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Abstract

Automated medical image analysis is a growing research field with various applications in

modern healthcare. Furthermore, a multitude of imaging techniques (or modalities) have been

developed, such as Magnetic Resonance (MR) and Computed Tomography (CT), to attenuate

different organ characteristics. Research on image analysis is predominately driven by deep

learning methods due to their demonstrated performance. In this thesis, we argue that their suc-

cess and generalisation relies on learning good latent representations. We propose methods for

learning spatial representations that are suitable for medical image data, and can combine infor-

mation coming from different modalities. Specifically, we aim to improve cardiac MR segmen-

tation, a challenging task due to varied images and limited expert annotations, by considering

complementary information present in (potentially unaligned) images of other modalities.

In order to evaluate the benefit of multimodal learning, we initially consider a synthesis task

on spatially aligned multimodal brain MR images. We propose a deep network of multiple

encoders and decoders, which we demonstrate outperforms existing approaches. The encoders

(one per input modality) map the multimodal images into modality invariant spatial feature

maps. Common and unique information is combined into a fused representation, that is robust

to missing modalities, and can be decoded into synthetic images of the target modalities. Dif-

ferent experimental settings demonstrate the benefit of multimodal over unimodal synthesis,

although input and output image pairs are required for training. The need for paired images can

be overcome with the cycle consistency principle, which we use in conjunction with adversarial

training to transform images from one modality (e.g. MR) to images in another (e.g. CT). This

is useful especially in cardiac datasets, where different spatial and temporal resolutions make

image pairing difficult, if not impossible.

Segmentation can also be considered as a form of image synthesis, if one modality consists of

semantic maps. We consider the task of extracting segmentation masks for cardiac MR images,

and aim to overcome the challenge of limited annotations, by taking into account unannano-

tated images which are commonly ignored. We achieve this by defining suitable latent spaces,

which represent the underlying anatomies (spatial latent variable), as well as the imaging char-

acteristics (non-spatial latent variable). Anatomical information is required for tasks such as

segmentation and regression, whereas imaging information can capture variability in intensity



characteristics for example due to different scanners. We propose two models that disentangle

cardiac images at different levels: the first extracts the myocardium from the surrounding in-

formation, whereas the second fully separates the anatomical from the imaging characteristics.

Experimental analysis confirms the utility of disentangled representations in semi-supervised

segmentation, and in regression of cardiac indices, while maintaining robustness to intensity

variations such as the ones induced by different modalities.

Finally, our prior research is aggregated into one framework that encodes multimodal images

into disentangled anatomical and imaging factors. Several challenges of multimodal cardiac

imaging, such as input misalignments and the lack of expert annotations, are successfully han-

dled in the shared anatomy space. Furthermore, we demonstrate that this approach can be used

to combine complementary anatomical information for the purpose of multimodal segmenta-

tion. This can be achieved even when no annotations are provided for one of the modalities.

This thesis creates new avenues for further research in the area of multimodal and disentan-

gled learning with spatial representations, which we believe are key to more generalised deep

learning solutions in healthcare.
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Lay Summary

Medical imaging is widely used for the diagnosis and treatment of different pathological con-

ditions. Many techniques can image internal organs, for example Magnetic Resonance (MR)

uses the tissue magnetic properties, and Computed Tomography (CT) uses X-Rays. Each tech-

nique (also known as modality) has its own characteristics, produces grayscale images of dif-

ferent brightness (intensity) and enhances the contrast of organs and pathology differently. For

instance within cardiac MR, cine-MR creates a “movie” of the moving heart and is used to

assess the cardiac function, and Latent Gadolinium Enhancement (LGE) uses an injected para-

magnetic substance that enhances the contrast of infarcted regions of the heart muscle (my-

ocardium), i.e. regions with reduced blood flow that cause heart attack. Typically, the analysis

of such images is a manual process that is time consuming and requires expertise. This entails

delineating the position of the myocardium within the image (annotation) by experts, followed

by a quantitative analysis of the cardiac function. There is therefore a need for automated meth-

ods that can alleviate the requirement (as well as reduce the cost) for myocardium annotations.

In recent years, many methods for automating image analysis tasks have been proposed. These

primarily belong to a class of so-called “deep learning” models, which “learn” to perform a

particular task by using pairs of input and output examples. In this thesis, we aim to develop

deep learning models to extract myocardial delineations from input images, a task termed as

segmentation. The development of such models is split in two stages: learning and inference.

During learning, the models are “trained” to perform the task of segmentation using examples

of images with their corresponding annotations. During inference, the models predict seg-

mentations when given new unseen images. We further aim to combine information present

in images of different modalities (multimodal) in order to improve the accuracy of predicted

segmentations. This is challenging, especially in cardiac images, because of differences in in-

tensity characteristics between the modalities, and variation in anatomy (the heart is a moving

organ).

In order to evaluate the benefits of multimodal learning, we initially consider multimodal brain

MR images, because they are always aligned (unlike the heart, the brain does not move). We

propose a method that takes as input a brain image in some input modalities and produces the

same image in an output modality. This is known as synthesis. We achieve this task with a deep
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Lay Summary

learning model that firstly transforms the intensities of the multimodal inputs to be similar, so

that images can be directly compared and combined, and secondly transforms the intensities

of the combined images to correspond to the output modality. This synthesis model is then

extended to also work with multimodal inputs that are not aligned, and therefore it can be

applied to cardiac images. This extended model does not require having the same image in

two modalities and can learn with any multimodal data, for instance with data of MR and CT

images of different patients.

We further enhance the performance of deep learning methods by devising an intuitive dis-

entanglement (or decomposition) of medical images in two factors. The first corresponds to

the underlying anatomy that is common across all modalities, for example the heart, and the

second to the modality characteristics that are common across all anatomies, for example the

range of grayscale intensity values in MR imaging. Therefore, any image analysis task, such

as segmentation, can be performed by only using the anatomy factors. In addition, such a dis-

entanglement reduces the requirement for having many expert annotations, a critical limitation

in medical imaging. They further enable multimodal processing by combining anatomies pro-

duced by images in different modalities. Our final framework is able to combine multimodal

cardiac images by first disentangling them in their corresponding factors. Extensive experi-

ments demonstrate accurate segmentation results when limited amount or no annotated data are

provided for one of the modalities.

This thesis creates new avenues for further research in the area of multimodal processing and

image decompositions, which we believe are key to more generalised deep learning solutions

in healthcare.
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Chapter 1
Introduction

In deep learning, and medical image analysis in particular, learning good representations is

key for developing solutions and offers many benefits. These include the ability to generalise

to unseen data and related tasks, and also to learn smooth manifolds of the explanatory data

factors [17]. We argue that learning spatial representations, i.e. tensors (feature maps) obtained

from convolutional neural networks that are spatially co-variant with the input images, is crucial

for developing automatic medical image analysis methods due to specific intricacies posed by

medical data. In particular, we describe new methods for learning multimodal and disentangled

spatial representations and demonstrate their utility in several medical applications.

1.1 Medical Motivation

In medical image analysis, learning multimodal and disentangled representations is an intuitive

direction due to the nature of the medical imaging data and the challenges they present. Medical

images are naturally multimodal, with modalities referring to either the different techniques,

such as Magnetic Resonance (MR) and Computed Tomography (CT), or to different sequences

within MR (multi-parametric), in which different settings or the use of contrast agents can

accentuate T1 and T2 content in the imaged tissue. Example multimodal brain and cardiac

images can be seen in Figure 1.1. Throughout this thesis, the term multimodal is used for

both cases, although always clearly defined. Interest in multimodal images is high due to the

complementary information that they encode for the underlying organs. For instance, multi-

parametric MR is used in the brain for the detection of cancerous tumours [18], and in the heart

for the assessment of cardiovascular status [19].

Multimodal image analysis is possible by learning spatial correlations across the modalities.

However, although multimodal brain MR images are spatially aligned (see Figure 1.1a), this

does not hold true for all organs. For instance, multimodal cardiac images often differ in spatial

resolution with non-isotropic volumes that have different spacing among the slices. Further-

more, since the heart is a moving organ, multimodal images additionally differ in temporal
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T2T1

(a) multi-parametric T1 and T2

brain MR images

cine-MR LGE CT

(b) multi-parametric MR cardiac images in cine-MR and LGE, and a

cardiac CT image

Figure 1.1: Examples of multimodal brain and cardiac images. Brain images are from the

same subject and are taken from Ischemic Stroke Lesion Segmentation (ISLES) dataset [1].

Cine-MR and LGE cardiac images are from the same subject, and are acquired as part of the

study in [2]. CT image comes from a different subject and is taken from Multimodal Whole

Heart Segmentation (MMWHS) dataset [3, 4]. Observe that multimodal brains are spatially

aligned. Also, there is no pixel correspondence between the cardiac cine-MR and LGE images,

although they both correspond to the same volume slice and diastolic frame.

resolution, making precise temporal alignment across sequences difficult (see Figure 1.1b).

Therefore, multimodal alignment is required, prior to capturing the desired spatial correlations

with information fusion techniques.

Cardiac MR image analysis, a primal focus of this thesis, presents further challenges. The heart

shape exhibits great variability especially among patients with different pathological conditions,

see for instance the images of Figure 1.2. Also, the intensities between adjacent sub-structures

or tissues can be similar, for example between the myocardium and the papillary muscles, or

between the heart and liver. Additional difficulties include image artefacts or further intensity

inconsistencies across patients, pathologies, scanning sites and domain shift within modalities

between devices, for example presented in qualitative MRI.

Specifically here we are interested in the task of myocardial segmentation. This has a great

diagnostic value, because of the functional indices that can be calculated such as the ejection

fraction, and the myocardial mass [20]. This segmentation task needs image annotations, which

is a laborious and challenging task, also requiring medical expertise. The lack of annotations

often results in small datasets, in which the proportion of unlabelled images is far higher than

that of the labelled ones. This motivates research on semi-supervised approaches to achieve

robust models, by taking into account unlabelled images. Approaches based on disentangled
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(a) normal heart (b) hypertrophic cardiomyopathy (c) abnormal right ventricle

Figure 1.2: Three examples of cine-MR demonstrating differences in the cardiac anatomy due

to pathological conditions. Images are taken from Automatic Cardiac Diagnosis Challenge

(ACDC) dataset [5].

representations are suitable due to their inherent property of training with no supervision [21].

