarding the

linguistic interpretation, the use of fuzzy quantifiers to modify the linguistic terms
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helps build fuzzy systems in a more natural way and ensure the inferred results

remain in consistent fuzzy representation. Experimental results show that the quan-

tified fuzzy rules induced by this method help boost the classification performance

compared to those generated without using fuzzy quantifiers. This has enriched the

development of first research route by utilising an alternative weighting scheme to

enhance performance of an existing fuzzy rule on the basis of fixed quantity space.

Chapter 5 starts with the second research route to generate interpretable fuzzy

classification rules by utilising existing crisp rules. Given that each of the crisp rules

points to the problem sub-spaces where desirable fuzzy rules potentially exist, a

heuristic mapping procedure has been presented that converts each preliminary crisp

rule into a set of interpretable fuzzy rules involving only the predefined fuzzy sets,

ensuring semantic interpretability. A local rule selection procedure is then performed

to obtain a compact subset of initially mapped fuzzy rules that jointly generalise the

capability of the underlying crisp rule. A fine grain tuning of all selected subsets of

fuzzy rules is finally carried out with a conventional GA, resulting in an accurate

and interpretable fuzzy rule-based classifier with a simplified structure. Systematic

experimental examinations of the proposed approach have been carried out, involv-

ing the use of two different crisp rule generation mechanisms for initialisation, in

comparison with both alternative fuzzy learning classifiers and non-fuzzy-rule-based

classifiers. The results have revealed the overall superiority of the proposed approach

over the rest.

Apart from running proposed methods over benchmark data sets, Chapter 6

applies the proposed work in Chapter 5 into real-world scenario of academic journal

ranking, due to its increasing significance and popularity. As an initial attempt, this

chapter has collected statistics of Computer Science journals from Web of Science

and generated a set of interpretable fuzzy rules with the approach from Chapter

5. Empirical partitioning method via the use of FCM has shown to outperform that

via an equal partition in providing the required predefined fuzzy sets that reflect

domain expertise. Of course, this is in support of this computer simulation-based

analysis of journal ranking. Should there be expert-specified fuzzy sets for use, then

they should be adapted to better ensure interpretability. The generated fuzzy rules

are highly readable and can help users understand the relationship between journal

impact indicators and their ranks.

Chapter 7 has proposed a new classifier ensemble approach based on the measure

of nearest-neighbour-based reliability. To maintain complete decision information
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for each ensemble member, it has also introduced an M -ary representation that

projects decision labels into artificially transformed data sets. In this approach,

reliability guided by nearest-neighbour-based assessment is measured for each en-

semble member, and ensemble members with low reliabilities are then removed.

Reliabilities of remaining ensemble members are perceived as a stress function, from

which argument-dependent weights are generated for final aggregated classification.

Experimental results have demonstrated that removing potentially unreliable base

classifiers can significantly reduce the size of a classifier ensemble, whilst maintaining

classification accuracy, making the ensemble system more efficient.

Owing to the use of fixed quantity space that comes from either domain expertise

or static fuzzy set definitions, the resulting fuzzy rule base is likely to suffer from

performance loss, especially when distribution of the underlying training instances

does not follow the pre-specified and fixed fuzzy set definitions. In general, the

two proposed approaches in Chapter 3 and 4 with different weighting schemes

have achieved significant performance improvement over original rule bases without

rule weights. Having been published in two academic conferences and one journal,

they have achieved the research goals following the first research route. Different

from previous two approaches, the approach in Chapter 5 induces fuzzy rules from

a complete different angle by observing the necessity of omitting empty space in

the search space to avoid curse of dimensionality. By utilising an alternative data-

driven crisp rule-based learning mechanism, it makes possible to focus on only the

areas covered by data points, giving a head start to learn a more scalable fuzzy

classifier instead of considering the combinations of all input and output variables.

