1,566 research outputs found

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Circle detection on images using Learning Automata

    Full text link
    Circle detection over digital images has received considerable attention from the computer vision community over the last few years devoting a tremendous amount of research seeking for an optimal detector. This article presents an algorithm for the automatic detection of circular shapes from complicated and noisy images with no consideration of conventional Hough transform principles. The proposed algorithm is based on Learning Automata (LA) which is a probabilistic optimization method that explores an unknown random environment by progressively improving the performance via a reinforcement signal (objective function). The approach uses the encoding of three non-collinear points as a candidate circle over the edge image. A reinforcement signal (matching function) indicates if such candidate circles are actually present in the edge map. Guided by the values of such reinforcement signal, the probability set of the encoded candidate circles is modified through the LA algorithm so that they can fit to the actual circles on the edge map. Experimental results over several complex synthetic and natural images have validated the efficiency of the proposed technique regarding accuracy, speed and robustness.Comment: 26 Page

    Learning algorithms for adaptive digital filtering

    Get PDF
    In this thesis, we consider the problem of parameter optimisation in adaptive digital filtering. Adaptive digital filtering can be accomplished using both Finite Impulse Response (FIR) filters and Infinite Impulse Response Filters (IIR) filters. Adaptive FIR filtering algorithms are well established. However, the potential computational advantages of IIR filters has led to an increase in research on adaptive IIR filtering algorithms. These algorithms are studied in detail in this thesis and the limitations of current adaptive IIR filtering algorithms are identified. New approaches to adaptive IIR filtering using intelligent learning algorithms are proposed. These include Stochastic Learning Automata, Evolutionary Algorithms and Annealing Algorithms. Each of these techniques are used for the filtering problem and simulation results are presented showing the performance of the algorithms for adaptive IIR filtering. The relative merits and demerits of the different schemes are discussed. Two practical applications of adaptive IIR filtering are simulated and results of using the new adaptive strategies are presented. Other than the new approaches used, two new hybrid schemes are proposed based on concepts from genetic algorithms and annealing. It is shown with the help of simulation studies, that these hybrid schemes provide a superior performance to the exclusive use of any one scheme

    Game Theory Solutions in Sensor-Based Human Activity Recognition: A Review

    Full text link
    The Human Activity Recognition (HAR) tasks automatically identify human activities using the sensor data, which has numerous applications in healthcare, sports, security, and human-computer interaction. Despite significant advances in HAR, critical challenges still exist. Game theory has emerged as a promising solution to address these challenges in machine learning problems including HAR. However, there is a lack of research work on applying game theory solutions to the HAR problems. This review paper explores the potential of game theory as a solution for HAR tasks, and bridges the gap between game theory and HAR research work by suggesting novel game-theoretic approaches for HAR problems. The contributions of this work include exploring how game theory can improve the accuracy and robustness of HAR models, investigating how game-theoretic concepts can optimize recognition algorithms, and discussing the game-theoretic approaches against the existing HAR methods. The objective is to provide insights into the potential of game theory as a solution for sensor-based HAR, and contribute to develop a more accurate and efficient recognition system in the future research directions

    Distributed learning automata-based scheme for classification using novel pursuit scheme

    Get PDF
    Author's accepted manuscript.Available from 03/03/2021.This is a post-peer-review, pre-copyedit version of an article published in Applied Intelligence. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10489-019-01627-w.acceptedVersio
    • …
    corecore