Based on the above considerations, we argue that multimodal and disentangled learning are

valuable, both for leveraging information present in other modalities, and for utilising unla-

belled images. Furthermore, segmentation is a task that is spatially equivariant with the input,

meaning that spatial transformations to the images should also propagate to their correspond-

ing masks. This motivates representing multimodal and disentangled latent variables as spatial

maps (images). We now introduce the above two research directions.

1.2 Multimodal Learning

Multimodal learning refers to methods that can utilise and combine information from different

modalities. Processing multimodal data poses several challenges, due to the heterogeneous

information that the data encode [22]. Most commonly, a shared representation is sought, such

that common and unique information is represented in the same latent space [23]. In this shared

space, information from the different modalities is further similarly represented as modality

invariant features, to allow fusion techniques [24].

In multimodal (as well as unimodal) image analysis tasks, such as synthesis and segmentation,

fully convolutional networks are used to facilitate learning of spatial correlations between input

and output. Thus, the shared representation is also spatial in the form of multi-channel feature

maps. This thesis studies challenges of multimodal learning with fully convolutional networks,
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and aims to produce modality invariant representations. This can be achieved by explicit biases,

such as the ones imposed when learning disentangled representations, in which the modality-

specific characteristics are disentangled from the remaining image features.

1.3 Disentangled Representations

Disentangled representation learning is a recent area of image analysis with deep learning that

focuses on discovering the data generating factors. Such representations consist of factors,

with each one corresponding to specific characteristics of the data distribution, such as image

intensity, object orientation, size etc., and are widely used in many applications, for example in

image translation [25] and pose estimation [26]. Since all input information is retained, these

factors are not only useful for a particular task, but they can easily be extended to other related

tasks [17]. Furthermore, disentangled representation learning is performed in an unsupervised

way, and this is useful for tasks lacking annotations, such as in semi-supervised and transfer

learning. Finally, since individual (or groups of) factors have some meaningful correspondence

between specific image aspects, they promote model interpretability.

Nevertheless, learning disentangled representations remains challenging. Factors of variation

are often not independent, can be of different dimensionality, and depend on inductive biases

of the data and model design [27]. Specifically in both medical and computer vision context,

images are disentangled in factors of structure and geometry (anatomy) and factors of appear-

ance (image modality). The anatomical factors are of particular interest, since they are spatially

represented, maintain pixel-wise correlations with the input and are thus useful in medical tasks.

1.4 Overview and Technical Contributions

We now give an overview of the thesis contributions. Considering spatial representations that

are multimodal and disentangled, we aim to learn cardiac segmentation networks with less an-

notations that also benefit from different modalities. All proposed methods can be considered as

encoder-decoders with the encoder mapping images to intermediate spatial representations and

the decoder mapping these representations back to the image space. The following paragraphs

briefly describe the proposed approaches, which investigate properties of modality invariance,

fusion, and disentangling factors, for multimodal and semi-supervised learning. For the defini-
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(a) single-domain input to

single-domain output

(b) multi-domain input to

single-domain output

(c) multi-domain input to

multi-domain output

Figure 1.3: Three examples of brain image synthesis with an encoder-decoder model and an

intermediate spatial representation.

tions below, we consider sets of images and corresponding masks in input or output domains.

In Chapter 4 I propose a multi-input, multi-output fully convolutional network that encodes

images of multiple domains to modality invariant feature maps. A schematic is shown in Fig-

ure 1.3, that corresponds to a model designed for MR synthesis of brain images in output do-

mains from images in input domains, with domains here corresponding to multi-parametric MR

modalities. I choose to first examine multimodal brain synthesis to avoid the more challenging

cardiac images that are unregistered and non-isotropic, as described in Section 1.1. This model

required all images to be spatially aligned, and showed that an intermediate spatial representa-

tion is capable of encoding multi-domain correlations. Depending on the availability of input

domain data, and also the requirement for synthetic output domain data, a single model can use

the same latent representation to perform predictions as follows: single-input to single-output

(Figure 1.3a), multi-input to single-output (Figure 1.3b) or multi-input to multi-output (Fig-

ure 1.3c). Learning constraints on the spatial representation encouraged a modality invariant

space, that is suitable for fusion techniques, in order to further combine features coming from

the different inputs. This chapter’s contribution is a new method for learning modality invari-

ant representations, showing that spatial features represented as images of the same size as the

input are suitable for combining multimodal information and improve synthesis quality. This

model is published in two articles, in MICCAI 2017 with title “Robust multi-modal MR image

synthesis” [28] and in IEEE Transactions on Medical Imaging in 2018 with title “Multimodal

MR synthesis via modality-invariant latent representation” [29].

Chapter 5 extends this research for unpaired data, i.e. when there is no correspondence between

images from the two domains. Here domains refer to different cardiac imaging techniques,
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(a) cycle 1: autoencoding in MR domain (b) cycle 2: autoencoding in CT domain

Figure 1.4: Two cycles of cardiac image translation between MR and CT domains.

specifically MR and CT. The aim is to use the multi-domain data for cross-domain synthesis,

since no information fusion is possible. The cycle consistency principle is adopted, which

consists of two cycles and can also be seen as two autoencoders (one per domain). This is

illustrated in Figure 1.4, where the first cycle learns mappings from MR to CT and back to

MR, and the second cycle learns mappings from CT to MR and back to CT. Cycle consistency

is typically used in domain translation when supervised learning cannot be applied. Although

there is no latent space per se, a spatial representation can be considered as the output CT in the

translation of the first cycle (Figure 1.4a), and respectively the output MR in the second cycle

(Figure 1.4b). Furthermore, in order to guarantee spatial equivariance at each translation step,

segmentation masks are concatenated with their respective MR and CT images. This chapter

demonstrates that cross-domain cardiac synthesis is possible using unpaired data, and proposes

a simple method for constraining translation functions showing the benefit of synthetic data as

a data augmentation approach. This method is published in SASHIMI workshop of MICCAI

2017 with title “Adversarial image synthesis for unpaired multi-modal cardiac data” [30].

The cycle consistency principle is useful for translating between image domains, even when one

domain is a semantic map. Indeed segmentation can be considered as a specialised form of im-

age translation, however, the information content between the image and segmentation domains

is different. Chapter 6 investigates translations between these two domains, and demonstrates

the one-to-many problem when translating from a categorical to an image domain, since a se-

mantic segmentation may correspond to many images. This problem is solved by encoding

the residual information in a new vector variable, z, proposing disentangled representations in

medical image analysis for the first time (Figure 1.5a). This model can be generalised to a se-

mantic representation of the whole anatomy (spatial factor) as a multi-channel feature map with
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(a) disentangling masks (spatial factor)

from residual image (vector factor)

(b) disentangling anatomical (spatial fac-

tor) from imaging (vector factor)

Figure 1.5: Disentangled representations of spatial and vector factors.

the residual (vector factor) z, containing only imaging related statistics (Figure 1.5b).1 The spa-

tial factor is tightly correlated to both segmentation and other anatomical tasks. Additionally,

autoencoding provides an unsupervised training mechanism. This chapter’s major contribution

is the first method for learning disentangled representations of anatomical and imaging features

of medical images, as well as a detailed analysis of the properties and semantics of the latent

factors. Furthermore, I demonstrate the use of such representations in semi-supervised and

multi-task learning. This work has been published in two articles, the first in MICCAI 2018

titled “Factorised spatial representation learning: Application in semi-supervised myocardial

segmentation” [31] and the second in Medical Image Analysis in 2019, titled “Disentangled

representation learning in cardiac image analysis” [32].

Inspired from the above, Chapter 7 presents a unified framework for multimodal and disentan-

gled representations, illustrated in Figure 1.6. Multi-domain images are mapped to a disentan-

gled representation of anatomical and imaging factors. Here domains refer to different cardiac

MR modalities. Images although paired are not perfectly aligned, but the common spatial factor

is suitable for correcting misalignments and therefore enables spatial fusion mechanisms. Here

both autoencoding and cross-domain synthesis allow semi-supervised and even unsupervised

learning when one domain has few or no mask annotations. This chapter’s contributions consist

of a new method that combines multimodal and disentangled representation learning to leverage

information from multiple modalities for cardiac segmentation. Furthermore, disentangled rep-

resentations offer robustness to input misalignments, to the amount of annotations and to multi-

modal image pairing. This method is presented in two articles, the first in STACOM workshop

of MICCAI 2019, titled “Multimodal Cardiac Segmentation Using Disentangled Representa-

1In the literature the term “factor” usually refers to either a single dimension of a latent representation, or a
meaningful aspect of the data (i.e. a group of dimensions) that can vary independently from other aspects. Here I
use factor in the second sense to refer to a representation that consists of a (multi-dimensional) anatomy factor, and
a (multi-dimensional) modality factor.
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Figure 1.6: Multimodal and disentangled spatial and vector representations.

tion Learning” [33], and the second is under review in IEEE Transactions on Medical Imaging

“Disentangle, align and fuse for multimodal and semi-supervised image segmentation” [34].

Finally, open source code of all proposed methods has been made publicly available to encour-

age dissemination also in other fields. Code is found under the following URLs:

• Chapter 4 - github.com/agis85/multimodal_brain_synthesis;

• Chapter 6 - github.com/agis85/spatial_factorisation,

github.com/agis85/anatomy_modality_decomposition;

• Chapter 7 - github.com/agis85/multimodal_segmentation.

1.5 Clinical Significance

We propose methods for the analysis of brain and cardiac images and achieve contributions

with potential clinical value. The proposed methods are based on deep learning and are thus

data driven, meaning that they take advantage of available data and do not embed strong phys-

iological priors. This can be advantageous for learning solutions on populations with common

pathological conditions, although prior knowledge can be valuable to regularise and facilitate

learning and also to enable specialisation in rare pathological conditions.