Given that it has also been utilised to solve real-world scenario of academic journal

ranking, the approach in Chapter 5 has achieved the goal of second and third research

route, which is currently under review for journal publication. To conclude, the

thesis has not only finished all pre-specified research aims, but also develops an

classifier ensemble approach with the concept of data reliability, aiming to combine

fuzzy systems with more state-of-the-art techniques, which has been published in an

international conference.

8.2 Future Work

Although promising, much can be done to further improve the work presented so far

in this thesis. The following addresses a number of interesting issues that may help
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strength the current research.

8.2.1 On Induction of Weighted Fuzzy Rules

Currently, only the accuracy of a fuzzy learning classifier is considered as the criterion

or fitness measure when evolving rule weights. However, as indicated in Section

3.3.3, the size of rule sets or equivalently the number of rule weights may affect the

final result. Thus, the number of rules and hence the partition of the input quantity

space need to be considered to possibly become part of the fitness function. The

optimisation of PSO parameters also needs to be examined in order to reinforce the

ability of the proposed method since the current implementation does not investigate

such potential effects. Furthermore, instead of using PSO, it would be interesting to

see whether the use of an alternative evolutionary computation mechanism may help

develop better fuzzy learning classifiers, regarding both effectiveness and efficiency.

It is also worth investing the efficacy of the proposed approach when initial rule base

comes from alternative initialisation methods (e.g., clustering algorithms).

8.2.2 On Induction of Quantified Fuzzy Rules

The assumption that one rule is sufficient to adequately describe a class, which is

used in the present implementation, may be naive, especially when applied to larger

and more complex real-world problems. Further work is required to determine how

many rules may be necessary to describe a class for a given type of problem, so as to

initialise an appropriate number of PSO particle dimensions for each potential class.

Furthermore, it would be very interesting to combine the two different weighting

schemes which have been proposed in Chapter 3 and 4, to produce a more generalised

inversion of quantified fuzzy rules with weights at both individual attribute and

rule level. This would create more degrees of freedom in fuzzy rule-based system

modelling while still only employing fixed and predefined fuzzy sets.

8.2.3 On Induction of Fuzzy Rules with Preliminary Crisp

Representation

In the present implementation, multiple modelling objectives are simply converted

into a compound single objective using weights. However, it would be interesting
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to investigate whether the problem could be directly tackled using multi-objective

evolutionary algorithms [47], enabling different tradeoffs between the possibly

competing objectives. Also, the optimisation is currently realised with a Genetic

Algorithm which is satisfactory, but the underlying approach is more general and

can be implemented with other techniques. Another piece of further research would

therefore be to explore the possibility of replacing the GA with alternative population-

based algorithms such as harmony search [40] and particle swam optimisation [163].

8.2.4 On Journal Ranking with Induced Fuzzy Rules

Current experiment on academic journal ranking using induced fuzzy rules only

considers computer science category. It would be interesting to perform analysis on

data sets collected across a range of various disciplines. Furthermore, it would also

be worthwhile to talk to experts from the panel regarding the rationality of induced

fuzzy rules, as well as the definitions of fuzzy sets for individual impact indicators

which may commonly be accept by majority of the experts.

8.2.5 On Reliability-guided Fuzzy Classifier Ensemble

Although the heuristic threshold selection approach works well, it would be inter-

esting to investigate the potential of developing relevant techniques so that reliable

ensemble members could be selected in a more data-driven way. Furthermore, com-

parison with state of the art methods on ensemble selection while addressing real

world problems remains as future research.
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Appendix A

Publications Arising from the Thesis

A number of publications have been generated from the research carried out within

the PhD project. Below lists the resultant publications that are in close relevance

to the thesis, including both papers already published and one article submitted for

review.

A.1 Journal Articles

1. Tianhua Chen, Changjing Shang, Pan Su and Qiang Shen, Inducing accurate

and interpretable fuzzy rules from preliminary crisp representation. Under

review for publication.

2. Pan Su, Changjing Shang, Tianhua Chen and Qiang Shen, Ordered weighted

aggregation of fuzzy similarity relations and its application to detecting water

treatment plant malfunction. Engineering Applications of Artificial Intelligence,

2017.

