7,909 research outputs found

    Factorised spatial representation learning: application in semi-supervised myocardial segmentation

    Full text link
    The success and generalisation of deep learning algorithms heavily depend on learning good feature representations. In medical imaging this entails representing anatomical information, as well as properties related to the specific imaging setting. Anatomical information is required to perform further analysis, whereas imaging information is key to disentangle scanner variability and potential artefacts. The ability to factorise these would allow for training algorithms only on the relevant information according to the task. To date, such factorisation has not been attempted. In this paper, we propose a methodology of latent space factorisation relying on the cycle-consistency principle. As an example application, we consider cardiac MR segmentation, where we separate information related to the myocardium from other features related to imaging and surrounding substructures. We demonstrate the proposed method's utility in a semi-supervised setting: we use very few labelled images together with many unlabelled images to train a myocardium segmentation neural network. Specifically, we achieve comparable performance to fully supervised networks using a fraction of labelled images in experiments on ACDC and a dataset from Edinburgh Imaging Facility QMRI. Code will be made available at https://github.com/agis85/spatial_factorisation.Comment: Accepted in MICCAI 201

    Deep learning cardiac motion analysis for human survival prediction

    Get PDF
    Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p < .0001) for our model C=0.73 (95%\% CI: 0.68 - 0.78) than the human benchmark of C=0.59 (95%\% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival

    Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation

    Full text link
    In cardiac magnetic resonance imaging, fully-automatic segmentation of the heart enables precise structural and functional measurements to be taken, e.g. from short-axis MR images of the left-ventricle. In this work we propose a recurrent fully-convolutional network (RFCN) that learns image representations from the full stack of 2D slices and has the ability to leverage inter-slice spatial dependences through internal memory units. RFCN combines anatomical detection and segmentation into a single architecture that is trained end-to-end thus significantly reducing computational time, simplifying the segmentation pipeline, and potentially enabling real-time applications. We report on an investigation of RFCN using two datasets, including the publicly available MICCAI 2009 Challenge dataset. Comparisons have been carried out between fully convolutional networks and deep restricted Boltzmann machines, including a recurrent version that leverages inter-slice spatial correlation. Our studies suggest that RFCN produces state-of-the-art results and can substantially improve the delineation of contours near the apex of the heart.Comment: MICCAI Workshop RAMBO 201

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    A Deep Cascade of Convolutional Neural Networks for MR Image Reconstruction

    Full text link
    The acquisition of Magnetic Resonance Imaging (MRI) is inherently slow. Inspired by recent advances in deep learning, we propose a framework for reconstructing MR images from undersampled data using a deep cascade of convolutional neural networks to accelerate the data acquisition process. We show that for Cartesian undersampling of 2D cardiac MR images, the proposed method outperforms the state-of-the-art compressed sensing approaches, such as dictionary learning-based MRI (DLMRI) reconstruction, in terms of reconstruction error, perceptual quality and reconstruction speed for both 3-fold and 6-fold undersampling. Compared to DLMRI, the error produced by the method proposed is approximately twice as small, allowing to preserve anatomical structures more faithfully. Using our method, each image can be reconstructed in 23 ms, which is fast enough to enable real-time applications

    Multimodal and disentangled representation learning for medical image analysis

    Get PDF
    Automated medical image analysis is a growing research field with various applications in modern healthcare. Furthermore, a multitude of imaging techniques (or modalities) have been developed, such as Magnetic Resonance (MR) and Computed Tomography (CT), to attenuate different organ characteristics. Research on image analysis is predominately driven by deep learning methods due to their demonstrated performance. In this thesis, we argue that their success and generalisation relies on learning good latent representations. We propose methods for learning spatial representations that are suitable for medical image data, and can combine information coming from different modalities. Specifically, we aim to improve cardiac MR segmentation, a challenging task due to varied images and limited expert annotations, by considering complementary information present in (potentially unaligned) images of other modalities. In order to evaluate the benefit of multimodal learning, we initially consider a synthesis task on spatially aligned multimodal brain MR images. We propose a deep network of multiple encoders and decoders, which we demonstrate outperforms existing approaches. The encoders (one per input modality) map the multimodal images into modality invariant spatial feature maps. Common and unique information is combined into a fused representation, that is robust to missing modalities, and can be decoded into synthetic images of the target modalities. Different experimental settings demonstrate the benefit of multimodal over unimodal synthesis, although input and output image pairs are required for training. The need for paired images can be overcome with the cycle consistency principle, which we use in conjunction with adversarial training to transform images from one modality (e.g. MR) to images in another (e.g. CT). This is useful especially in cardiac datasets, where different spatial and temporal resolutions make image pairing difficult, if not impossible. Segmentation can also be considered as a form of image synthesis, if one modality consists of semantic maps. We consider the task of extracting segmentation masks for cardiac MR images, and aim to overcome the challenge of limited annotations, by taking into account unannanotated images which are commonly ignored. We achieve this by defining suitable latent spaces, which represent the underlying anatomies (spatial latent variable), as well as the imaging characteristics (non-spatial latent variable). Anatomical information is required for tasks such as segmentation and regression, whereas imaging information can capture variability in intensity characteristics for example due to different scanners. We propose two models that disentangle cardiac images at different levels: the first extracts the myocardium from the surrounding information, whereas the second fully separates the anatomical from the imaging characteristics. Experimental analysis confirms the utility of disentangled representations in semi-supervised segmentation, and in regression of cardiac indices, while maintaining robustness to intensity variations such as the ones induced by different modalities. Finally, our prior research is aggregated into one framework that encodes multimodal images into disentangled anatomical and imaging factors. Several challenges of multimodal cardiac imaging, such as input misalignments and the lack of expert annotations, are successfully handled in the shared anatomy space. Furthermore, we demonstrate that this approach can be used to combine complementary anatomical information for the purpose of multimodal segmentation. This can be achieved even when no annotations are provided for one of the modalities. This thesis creates new avenues for further research in the area of multimodal and disentangled learning with spatial representations, which we believe are key to more generalised deep learning solutions in healthcare

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table
    corecore