Methods of Chapters 4 and 5 offer an automated way of generating synthetic images by trans-

forming images of the same subject in other modalities. This is most commonly used to en-

hance existing datasets with new images (data augmentation), or to replace images corrupted

with artefacts (data imputation), for example due to motion. In Chapter 4 we propose a method

that is able to increase the quality of synthetic images by jointly processing and combining
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information in different MR sequences. Critically though, it does not require a specific number

of input modalities, although benefits from multimodal inputs. This method is learned through

pairs (or sets) of images of the same subject in multiple modalities that are perfectly aligned,

common for example in multi-parametric brain MRI. However, this can be challenging when

applied in cardiac image synthesis, for example between cine-MR and LGE modalities, since

image acquisition is affected by cardiac motion, as well as by respiratory motion, which pre-

vent obtaining perfectly aligned multimodal pairs. In Chapter 5, we relax the requirement for

aligned multimodal pairs, and propose a method for cardiac synthesis that can use imaging

data of different populations. By simultaneously transferring the myocardium annotations in

the synthetic images, we demonstrate the importance of augmenting datasets with synthetic

images when learning auxiliary tasks, such as when extracting myocardial segmentations.

Chapters 6 and 7 focus on cardiac segmentation in various MR modalities, where automatic

methods are often challenged by the lack of large annotated datasets. We propose new methods

that are robust to the number of annotations by employing semi-supervised, multi-task, and

multimodal learning techniques. Specifically, we show that we can learn segmentation models

with a fraction of images being annotated. Also, we can improve the model performance using

auxiliary information from diverse sources if available, such as from the left ventricular volume.

Finally, we show that our method can benefit from multimodal images, even if they are not

perfectly aligned. In fact, processing with multiple inputs always yields improved segmentation

performance, while also allows segmenting images from unannotated modalities.

1.6 Thesis Structure

Here we provide an overview of the thesis contents. Chapter 2 contains a background on med-

ical imaging and presents the datasets used. Chapter 3 presents a technical background on

deep learning and representation learning, and a literature review on the thesis research areas.

Chapter 4 describes our method on multimodal brain MR synthesis. Chapter 5 discusses the

cycle consistency principle for cardiac image synthesis and presents a synthesis application on

data augmentation. Then, Chapter 6 proposes two new methods for disentangled representation

learning in medical imaging, which respectively disentangle the myocardium and the anatomy.

Chapter 7 aggregates our prior work on multimodal and disentangled representations to present

a combined framework tested on various medical data and evaluate disentanglement. Finally,

Chapter 8 concludes the manuscript, discussing limitations and future extensions of this work.
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Chapter 2

Clinical and Medical Imaging
Background

This thesis uses data from multiple imaging modalities, and specifically from Magnetic Reso-

nance Imaging (MRI) and Computed Tomography (CT). We mainly focus on multi-parametric

Magnetic Resonance Imaging (MRI), a non-invasive technique that uses magnetisation to im-

age soft-tissues, and its application on cardiac image analysis. Although machine learning

techniques do not typically take into consideration the physics of the image acquisition, some

MR fundamentals are provided in Section 2.1, as well as an overview of CT in Section 2.2. Fi-

nally, a background on the physiology and functionality of the heart is presented in Section 2.4,

as well as specific cardiac MR sequences in Section 2.5.

2.1 Magnetic Resonance Imaging (MRI)

MRI is extensively used for pathology detection in many organs, such as brain ischemia and

cancer, abdomen lesions and tumours, and cardiomyopathies. Different parameterisation of

the MR scanner generates sequences, termed modalities, that create contrast between adjacent

organs and pathologies using different pixel intensities. Taking advantage of the fact that 70%

of cells consist of water, MRI relies on the magnetisation of hydrogen atoms to visualise soft

tissues in the body. Hydrogen atoms consist of single protons that are positively charged and

have a spin, in other words they rotate around an axis at a constant rate. Under no external

magnetic field, the direction of their magnetic field is random in space, as shown in Figure 2.1.a.

The aim of MR imaging is to perform excitation followed by relaxation of these protons.

A MR scanner is a big magnet, that initially applies a magnetic field, which aligns hydrogen

protons to the direction of the field, called the longitudinal direction, as shown in Figure 2.1.b.

The proton spins are also partly aligned to the longitudinal direction, and spin at a frequency

called Larmor frequency that depends on the strength of the magnetic field.
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(a) no magnetic field (b) external magnetic field on Z direction

Figure 2.1: Illustration of protons’ magnetisation. (a) Under no external magnetic field, the

protons have random directions. (b) When an external field is applied, the protons align to the

direction of the field.

In order to align the proton spins, the MR scanner applies a radio frequency (RF) pulse with

frequency equal to the Larmor frequency. This excitation phase aligns all proton spins, and

changes their magnetisation direction to the transversal direction, which is typically perpendic-

ular to the original field, but can also vary depending on the RF pulse. Receiver coils are then

used to capture the energy emitted by the change in the magnetisation energy.

The excitation phase is followed by the relaxation phase, in which the RF pulse is stopped.

This results in the protons changing their magnetisation direction to the original magnetic field,

releasing energy. The time needed to achieve 63% of the original magnetisation is called T1

relaxation time. Stopping the RF pulse, also results in dephasing of the protons in the transverse

direction, in which their spins are not aligned anymore. The time needed to dephase 37% of the

original protons is called T2 relaxation time. T1 and T2 times differ between tissues because of

their different concentration in water and fat. The energy released during the relaxation is used

for image reconstruction. In fact, the final image is produced by the Fourier transform of the

k-space image, an example of which is shown in Figure 2.2. This is a 2D array with dimensions

equal to the image dimension, that consists of (kx, ky) points containing the phase and spatial

frequencies of the image pixels [6]. Often additional external magnetic fields (gradients) are

added, which in combination with the RF pulse constitute a MR sequence. MR images are

predominately used in this thesis to evaluate synthesis (Chapters 4 and 5), and segmentation

(Chapters 6 and 7).

11
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Figure 2.2: Reconstruction example from k-space. Image taken from [6].

Figure 2.3: Schematic of a CT scanner, with the source emitting a conical beam from multiple

directions. Here, γ represents the angle between two measurements. Image taken from [7].

2.2 Computed Tomography (CT)

CT measures the absorption of X-Ray radiation from the body tissues. Unlike MR, CT is a

quantitative technique and measures the density of an organ by calculating the attenuation of

X-Ray radiation. This is achieved with a detector that records the amount of X-Ray photons

that are passed through the tissue of interest. The density is measured in Hounsfield units that

depend on the composition of each tissue. Typically, as shown in Figure 2.3, a X-Ray source

emits a cone-shape beam through different directions to calculate a 3D reconstruction using the

backprojection technique [7]. An example CT image is shown in Figure 2.4. CT images are

used for cross-modality synthesis to MR in Chapter 5.

12
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Figure 2.4: An example of a CT cardiac image. Image is taken from the Multimodal Whole

Heart Segmentation (MMWHS) dataset [3, 4].

gray matterwhite matter

ventricles

Figure 2.5: Example of a brain in T1w sequence. Gray matter, white matter and ventricles are

marked with red arrows. Image is taken from Ischemic Stroke Lesion Segmentation (ISLES)

dataset [1].

2.3 The Brain

We now give a brief description of important brain structures and of brain MR sequences that

are used in Chapter 4. The largest part of the brain is the cerebrum that is divided into two

hemispheres. The outer layer of each cerebral hemisphere is the cortex that is central to cogni-

tive activity and is comprised of gray matter. The inner layer of the cerebrum consists of white

matter and affects learning. Towards the centre of the brain, there is the ventricle system, which

contains four ventricles that produce the cerebrospinal fluid. An example brain MR image with

marked gray matter, white matter and ventricles is shown in Figure 2.5.

Common MR sequences for brain imaging that are also used in this thesis are T1 weighted

(T1w), T1 contrast (T1c), T2 weighted (T2w), FLAIR, DWI, and PD, with some examples

shown in Figure 2.6. T1w images are primarily used for healthy anatomy and consider the dif-

13
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Figure 2.6: Brain images in T1w, T2w, DWI and FLAIR sequences. Depending on the intrin-

sic properties of each sequence, water and fat molecules are represented with different pixel

intensities. Images are taken from Ischemic Stroke Lesion Segmentation (ISLES) dataset [1].

ferences in T1 relaxation time between fat and water with fat presenting higher pixel intensities

in the reconstruction. T1 weighted images after the administration of a paramagnetic contrast

agent, such as Gadolinium, produce T1c images that are often used to detect brain tumour.

Similarly, T2w images consider the fat and water differences in T2 relaxation time. Here, water

presents higher pixel intensities, and since it is correlated with edema, T2 images can detect

pathologies. On the contrary, Proton Density weighted (PD) images do not consider neither

T1 nor T2 signal, and rely on the number of protons in the image. Diffusion Weighted Images

(DWI) are T2 images that measure the movement of hydrogen protons when fields of different

magnetic strength are applied. They are used for detecting edema, for example in ischemia. Fi-

nally, Fluid Attenuated Inversion Recovery (FLAIR) is a T1w sequence that nulls fluids, such

as the cerebrospinal fluid in brain, and can also detect pathologies. Multiparametric brain MR

images are used for multimodal synthesis in Chapter 4.

2.4 The Heart

In the remaining chapters, we focus on the analysis of the heart that is comprised of several

substructures, such as the ventricles, the atria, and the myocardium as shown in Figure 2.7.

The heart is responsible for circulating oxygenated blood throughout the body using the my-

ocardium (MYO) through the left atrium (LA), left ventricle (LV) and aorta respectively. It

also circulates non-oxygenated blood to the lungs through the right atrium (RA), right ventri-

cle (RV) and pulmonary artery [35]. This process happens throughout a cardiac cycle from

end systole, when the myocardium is contracted, to end diastole, when the myocardium is ex-
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Figure 2.7: Substructures of the human heart with arrows indicating the blood flow. Image is

taken from [8].

Figure 2.8: An example ECG showing the electrical activity of the heart, with the systole and

diastole phases marked. Image is taken from [9].

panded. The heart’s contraction and expansion is triggered by electrical signals that stimulate

the myocardium and create a perfectly rhythmic cycle or heartbeat. This electrical activity is

measured with an electrocardiogram (ECG), as shown in Figure 2.8, using electrodes on the

skin. ECG is also used for imaging of the cardiac cycle, and is described in Section 2.5.
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LGEcine-MR BOLD

Figure 2.9: Examples of cardiac MR images in cine-MR, LGE, and BOLD modalities. Cine-

MR and LGE images are acquired as part of the study in [2], and BOLD in [10]

2.5 Cardiac Imaging

Many imaging techniques exist for cardiac analysis, but here we focus on some protocols of

Cardiac Magnetic Resonance (CMR), which are developed due to the high soft tissue contrast

that MR exhibits, and because of its non-ionising property, as previously discussed in Sec-

tion 2.1. Specifically, Sections 2.5.1, 2.5.2, and 2.5.3, describe cine-MR, Late Gadolinium

Enhancement (LGE), and Blood Oxygen Level Dependent (BOLD) respectively, with repre-

sentative examples shown in Figure 2.9. These are used in Chapters 6, and 7 for learning

segmentation models.

