215 research outputs found

    A Novel Hybrid CNN-AIS Visual Pattern Recognition Engine

    Full text link
    Machine learning methods are used today for most recognition problems. Convolutional Neural Networks (CNN) have time and again proved successful for many image processing tasks primarily for their architecture. In this paper we propose to apply CNN to small data sets like for example, personal albums or other similar environs where the size of training dataset is a limitation, within the framework of a proposed hybrid CNN-AIS model. We use Artificial Immune System Principles to enhance small size of training data set. A layer of Clonal Selection is added to the local filtering and max pooling of CNN Architecture. The proposed Architecture is evaluated using the standard MNIST dataset by limiting the data size and also with a small personal data sample belonging to two different classes. Experimental results show that the proposed hybrid CNN-AIS based recognition engine works well when the size of training data is limited in siz

    A Review on Biological Inspired Computation in Cryptology

    Get PDF
    Cryptology is a field that concerned with cryptography and cryptanalysis. Cryptography, which is a key technology in providing a secure transmission of information, is a study of designing strong cryptographic algorithms, while cryptanalysis is a study of breaking the cipher. Recently biological approaches provide inspiration in solving problems from various fields. This paper reviews major works in the application of biological inspired computational (BIC) paradigm in cryptology. The paper focuses on three BIC approaches, namely, genetic algorithm (GA), artificial neural network (ANN) and artificial immune system (AIS). The findings show that the research on applications of biological approaches in cryptology is minimal as compared to other fields. To date only ANN and GA have been used in cryptanalysis and design of cryptographic primitives and protocols. Based on similarities that AIS has with ANN and GA, this paper provides insights for potential application of AIS in cryptology for further research

    Artificial Immune Algorithm for exams timetable

    Get PDF
    The Artificial Immune System is a novel optimization algorithm designed on the resilient behavior of the immune system of vertebrates. In this paper, this algorithm is used to solve the constrained optimization problem of creating a university exam schedule and assigning students and examiners to each of the sessions. Penalties are imposed on the violation of the constraints. Abolition of the penalties on the hard constraints in the first stage leads to feasible solutions. In the second stage, the algorithm further refines the search in obtaining optimal solutions, where the exam schedule matches the preferences of the examiners

    Immune network algorithm in monthly streamflow prediction at Johor river

    Get PDF
    This study proposes an alternative method in generating future stream flow data with single-point river stage. Prediction of stream flow data is important in water resources engineering for planning and design purposes in order to estimate long term forecasting. This paper utilizes Artificial Immune System (AIS) in modelling the stream flow of one stations of Johor River. AIS has the abilities of self-organizing, memory, recognition, adaptive and ability of learning inspired from the immune system. Immune Network Algorithm is part of the three main algorithm in AIS. The model of Immune Network Algorithm used in this study is aiNet. The training process in aiNet is partly inspired by clonal selection principle and the other part uses antibody interactions for removing redundancy and finding data patterns. Like any other traditional statistical and stochastic techniques, results from this study, exhibit that, Immune Network Algorithm is capable of producing future stream flow data at monthly duration with various advantages

    An immune network approach to learning qualitative models of biological pathways

    Get PDF
    ACKNOWLEDGMENT GMC is supported by the CRISP project (Combinatorial Responses In Stress Pathways) funded by the BBSRC (BB/F00513X/1) under the Systems Approaches to Biological Research (SABR) Initiative. WP and GMC are also supported by the partnership fund from dot.rural, RCUK Digital Economy research.Postprin

    Artificial immune systems applications in cancer research

    Get PDF
    Artificial Immune System (AIS) is a branch of computational intelligence that has gained increasing interest among researchers in the development of immune-based models and techniques to solve diverse complex computational problems. This work focuses on the application of AIS techniques to cancer research and specifically for prediction of the recurrence of cancer in patients. The objective is to test AIS models and algorithms for cancer research by validation against actual cancer datasets. © 2011 IEEE

    Software implementation of automatic Fuzzy system generation and optimization

    Get PDF
    Automatic fuzzy system generation from sample data is a common task in fuzzy modeling. Here usually first an initial system is created using clustering, grid partitioning or other approaches and next, the parameters of the system are optimized based on the difference between the sample output and the output of the fuzzy system. The software being presented in this paper supports the whole process providing a wide range of parameterization opportunities. It also includes an optimization toolbox that offers five optimization algorithms, from which one represents a novel approach. The proposed new algoríthm was compared with four well-known methods using several benchmark functions and it ensured better results in case of many functions
    corecore