3. Pan Su, Changjing Shang, Tianhua Chen and Qiang Shen, Exploiting data

reliability and fuzzy clustering for journal ranking. IEEE Transactions on Fuzzy

Systems, 25(5):1306-1319, 2017.

4. Tianhua Chen, Qiang Shen, Pan Su and Changjing Shang, Fuzzy rule weight

modification with particle swarm optimization. Soft Computing, 20.8 (2016):

2923-2937.
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A.2 Conference Papers

5. Tianhua Chen, Pan Su, Changjing Shang and Qiang Shen, Reliability-guided

fuzzy classifier ensemble. Proceedings of the 26th International Conference on

Fuzzy Systems, 2017 (IEEE CIS Outstanding Student Paper Travel Grant)

6. Pan Su, Changjing Shang, Yitian Zhao, Tianhua Chen and Qiang Shen, Fuzzy

rough feature selection based on OWA aggregation of fuzzy relations. Proceed-

ings of the 26th International Conference on Fuzzy Systems, 2017

7. Tianhua Chen, Qiang Shen, Pan Su and Changjing Shang, Induction of quan-

tified fuzzy rules with particle swarm optimisation. Proceedings of the 24th

International Conference on Fuzzy Systems, 2015

8. Pan Su, Tianhua Chen, Changjing Shang and Qiang Shen, Nearest neighbour-

guided induced OWA and its application to journal ranking. Proceedings of

the 23th International Conference on Fuzzy Systems, 2014

9. Tianhua Chen, Qiang Shen, Pan Su and Changjing Shang, Refinement of fuzzy

rule weights with particle swarm optimization. Proceedings of the 2014 UK

Workshop on Computational Intelligence, 2014.



Appendix B

Data Sets Employed in the Thesis

The data sets employed in the thesis are benchmark data that are public available

through the UCI machine learning repository [11] which have been drawn from

real-world problem scenarios. Table B.1 provides a summary of the properties of

these data sets.
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Table B.1: Information of data sets used in the thesis

Data set Attributes Classes Instances

appendicitis 7 2 106

banknote 4 2 1372

blood 4 2 748

breast-cancer 9 2 699

column-2C 6 2 310

column-3C 6 3 310

ecoli 7 8 336

glass 9 7 214

haberman 3 2 306

image (training) 19 7 210

ionosphere 33 2 230

iris 4 3 150

leaf 15 30 340

libras 91 15 360

liver-disorders 6 2 345

mammographic 5 2 961

new-thyroid 5 3 215

olitos 25 4 120

parkinsons 22 2 195

pima-diabetes 8 2 768

prnn-synth 2 2 250

seeds 7 3 210

sonar 60 2 208

vehicle 18 4 846

wdbc 30 2 569

yeast 8 10 1484



Appendix C

List of Acronyms

10-FCV 10-fold cross-validation

ARM Association rule mining

C4.5 Decision tree algorithm

C45-IFRC C4.5 initiliased interpretable fuzzy rule-based classifier

C45-FURIA C4.5 initiliased unordered fuzzy rule induction

EA Evolutionary algorithm

EFS Evolutionary-based fuzzy system

FRBCS Fuzzy rule-based classification system

FRBS Fuzzy rule-based system

FST Fuzzy set theory

FURIA An algorithm for unordered fuzzy rule induction

GA Genetic algorithm

IFRC Interpretable fuzzy rule-based classifier

KDD Knowledge discovery in databases

MF Membership function

OWA Ordered Weighted Averaging

PSO Particle Swarm Optimisation
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PTTD Top down induction of fuzzy pattern tree

QSBA Fuzzy subsethood-based rule induction algorithm

QuickRules Hybrid fuzzy-rough rule induction and feature selection

UR Unordered Ripper algorithm

UR-IFRC UR initiliased interpretable fuzzy rule-based classifier

UR-FURIA UR initiliased unordered fuzzy rule induction
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