2.5.1 Cine-MR

The most common CMR protocol is cine-MR, a temporal sequence typically consisting of 10-

30 frames of the cardiac cycle that is used for calculating functional indices, such as the ejection

fraction. It is also referenced as a bright-blood technique, since it generates high signal intensity

for pixels within vessels compared to other tissues.

In order to achieve image acquisition of high quality, the k-space data for each frame are ac-

quired across different cycles. The synchronisation of the sampled data to particular frames is

performed through ECG gating that detects an R-wave which corresponds to the beginning of

the systolic phase. MR imaging, and an ECG pulse defining the R-R interval of a heartbeat (see

Figure 2.8), are run in parallel and synchronisation is performed retrospectively. An imaging

session is completed within multiple breath-holds, and the scanning time for each cine-MR

slice takes approximately 10 seconds. To reduce scanning time, non-isotropic images are taken

with a low spatial resolution and slices typically between 8mm-10mm.
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2.5.2 Late Gadolinium Enhancement (LGE)

Other CMR protocols, such as the LGE include gadolinium, a contrast agent, for the detection

of myocardial infarction [36]. In infarcted myocardial regions, gadolinium can penetrate cell

membranes and appears bright in the image. After magnetisation of the heart with the radiofre-

quency pulse, the different recovery times of infarcted and normal myocardial tissue after the

gadolinium has been injected, results in bright and dark (known as myocardium nulling) re-

gions respectively. Imaging is performed only on the diastolic phase, and is used for detection

of heart failure.

2.5.3 Blood Oxygen Level Dependent (BOLD)

In order to avoid radioactive contrast agents, other CMR techniques, such as BOLD MRI, con-

sider oxygen that is present in blood cells as an endogenous contrast agent. The magnetic prop-

erties of blood cells depend on the amount of oxygen in hemoglobin, with the difference being

in the T2 relaxation times. BOLD detects the infarcted myocardium by the smaller amount of

oxygen supplied by stenosed vessels, which creates an inhomogeneous magnetic field within

the myocardium, and appears as hyperintense regions. Unlike LGE, BOLD images are acquired

across the whole cardiac cycle and not only to end diastole. Although the intensity differences

are smaller compared to exogenous contrasts, it has been demonstrated that the BOLD effect is

present in the heart, and can also be used for detecting infarcted regions in the myocardium [10].

2.6 Datasets

In this thesis we use various public and private medical datasets in MR and CT modalities to

validate the developed methodologies. An overview of the datasets is presented in Table 2.1

with their sizes varying between 10 to 100 subjects and approximately 400 to 24,000 images

respectively. This size is considered small compared to computer vision datasets, such as Im-

ageNet [37] that has approximately 14 million images, but is typical for medical datasets in

which data acquisition and distribution is more challenging and entails ethical and privacy pro-

cesses. For research purposes the size of the employed datasets is sufficient to evaluate the

proposed algorithms, however, a large study size would be required to evaluate the use of com-

mercial applications in a clinical setting [38]. We now present a description of these datasets

for brain (Section 2.6.1), cardiac (Section 2.6.2), and abdominal images (Section 2.6.3).
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Dataset Organ Modality Subjects Task Chapter

ISLES brain MR (T1w, T2w, FLAIR, DWI) 28 synthesis 4

BRATS brain MR (T1w, T1c, T2w, FLAIR) 54 synthesis 4

IXI brain MR (T1, T2, PD) 28 synthesis 4

MM-WHScardiac MR, CT 40 synthesis, segmentation 5, 6

ACDC cardiac cine-MR 100 segmentation 6

QMRI cardiac cine-MR 26 segmentation 6

BOLD cardiac cine-MR, BOLD 10 segmentation 6, 7

ERI cardiac cine-MR, LGE 28 segmentation 7

CHAOS abdomen MR (T1, T2) 20 segmentation 7

Table 2.1: Overview of the datasets used in this thesis categorised based on organ, modality,

size, task performed, and chapter used.

2.6.1 Brain

The multimodal synthesis work of Chapter 4 uses multi-parametric MR brain data from three

datasets, with details summarised below.

2.6.1.1 Ischemic Stroke Lesion Segmentation (ISLES) - public

Ischemic Stroke Lesion Segmentation (ISLES) [1] data consists of 28 pre-processed volumes

that are imaged in T1w, T2w, FLAIR, and DWI sequences. The volumes have been skull-

stripped and re-sampled to an isotropic spacing of 1mm3, and co-registered to the FLAIR

sequences. All volumes belong to patients with sub-acute ischemic stroke lesions, and were

made publically available as part of a lesion segmentation challenge for MICCAI 2015.

2.6.1.2 Brain Tumour Segmentation (BRATS) - public

Brain Tumour Segmentation (BRATS) [16] data consists of high and low grade glioma cases,

from which we used the latter containing 54 volumes, imaged in T1w, T1c, T2w, and FLAIR,

and are released with segmentation masks of tumours. Data are skull-striped, co-aligned, and

interpolated to 1mm3 resolution. Data were made available as part of a brain tumour segmen-

tation challenge for MICCAI 2015.
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2.6.1.3 Information eXtraction from Images (IXI)

Information eXtraction from Images (IXI) [39] data contains co-registered T1, T2 and PD-

weighted non-skull stripped images from 28 healthy subjects. Data were collected at three

London hospitals, specifically Hammersmith Hospital with a Philips 3T scanner, Guy’s Hos-

pital with a Philips 1.5T scanner, and the Institute of Psychiatry with a General Electric 1.5T

scanner.

2.6.2 Cardiac

We further use various cardiac datasets with details presented below.

2.6.2.1 Multimodal Whole Heart Segmentation (MM-WHS) - public

Images from the Multimodal Whole Heart Segmentation (MM-WHS) challenge of MICCAI

2017 are used in Chapter 5 for cross-modal synthesis, and in Chapter 6 for multimodal segmen-

tation as well as modality transformation and estimation.

The MM-WHS dataset contains 40 anonymised volumes, of which 20 are cardiac CT/CTA

and 20 are cardiac MRI, made available by the authors of [3, 4, 20]. The CT/CTA data were

acquired at Shanghai Shuguang Hospital, China, using routine cardiac CT angiography. The

slices were acquired in the axial view. The inplane resolution is about 0.78 × 0.78mm and

the average slice thickness is 1.60mm. The MRI data were acquired at St. Thomas hospital

and Royal Brompton Hospital, London, UK, using 3D balanced steady state free precession (b-

SSFP) sequences, with about 2mm acquisition resolution at each direction and reconstructed

(resampled) into about 1mm. Data contain static 3D images, acquired at different time points

relative to the systole and diastole. All the data has manual segmentation of the seven whole

heart substructures. Specifically: (1) the left ventricle blood cavity (LV), (2) the right ventricle

blood cavity (RV), (3) the left atrium blood cavity (LA), (4) the right atrium blood cavity (RA),

(5) the myocardium (MYO), (6) the ascending aorta (AO), and (7) the pulmonary artery (PA).

2.6.2.2 Automatic Cardiac Diagnosis Challenge (ACDC) - public

Images from the ACDC challenge [5] of MICCAI 2017 are used in Chapter 6 for semi-supervised

segmentation and for latent space arithmetics.
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This dataset contains cine-MR images acquired in 1.5T and 3T MR scanners, with resolution

between 1.22 and 1.68 mm2/pixel and a number of phases varying between 28 to 40 images

per patient. There are images of 100 patients for which manual segmentations are provided

for the left ventricular cavity (LV), the myocardium (MYO) and the right ventricle (RV), corre-

sponding to the end systolic (ES) and end diastolic (ED) cardiac phases. In total there are 1,920

images with manual segmentations (from ED and ES) and 23,530 images with no segmenta-

tions (from the remaining cardiac phases).

2.6.2.3 Edinburgh Imaging Facility QMRI - private

In Chapter 6 we also use images from Edinburgh Imaging Facility QMRI for semi-supervised

segmentation and multi-task learning.

The dataset is acquired with a 3T scanner, and contains cine-MR images of 26 healthy volun-

teers each with approximately 30 cardiac phases. The spatial resolution is 1.406 mm2/pixels

with a slice thickness of 6mm, matrix size 256 × 256, a field of view 360mm × 303.75mm,

and image size 256× 208 pixels. Manual segmentations of the left ventricular cavity (LV) and

the myocardium (MYO) are provided, corresponding to the ED cardiac phase. In total there

are 241 images with manual segmentations (from ED) and 8,353 images with no segmentations

(from the remaining cardiac phases).

2.6.2.4 BOLD - private

A multimodal dataset of cine-MR and CP-BOLD images is used in Chapter 6 for modality

estimation, and in Chapter 7 for multimodal segmentation.

This dataset contains 2D images from 10 (mechanically ventilated) canines with an in-plane

resolution of 1.25mm× 1.25mm that were acquired at baseline and severe ischemia (inflicted

as controllable stenosis of the left-anterior descending coronary artery (LAD)) on a 1.5T Espree

(Siemens Healthineers) on the same instrumented canines [10]. Images are acquired at short

axis view covering the mid-ventricle and using cine-MR and a flow and motion compensated

CP-BOLD, where each sequence is applied one after the other in the protocol in separate breath-

holds. The pixel resolution is 192× 114. This dataset (not publicly available) is ideal to show

complex spatio-temporal effects as it images the same animal with and without disease, using

two almost identical sequences that only differ in that CP-BOLD modulates pixel intensity with
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the level of oxygenation present in the tissue. In total there are 129 cine-MR and 264 CP-BOLD

images with manual segmentations from all cardiac phases.

2.6.2.5 Edinburgh Royal Infirmary (ERI) - private

In Chapter 7 we use a cine-MR and LGE dataset for multimodal segmentation.

The ERI dataset contains images from 28 patients [2], and is acquired at Edinburgh Royal

Infirmary, with spatial resolution 1.562mm2/pixel, and slice thickness 9mm. End diastolic my-

ocardial contours are provided. The image size is 192× 192 pixels. The number of segmented

images is 358 (for each of cine-MR, LGE).

2.6.3 Abdominal

2.6.3.1 Combined Healthy Abdominal Organ Segmentation (CHAOS) - public

Finally, multimodal segmentation of Chapter 7 is further evaluated in a T1-dual inphase and

T2-SPIR abdominal dataset.

Combined Healthy Abdominal Organ Segmentation (CHAOS) [40] contains data released for

the abdominal segmentation challenge [41, 42] that was part of ISBI 2019. Images of 20 sub-

jects with liver, kidneys and spleen segmentations are acquired by a 1.5T Philips MRI scanner

in T1-dual inphase and T2-SPIR sequences from PACS of DEU Hospital. In total there are

1594, 12-bit DICOM images of 256× 256 resolution.

2.7 Overview

This chapter has presented background material on medical imaging techniques including MRI

and CT, and discussed different MR sequences common in brain and cardiac imaging, as well

as some physiological information on the anatomy of the heart. Finally, a description of the data

used throughout the thesis is provided. The following chapter (Chapter 3) further expands the

required background with technical preliminaries and definitions, as well as a literature review

on synthesis and segmentation with recent deep learning methods.
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Chapter 3
Technical Background

This chapter presents the technical background necessary of this thesis. Although a basic un-

derstanding of machine learning and deep learning principles is assumed, a brief introduction

to learning with various degrees of supervision is provided in Section 3.1. Then, Sections 3.2

and 3.3 describe in detail two widely used generative models, namely Generative Adversar-

ial Networks (GAN) [43], and Variational Autoencoders (VAE) [44, 45], which are extensively

used throughout this thesis. Finally, Section 3.4 presents the benefits of representation learning.

3.1 Model Learning

Most commonly in machine learning we assume a dataset of N pairs of datapoints {(x, y)}N1 ,

where x is a sample from an input distribution x ∈ X , and y is a sample from an output

distribution y ∈ Y , and the task is to learn a mapping function, f : X → Y . Learning such

functions can be performed with neural networks, which are proven to be universal function

approximators [46]. Neural networks consist of layers of hidden units that extract features

from the input data, such that they can predict the target output data. The learning process with

networks of multiple layers is termed deep learning.

Learning a function between input and output data defines discriminative models and can be

characterised as supervised, semi-supervised, and unsupervised depending on the relative size

of the two sets of data, and the pairing of input and output samples. On the one hand, if each

input sample x has a corresponding output sample y, then learning is considered supervised.

On the other hand, if there are more input than output samples, then learning is termed as semi-

supervised. Finally, unsupervised learning concerns cases where there are no pairs of input and

output samples, and the function is learned only based on prior beliefs.

Naturally given enough paired data samples, supervised learning is usually more accurate.

However, and as previously discussed in Chapter 1, this can be problematic in medical im-

age analysis, where data acquisition is expensive. Therefore, this motivates research for semi-
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(a) Training step 1: discriminator training (generator weights are not updated)

(b) Training step 2: generator training (discriminator weights are not updated)

Figure 3.1: Schematic of a Generative Adversarial Network (GAN). A generator transforms

a random sample from a known distribution to an output sample. The discriminator classifies

samples from the real distribution and outputs from the generator. Training is performed in two

steps with gradients updating the weights of the discriminator or the generator, respectively: (a)

the discriminator is trained to classify real and synthetic samples; (b) the generator is trained to

produce outputs that are classified as real by the discriminator.

supervised and unsupervised methods. One way to learning with no supervision is with genera-

tive models that capture the data generating processes, or in other words the causal relationships

between data and generating factors. Two popular generative models are discussed in the next

two sections, GANs and VAEs. They are based on adversarial training and variational inference

respectively, and have had successes in many tasks, such as in image generation [47]. Here we

use GANs in the cross-modal synthesis method of Chapter 5, and the VAE formulations when

learning disentangled representations in Chapters 6 and 7.

3.2 Generative Adversarial Networks (GAN)

The aim of generative models is to approximate a probability distribution function, typically us-

ing maximum likelihood estimation, although this is intractable for unknown data distributions.

A GAN [43] is a framework for approximating some data distribution using two networks: a

generator G and a discriminator D. The generator learns a mapping function from a known

distribution, e.g. a Gaussian, to a target distribution, and the discriminator classifies samples

between the true and predicted distribution. The two networks are trained adversarially, such
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that the generator maximises the discriminator’s loss, an analogous to a min-max game. A

simple schematic can be seen in Figure 3.1.

More formally, given a data distribution pdata(x) and a prior pz(z) of a random variable z that

typically follows a multivariate Gaussian pz(z) ∼ N (0, I), the loss function is the following:

L(G,D) = min
G

max
D

E
x∼pdata(x)

[log(D(x))] + E
z∼pz(z)

[log(1−D(G(z)))]. (3.1)

Training is performed with stochastic gradient descent, by alternating gradient updates of the

parameters of D and G. Specifically, D is trained to correctly classify samples from the real

or the predicted distribution, and G is trained adversarially to maximise D’s classification loss.

Convergence is achieved when G can generate a probability distribution equal to the data dis-

tribution, i.e. when pg = pdata.

At convergence, GANs learn a smooth function, where nearby input values correspond to simi-

lar synthetic samples. The smoothness of the learned function can been qualitatively evaluated

with synthetic images produced by interpolating the input vector [48]. However, as shown

in [49], the generated distribution is biased by the support of the real distribution, which affects

the “steerability” of GANs and their ability to generalise beyond the training data.

Nevertheless, adversarial training of deep neural networks is challenging, and sensitive to many

variables. Common issues include mode collapse, training instabilities, and vanishing gra-

dients. In mode collapse the generated distribution consists of a part or a mode of the true

distribution, and occurs because there is no explicit cost for diversity. Training is unstable if the

Generator and Discriminator oscillate rather than converging to a fixed point. Finally, vanish-

ing gradient problems occur if the rate of convergence is different and one agent becomes more

powerful than the other.

A lot of research has focused on improving training stability, for example with careful net-

work architecture design [48]. Furthermore, different losses have been proposed to replace

the original binary cross entropy. In [50], a least-squares loss is shown to promote a smooth

and non-saturating gradient. The Generator minimises the squared distance between synthetic

examples and the decision boundary, thus heavily penalising points that are classified away

from the boundary. Moreover, the Wasserstein loss has been proposed to measure the distance

between the real and generated distribution [51,52]. In this formulation the Discriminator min-

imises the earth-mover distance, i.e. the cost of mass needed to move from one distribution to
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the other. This has been shown to overcome the problem of vanishing gradients produced when

the generated distribution is far away from the real distribution. Another popular approach for

smoother training minimises the largest singular value of Discriminator’s weight matrices [53],

and can be applied to any GAN architecture. Furthermore, in BEGAN [54], the Discriminator

is modelled as an autoencoder, and the real and generated images are first autoencoded be-

fore comparison with the Wasserstein distance. This prevents the Discriminator from easily

becoming a good classifier.

Many approaches have also been proposed to alleviate the mode collapse problem. Batch nor-

malisation has been suggested to help the gradient flow in deep models, and also force some

variation within samples from each batch, which can make collapse less likely [48]. VEE-

GAN [55] learns a function mapping the real data to a Gaussian, and then uses this to encourage

the generated data to also result in a Gaussian distribution when put through the same function.

This provides a training signal to the generator that comes from outside of the discriminator.

An evaluation of popular GAN architectures has been performed in [56], and showed the sen-

sitivity of adversarial methods to random initialisation, hyperparameters and datasets. In addi-

tion, they showed that given enough computational power and good hyperparameters, compara-

ble results can be achieved by most architectures. Extensive reviews of different GAN variants

have also been performed in [47, 57].

Except for generative modelling, adversarial training has also offered a new type of loss func-

tion, which relaxes the need for input-output pairs that is required by traditional discriminative

machine learning. Since the discriminator classifies real from synthetic examples, it learns a

prior over the real distribution, and thus an unsupervised loss can be implicitly defined, which

can be used in combination with supervised losses to constrain the space of predicted outputs.

This will be demonstrated in Chapters 6 and 7, where an adversarial unsupervised loss con-

strains the shape of the segmentation masks.

3.2.1 Conditional GANs

In the context of this thesis, the conditional GAN variant [58] is relevant, in which the adver-

sarial generative model is conditioned by a variable. When both the condition variable and the

output are spatial, i.e. images, GANs learn spatial mapping functions. Typical examples in-

clude image to image translation or image synthesis, the task of transforming images between
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(a) Training step 1: discriminator training (generator weights are not updated)

(b) Training step 2: generator training (discriminator weights are not updated)

Figure 3.2: Schematic of an image-conditional GAN for image-to-image translation between

two domains. Given a random sample and an image in the input domain (condition variable),

the generator produces an output image of the same content in an output domain. The input

image also conditions the discriminator. Training follows the classic GAN formulation as fol-

lows: (a) the discriminator is trained to classify real and synthetic samples; (b) the generator is

trained to produce outputs that are classified as real by the discriminator. Images show map to

photograph synthesis and are taken from [11].

two domains. Figure 3.2 shows an image-conditional GAN for synthesis of photographs from

maps, in which the discriminator is trained to classify real from fake pairs of maps and pho-

tographs, and the generator is trained to predict realistic photographs. A popular architecture is

Pix2Pix [11], in which a neural network receives two inputs, a random sample from the Normal

distribution, and an input image in one domain (condition variable), and is trained to predict an

output image to a second domain. The network is trained with a supervised cost using real tar-

get images and an unsupervised cost using adversarial training, where a discriminator classifies

predicted images as real or fake, i.e. belonging to the distribution of the target domain or not.

A type of conditional GAN, CycleGAN [59], is used in Chapter 5, when we translate images
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Figure 3.3: Schematic of a Variational Autoencoder (VAE). A stochastic encoder maps an

input sample to a probability distribution with a mean and variance. The decoder, using the re-

parameterisation trick, draws a sample from the predicted distribution to reproduce the input.

between MR and CT. CycleGANs overcome the lack of paired data by using a cycle consis-

tency loss, in which each image is first translated to the other domain and then reconstructed.

Furthermore, and as mentioned in Section 3.2, conditional GANs are also used as shape priors

for unsupervised segmentation in Chapters 6 and 7.

3.3 Variational Autoencoders (VAE)

A different view to approximating a data distribution is using the VAE framework [44, 45].

This consists of two networks, a decoder or generator, and an encoder or inference model.

The decoder maps samples from a prior latent distribution, z ∼ p(z), to samples of the data

distribution, x ∼ p(x|z), whereas the inference model maps samples from the data distribution

to the latent variables, z ∼ p(z|x). A VAE schematic is displayed in Figure 3.3. In summary,

a VAE maintains the auto-encoding principle, i.e. that of reconstructing the input, with the

difference that it assigns a probability distribution on the latent space, typically a multivariate

Gaussian, to every input sample.

VAEs are probabilistic models, and also latent variable models assuming that data samples x

are generated by sampling a likelihood x ∼ p(x|z) from unknown latent factors z ∼ p(z).

The aim is to evaluate or infer the posterior distribution of the latent variables given the ob-

served data p(z|x). Using the Bayes rule, this posterior is p(z|x) = p(x|z)p(z)
p(x) , where p(x) is

obtained by marginalising the latent variables, p(x) =
∫
p(x|z)p(z)dz. However, calculating

an analytic solution for the posterior or the integral of the marginal distribution is intractable,

for example because of high-dimensional data or because of complex forms of distributions.

In such cases, variational methods are employed to approximate the posterior p(z|x) with a
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parametric distribution q(z|x). In the VAE model, the choice of q(z|x) is a multivariate Gaus-

sian, the parameters of which (mean and variance) are embedded in the estimation of the latent

variable z by the stochastic encoder. This distribution represents the range of plausible z values

that correspond to a sample x.

Training the VAE is performed with maximum likelihood estimation by maximising the marginal

log-likelihood log p(x), which is defined as follows:

log p(x) = E
q(z|x)

[log
p(x, z)

p(z|x)
] = E

q(z|x)
[log

p(x, z)

q(z|x)

q(x, z)

p(z|x)
]

= E
q(z|x)

[log p(x, z)− log q(z|x)] + E
q(z|x)

[log
q(z|x)

p(z|x)
]

= LELBO +KL(q(z|x)‖p(z|x)).

(3.2)

According to equation 3.2, the marginal log-likelhood is equal to the sum of the Evidence

Lower Bound (ELBO), LELBO = Eq(z|x)[log p(x, z) − log q(z|x)), and the Kullback Leibler

(KL) divergence, KL(q(z|x)‖p(z|x)). Since the KL divergence is non-negative, maximising

the ELBO with respect to q(z|x) concurrently minimises the KL and pushes the approximate

probability q(z|x) to match the true p(z|x)). In summary, the VAE loss function is written as:

LV AE = E
q(z|x)

[log p(x, z)− log q(z|x))]

= E
q(z|x)

[log p(x|z) + log p(z)− log q(z|x))]

= E
q(z|x)

[log p(x|z)−KL(log q(z|x)‖ log p(z))].

(3.3)

In practice, the likelihood p(x|z) is modelled with a decoder neural network and corresponds

to the reconstruction cost of a datapoint x, and the approximated q(z|x) is modelled with an

encoder network f(x). However, training is problematic since it requires back-propagating

the loss across random samples z ∼ q(z|x), where q(z|x) depends on the parameters of the

encoder. To solve this, the random variable z is reparameterised as a deterministic variable

z = f(ε, x), and a random variable ε ∼ p(ε) is introduced that is independent of the model

parameters. This reparameterisation trick allows the VAE model to be differentiable. In the

case that z ∼ N (µ, σ2I) the encoder network outputs the parameters µ and σ for each input

sample x, and the reparameterisation of z is equal to z = µ+ σ � ε, where ε ∼ N (0, I).

In summary, VAE models embed the observed data in a smooth manifold of latent variables.
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In order to minimise the KL-divergence (with a multivariate Gaussian), posterior distributions

should have similar means and variances, which results in a high overlap between the distri-

butions of each data point and on average decreases the discriminability of distributions. This

may also increase reconstruction error, since a sample drawn from a distribution given one in-

put may have higher probability to be drawn from the distribution of a different input. In such

ambiguous cases the decoder will predict an output that is an average of data points. Therefore,

in order to decrease reconstruction error, VAE training converges to encoding similar data in-

puts in close points in the latent space (smooth manifold). Furthermore at inference time, VAE

models can be used as generative models by sampling from a Gaussian and decoding this sam-

ple. Unlike GANs, and since the data density is estimated, the decoded samples cover the data

distribution and do not suffer from the problem of mode collapse. We take advantage of the

smooth VAE manifolds in Chapters 6 and 7 to embed intensity distributions of medical images

from single or multiple modalities respectively.

3.4 Representation Learning

Generative models, such as GANs and VAEs, learn a mapping from a structured latent repre-

sentation, i.e. one that approximates a Gaussian distribution, to an unknown data distribution,

i.e. that of images. Additionally, VAEs, and also Adversarial Autoencoders [60], learn a reverse

mapping from the data to the representation. Representation learning is a long running goal of

machine learning [17], with good representations being typically those that capture explanatory

(discriminative) factors of the data, and are useful for the task(s) considered.

In supervised learning, deep networks generate such representations at every layer to maximise

the posterior p(y|x), i.e. the probability of task y given input x. Typically no restrictions on

the features are applied, and they are thus useful for a particular task, but cannot generalise

to other tasks. Often to accommodate this, and also to improve generalisability to unseen

data, either models are trained for multiple related tasks, or explicit restrictions are applied,

as in the VAE case, where features are samples from a known distribution (see Section 3.3).

The latter assumes that there is one “bottleneck” representation layer, where all data can be

mapped onto. This is useful to encourage richer representations through unsupervised learning,

which not only describe the data, but are also useful for the task at hand, and thus enable semi-

supervised learning. Most commonly, unsupervised learning of representations is achieved with

autoencoders. Autoencoders also describe the methods described in this thesis.

29



Technical Background

3.4.1 Autoencoders

Autoencoders are deep neural networks that consist of two components, an encoder and a de-

coder, and are trained to reconstruct the input through an intermediate representation z. The

encoder function f learns a mapping from the input to the latent features z = f(x), and the

decoding function learns a reverse mapping from the features back to the input space y = g(z).

The aim is to learn discriminative features, and therefore autoencoders should not learn to copy

information, but rather learn mappings to and from a low dimensional manifold, such that nui-

sance factors are ignored. This is achieved by constraining the latent representation z to be of

lower dimensionality compared to the input. Although, z is most commonly represented in a

vectorised form, here we are interested in spatial representations. This renders autoencoders

as fully convolutional, and as we will see in the following chapters, makes them useful for

spatially equivariant tasks, such as synthesis and segmentation.

We have so far described an autoencoder’s latent features as a compressed representation of the

input, but simply compressing the input does not make a representation useful for learning tasks.

One could simply consider a sufficiently complex encoder and decoder that could reconstruct

the input through highly compressed features, but would not be useful in complementary tasks.

An intriguing question that arises is: what properties should good latent representations have?

3.4.2 Defining Good Representations

Specific properties that characterise good representations are discussed in [17]. These include

smoothness, which helps generalisation to test data that are encoded near points of the training

data, and capturing multiple explanatory factors, which is a property of disentangled representa-

tions. Furthermore, a latent representation typically consists of the deepest layers of a network,

produced by a series of hierarchical layers, and encodes more abstract features that are invari-

ant to noise, and can be shared across tasks. As previously mentioned, representations enable

semi-supervised learning, since unsupervised training estimates the joint distribution p(x, y)

of data x and task y, and thus the discovered features are also useful for the posterior p(y|x).

Moreover, representation learning is based on the manifold theory, in which the data probability

mass lies in a low dimensional space, e.g. in autoencoders.

Learning good representations for medical imaging tasks poses several challenges, since often

there is limited annotated data. Also the representation must lend itself to a range of useful
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tasks, and work across data from various image modalities. These challenges can be approached

by multimodal and disentangled representations.

3.4.3 Representations for Multiple Modalities

Multimodal representations embed common and unique information from complementary data

sources. In order to encourage learning of cross-modal correlations, objectives such as cross-

modal synthesis of data in one modality to the other, can be introduced [23]. Many methods

further impose restrictions for making the multimodal representations similar [24, 61]. Such

representations allow the joint consideration of multimodal data by fusing at different levels,

classifying these techniques in early, middle and late fusion ones [62]. In multimodal imag-

ing data, where convolutional neural networks are employed, the feature fusion requires their

spatial alignment, something that is not always guaranteed. Since image registration can be

challenging due to differences in intensity resolutions [63], alignment can be performed in the

feature representation space.

However, alignment and fusion are applicable only when multimodal data are paired. The

setting that consists of data of an annotated source and an unannotated target modality (or

domain), where the multimodal data are not necessarily paired, is termed domain adaptation. A

similar problem is domain generalisation, in which the data from the target domain are unseen

during training. In both cases, the aim is to perform the same task on data of all domains, and

is typically approached by learning domain invariant representations [64, 65].

In this thesis we extensively study multimodal representation challenges, focusing on fusion in

Chapter 4, and on cross-modal synthesis in Chapter 5. We also approach multimodal registra-

tion challenges in Chapter 7 through disentangled representations, which offer the potential to

separate the modality-specific characteristics.

3.4.4 Representations with Disentangled Factors

Disentangled representations capture information about input data in many (independent) fac-

tors, so that a change in the direction of one factor influences some meaningful aspect of the

data [17] (hence also encountered as factorised representations). This ability promotes inter-

pretability, for instance when changing an object’s position and shape [44, 45]. Furthermore,

learning is unsupervised and representations can be simultaneously useful in many tasks [17].
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Figure 3.4: A disentangled representation learned by β-VAE on synthetic shapes. Each column

shows synthetic images when interpolating a dimension zi between -3 and 3. The effect of each

dimension on the shape is indicated at the bottom. The final column corresponds to an unused

z−dimension with all its values producing the same image. Image taken from [12].

Learning disentangled representations is made possible by the inherent properties of the VAE.

As discussed in Section 3.3, the posterior q(z|x) converges to a Gaussian prior p(z) ∼ N (0, I)

with a diagonal covariance matrix, which results in independent, i.e. factorised dimensions.

According to [12], high factorisation is achieved when the factors of variation are aligned with

the axes of the Gaussian posterior. To this end, it is important to increase the weight β of the

KL-divergence in Equation 3.3, which however, constrains the capacity of the representation

and, as described in Section 3.3, affects reconstruction quality. In order to improve reconstruc-

tion under a compressed representation, the β−VAE aligns the (conditionally independent)

generative factors of the data, i.e. those with high contributions to reconstruction quality, to

the dimensions of the Gaussian posterior. This preserves the smoothness of the representation

and also achieves a disentangled representation. This trade-off between disentanglement and

reconstruction is discussed in [12]. An example from [12] is shown in Figure 3.4.

Recent methods extend the notion of disentanglement in spatial and vectorised latent spaces.

Although, strict independent constraints are not enforced, the visual quality is significantly

improved for example when performing image translation [25], and the spatial representation

is further useful for spatially equivariant tasks, as we will see in Chapters 6 and 7.
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3.5 Literature Review

This section presents published literature that is linked to the methods proposed in this thesis.

Methods for multimodal learning are discussed in Section 3.5.1, and a review of disentangled

representations is presented in Section 3.5.2. Finally, Section 3.5.3 presents methods for cardiac

segmentation with full and semi-supervision, as well as with multimodal learning.

3.5.1 Multimodal Learning

Multimodal machine learning is an active research area, as evidenced by recent methods on

segmentation [66,67] or classification [68] tasks. This is natural as multimodal images concern

the same subject, but provide different information to be exploited. In this thesis we investigate

multimodal image analysis in Chapters 4, 5 and 7 for synthesis and segmentation.

A recent taxonomy on multimodal learning [22] has identified the following challenges: rep-

resentation, translation, alignment, fusion, and co-learning. Representation refers to learning

informative features; translation refers to having the ability to transform data from one modal-

ity to the other; alignment refers to the process of learning relations between objects of each

modality; fusion refers to the ability of joining unique information present only in one of the

modalities; finally co-learning refers to the challenge of training a model such that knowledge

from one modality helps the other. While in computer vision modalities might refer to any

heterogeneous source of information, such as text and images, here, as common in the medical

domain, we restrict to different image acquisitions, i.e. MR and CT.

In the following we focus on a common multimodal application, that of image synthesis. A

background on unimodal synthesis with methods using a single modality is firstly discussed

in Section 3.5.1.1. Then we present literature on multimodal synthesis using two or more

modalities in Section 3.5.1.2. Section 3.5.1.3 discusses challenges of learning multimodal rep-

resentations, and finally Section 3.5.1.4 describes a related problem in domain adaptation.

3.5.1.1 Unimodal Synthesis

MR synthesis has often been treated as a patch-based regression for example to produce pseudo-

healthy data [69] and to synthesise CT from MRI [70]. In this setting mappings are learnt, using

various techniques, which take a patch of an image or volume in one modality, and predict the
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intensity of the central pixel of the corresponding patch in a target modality. The performance

of these approaches has been shown to be aided by the addition of hand-crafted features that

capture elements of the global structure of the image [71].

Another common approach to synthesis is the use of an atlas, such as in [72, 73]. Here, rather

than learning a mapping, an atlas of image pairs is leveraged, and reconstructing a new volume

from a source modality is achieved by matching the volume with the entries in the atlas of the

same modality, and constructing the synthetic images from the corresponding atlas images in

the target modality.

A sparse dictionary representation of the source and target modality has been proposed in [74],

which synthesises new images with patch matching. In [75], joint dictionary learning is used

to learn a cross-modality dictionary of the pair of source and target modalities that minimises

the statistical distribution between them via optimisation. Image synthesis has also been treated

directly as an optimisation problem in an unsupervised setting [76], where the target modality

candidates are generated by a search method and then combined to obtain a synthetic image.

More recently, neural networks have been applied to MR synthesis and segmentation, and like

many of the sparse coding based methods, often they approach the problem as a patch based

regression [77]. The Location Sensitive Deep Network (LSDN) [78] is a patch-based neural

network that, given as input a patch and its spatial position within the volume, can learn a

position-dependent intensity map between two modalities. Motivated by the observation that

conditioning on the location in the volume greatly reduces the complexity of the intensity trans-

forms needing to be learnt, LSDN has been shown to produce state-of-the-art MR synthesis

results. Another neural network approach is [79], in which a deep encoder-decoder network

synthesises images of a target modality. Neural networks have also been employed to synthe-

sise pseudo-healthy images. A GAN-based approach is proposed in [80], whereas in [81], a

VAE synthesised pseudo-healthy images for the purpose of image registration.

In Chapter 4, we also adopt an encoder-decoder network for MR synthesis, but after this work,

new methods employed adversarial networks to improve the image quality. For example GANs

and perceptual losses are proposed for brain synthesis [82], and in MedGAN along with latent

feature losses that regularise the style and content of the output [83]. Moreover, a 3D patch-

based convolutional network for MR to CT synthesis [84] regularises synthesis with image

gradients, and iteratively refines results. Image gradients have also been added using Sobel
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filters in EA-GAN [85]. Wasserstein and perceptual losses have been proposed for CT image

denoising [86]. Synthesis with WassersteinGAN has also been proposed for brain ageing [87].

The above methods assume paired input and output data, and thus cross-modal mappings are

directly learned with supervision losses. Concurrently to our cardiac synthesis method of Chap-

ter 5, CycleGANs have been used for unpaired synthesis of brain MR and CT [88], and for

pelvic synthesis in combination with a gradient loss [89]. As we will see in Chapter 5, Cycle-

GANs do not guarantee anatomy preservation during the translation process, and are prone to

introducing geometric transformations. Therefore, they have been regularised with segmenta-

tion losses, as in [90]. A comprehensive review can be found in [91].

Cardiac Applications

There has been little previous work on learning-based methods for cardiac synthesis. Such

methods have been explored for super-resolution, i.e. spatial up-sampling [92], and can be

learned by creating a low resolution version of a dataset, and then learning to synthesise the

original resolution, again admitting a supervised approach. Recently, cardiac super-resolution

has been enhanced by incorporating a shape prior in the learning process [93]. Furthermore,

super-resolution has been coupled with cross-modal synthesis using dictionary learning: with

the addition of unpaired data in the learning process, a weakly supervised learning approach

has been proposed [94].

A conditional GAN has been used for synthesising systolic from diastolic frames [95] to eval-

uate if different pathological conditions affect cardiac motion. Segmentation masks can be

used as part of synthesis, as for example in our method of Chapter 5 to produce synthetic

labelled images, or to regularise cardiac synthesis of MR to CT [90] or of cine-MR to LGE

modalities [96]. Finally, recent work used disentangled representation frameworks to translate

cine-MR to LGE for data augmentation [97], or for temporal synthesis of the cardiac cycle to

regularise segmentation [98].

3.5.1.2 Multimodal Synthesis

Multimodal synthesis attempts to improve synthetic results by combining images, that are often

spatially aligned. The first deep learning approach used a multi-input, multi-output encoder-

decoder, and will be described in Chapter 4. Related methods include the single input, multi-
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output method, Extended Modality Propagation [99]. Unlike related methods, where the input

is expected to be an image in some source modality, in [99] the input is a label map, which

delineates the areas of interest (e.g., white and grey matter), and the algorithm synthesises

multimodal images accordingly. Using a dictionary of aligned multimodal images coupled

with their respective label maps, extended modality propagation finds the most probable patch

to apply at each location of the output image. However, it uses a single input and solves a

somewhat different problem. Synthesis with multiple inputs has further been approached with

random forest regression in image patches of multiple scales [71]. Since our work of Chapter 4,

multimodal synthesis has been extended with many published methods, as described below.

GANs in combination with an auto-context mechanism is used to transform a fused image

in the modality of interest [100]. This fused image is produced by a locally adaptive fusion,

which uses a 3D convolutional kernel to weigh each encoded input modality. Concatenated

multimodal images for multi-input, multi-output synthesis were used in MM-GAN [101] with

channels of zeros indicating the missing/target modality. A similar method that uses cycle con-

sistency losses proposed CollaGAN when there are no paired data of the target modality [102].

Concatenated inputs with cycle consistency were also proposed in DiamondGAN [103] but

for multi-input, single-output synthesis, and using a binary vector of ones and zeros indicating

which input modalities are available. Training single and multiple streams in MustGAN, in

combination with a joint network for information fusion of features at multiple layers showed

superior MR synthesis performance [104].

3.5.1.3 Multimodal Representations

Perhaps one of the reasons that multimodal synthesis has been difficult to accomplish is the

need to map data into a common shared representation, such that it maintains the properties

of Section 3.4. In Chapters 4 and 7 we investigate spatial representations that are suitable for

multimodal learning, while focusing on robustness to missing data, as well as in data fusion.

Previous work on multimodal data fusion and shared representation in neural networks [105]

has shown the plausibility of shared latent representations for generative tasks. There has also

been relevant work on common representation learning, in which different data types are em-

bedded into a common representation space. Key early work on multimodal learning that was

robust to missing data is the multimodal autoencoder [23], in which a bimodal deep autoencoder

was learnt for audio and video speech data. This model could reconstruct both modalities from
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either the audio or the video, and was trained by minimising this reconstruction error. However,

as noted in [61], there is no direct learning signal encouraging a shared common representation.

In an attempt to address these shortcomings Correlational Neural Networks [61] both directly

encourage correlation in the common representation space, and minimise the cross reconstruc-

tion error. A similar approach was also proposed in [106], where two autoencoders with tied

weights are trained to learn the mapping between modalities. Obtaining similar latent features

has been proposed with minimising a cosine similarity loss [107], or the KL-divergence when

using the VAE model [108]. Correlational Neural Networks have been extended for sequen-

tial data with the use of Recurrent Networks [109]. However, their current formulation restricts

them to the bi-modal setting, due to the use of explicit correlation calculations. In addition a sta-

tistical regularisation approach is proposed in [24], in which cross-modal scene representations

are learnt, and the regularisation is done by encouraging the latent representation activations

for all modalities to follow the same distribution. Similarly to the above, we encourage simi-

lar multimodal representations in Chapter 4 by minimising their variance, and in Chapter 7 by

specific spatial constraints that make the latent features binary.

More recently, multimodal representations that are similar, are encouraged with adversarial

training. This offers flexibility in that no explicit distance metric is required for the respective

correlations. Cross-modal GANs [110] utilise two discriminators for this purpose. The first

discriminates between features coming from either modality against the encoders that aim to

generate common features, in order to learn a shared representation between images and text.

The second discriminates between features from a real or synthetic sample to improve synthetic

quality. The shared space is also encouraged with weight sharing of the encoders.

3.5.1.4 Representations for Domain Adaptation

Related to multimodal learning is domain adaptation, where the aim is to learn a representation

through unpaired unimodal inputs. Usually the different domains consist of images in different

appearances, but with similar structures, and annotations are provided for one domain. Typi-

cally multi-domain images are mapped to a common representation, that is used for particular

task. An example is Domain Adversarial Neural Networks [64], which learn domain invari-

ant features with adversarial training, and use these features as an input to a task classifier. A

discriminator is trained to classify features coming from either domain, and a gradient reversal

layer is used to achieve the domain invariance. Different domain representations with com-
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mon and unique information are proposed in Domain Separation Networks [111]. Separating

the unique information is achieved by an orthogonality constraint between the representation

matrices of each domain, whereas the common information are encoded in domain invariant

features: these are learned with adversarial training as in [112], and also by minimising the

Maximum Mean Discrepancy [113] between the features.

Furthermore, autoencoders are also common in domain adaptation. In [114] a dual-input au-

toencoder is applied on images and cartoon sketches for image translation to produce cartoon

sketches. Learning involves a similarity loss on the bottleneck, specifically the Mean Squared

Error (MSE) between an encoded real and synthetic image. Synthetic quality is improved in

XGAN [115] that uses specialised encoders and decoders for each domain, and applies two

losses on the representation: an adversarial loss for domain invariance as in [112], and a se-

mantic consistency loss as in [114]. A similar methodology for unsupervised image translation

with a shared representation uses multiple VAEs [116], with the domain invariance achieved

with weight sharing of layers near the VAE bottleneck, as well as with the Gaussian constraint.

Domain or modality invariance is another aim of this thesis, particularly investigated in Chap-

ters 4 and 7. Furthermore, multimodal representations contain relevant information for a par-

ticular task, that is accumulated from data of various modalities. However, which information

is relevant is strongly task dependent. A different approach would be to decompose the input

into meaningful components, thus creating a disentangled representation, and will be shown in

Chapter 6. This maintains all information about the data, separated in distinct factors.

3.5.2 Disentangled Representations

Interest in learning independent factors of variation of data distributions is growing. To date,

methods have focused on representing factors of variation as independent latent variables, us-

ing Autoencoders [117] or VAEs [21] to decompose classification related factors from remain-

ing image reconstruction factors. VAE [44, 45] were used for unsupervised learning of fac-

torised representations, where the factors of variation are discovered throughout the learning

process [12, 118]. For example β-VAE [12] adds a hyperparameter β to the KL-divergence

constraint, whilst Factor-VAE [118] boosts disentanglement by encouraging independence be-

tween the marginal distributions. Furthermore, InfoGAN was proposed in [119], in which

mutual information between a latent variable and the generated images is maximised. More

recently, feature decompositions were proposed for video data to separate foreground from
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background [120], and motion from content [121]. SD-GAN [122] generates images with a

common identity and varying style. Combinations of VAE and GANs have also been proposed,

for example by [123] and [124]. Both learn two continuous factors: one dataset specific factor,

in their case class labels, and one factor for the remaining information. To promote indepen-

dence of the factors and prevent a degenerate condition where the decoder uses only one of the

two factors, mixing techniques have also been proposed [125]. These ideas also begin to see

use in medical image analysis: 3D VAEs are applied to learn a latent space of cardiac segmen-

tations that would be useful for disease diagnosis [126]. Learning factorised features is also

used to distinguish between (learned) features specific to a modality and those shared across

modalities [127]. However, their aim is combining information from multimodal images and

not learning semantically meaningful representations.

The above methods learn factorised representations in the form of latent vectors. However,

spatial information could be directly represented in a convolutional map, and this would benefit

spatially equivariant tasks, such as segmentation. Typically this entails a disentanglement of

style and content, where content is the spatial factor and style the non-spatial factor. This is

also central in the disentanglement method of Chapter 6 for semi-supervised segmentation.

3.5.2.1 Style and Content Disentanglement

Disentangling style from content for style transfer is gaining popularity in computer vision,

with many examples such as the seminal work of [128]. Classic style transfer methods do not

explicitly model the style of the output image and therefore suffer from style ambiguity, where

many outputs correspond to the same style. In order to address this “many to one” problem, a

number of models have recently appeared that include an additional latent variable capturing

image style. For example, colouring a sketch may result in different images (depending on the

colours chosen) thus, in addition to the sketch itself, a vector parameterising the colour choices

is also given as input [129].

Many disentanglement models use the vector and spatial representations for the style and con-

tent respectively [25, 130, 131]. Augmented CycleGANs [130] extend the CycleGAN frame-

work for translating between domains with loss of information, for instance between images

and semantic maps. An additional variable captures this additional information and transforms

the one-to-many mapping to many-to-many. Multimodal unsupervised image to image trans-

lation [25] extends [116] that learned a multimodal embedding with domain specific encoders
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and decoders. In [25] the representation is separated in a convolutional content and a vector

style, such that samples from the style distribution in combination with a particular content can

be decoded to the domain of interest. A similar decomposition and training regime is also used

in [131] for image to image translation. Furthermore, [132] expressed content as a shape esti-

mation (using an edge extractor and a pose estimator) and combined it with style obtained from

a VAE. Their extension [26] also learns an encoder from images to a part-based content and a

style vector using careful design choices. Disentangled representations have also been used for

image deblurring [133], where the two factors are the content and blur features. Deblurring is

achieved by decoding the content without the blur features.

Semantic representations have recently been pursued in computer vision in the form of feature

masks [134] or by learning geometry with landmarks [135]. In [136] images are separated

in landmarks and a style vector, although their re-entanglement first transforms the landmarks

back to vector space, thus losing the spatial semantics.

We differentiate from the above techniques by proposing in Chapter 6 spatial representations

modelled as categorical feature maps, in order to achieve both semantic and quantifiable prop-

erties, such that they can be used by multiple relevant tasks.

3.5.2.2 Disentangled Representations in Medical Image Analysis

In medical imaging, the disentanglement of content and style most often corresponds to the

disentanglement of anatomical and imaging information. For example, such disentangled rep-

resentations have found application in registration [137], where the registration field is calcu-

lated in the modality invariant anatomy instead of the image space. Furthermore in multi-task

classification of ultrasound images by disentangling anatomical from shadow artefacts with

adversarial learning [138] or in disentangling domain from category features using mutual in-

formation [139]. Disentanglement of liver lesion type regarding texture and contrast, and lesion

shape can be used to synthesise images of new lesions for data augmentation purposes [140].

Moreover, disentanglement of metal artefacts in CT from the anatomy can be used for synthe-

sising artefact-free images [141]. Different types of disentanglement, for example that of lung

nodule from the background has been proposed for lung nodule synthesis [142].

Disentangled representations enable jointly processing multiple modalities, for example in im-

age translation tasks, such as retina synthesis [143]. The modality invariant content space is also
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suitable for segmentation tasks with domain adaptation. Multiple modalities have been used for

liver segmentation with domain adaptation [144, 145], albeit without information fusion, and

also for brain tumour segmentation [146], using though registered images. Finally, metal arte-

fact disentanglement in CT modalities is jointly trained with segmentation outputs [147].

As discussed here, a common application of disentangled representations is on segmentation. In

fact, disentanglement can further be applied to semi-supervised learning [21]. This is important

for medical image analysis tasks, which often suffer from a lack of annotated data. Chapters 6

and 7 propose methods to deal with this problem by using unannotated data for semi-supervised

cardiac segmentation, and by utilising information from a secondary modality, respectively.

Below we present related literature on cardiac, as well as on semi-supervised segmentation.

3.5.3 Medical Segmentation

Cardiovascular diseases are ranked first worldwide in mortality causes, with 17.9 million re-

ported cases per year according to World Health Organisation [148]. Accurate segmentation of

the cardiac substructures, as well as temporal analysis of the heart has a great diagnostic value,

because of the functional indices that can be calculated. Examples include the ejection fraction

for diagnosing heart failure, which is calculated as the LV (or RV) volume difference between

the end diastole and systole divided by the diastolic volume [149], and the LV wall thickness

for diagnosing hypertrophic cardiomyopathy [150].

3.5.3.1 Supervised Cardiac Segmentation

Automatic cardiac segmentation has been studied extensively, especially in cine-MR, with par-

ticular focus on accurately delineating the myocardium and ventricles, as ventricular volume

is useful for patient assessment and diagnosis. Previously, competitive methods were based on

atlases [4], deformable models, level sets and machine learning methods [20]. Then, neural

networks were employed for region of interest cropping [151] or contour initialisation [152],

with level sets performing segmentation.

Current state-of-the-art segmentation results are obtained using deep convolutional neural net-

works, trained on labelled data, that directly learn segmentation masks from images [153, 154]

or treat segmentation as a regression task in polar co-ordinates [155]. Correlations between

adjacent slices of the cardiac volume have been modelled with recurrent neural networks [156].
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Cascaded networks [157] are used to perform 2D segmentation by transforming the data into a

canonical orientation and also by combining information from different views. Many methods

have been proposed, see for example the participants of workshop challenges [5]. In specific

cases, results can match human evaluation as in the study of [158].

Prior information on the cardiac shape has been used to improve segmentation with explicit

conditioning [159] or by mapping predictions to a manifold of segmentation masks [93]. More-

over, temporal information related to the cardiac motion has been used to segment all cardiac

phases [160, 161]. Also, segmentation has been regularised with multi-view images [162].

Although, most methods are applied to 2D slices, extensions to 3D also exist. A fully convolu-

tional nework with supervision is proposed in [163], whereas [164] explore spatial correlations

between adjacent slices to consistently segment 3D volumes. For a recent review see [165].

A common problem in medical image segmentation methods is the lack of big annotated

datasets. Manual segmentations are a laborious task, particularly as inter-rater variation means

multiple labels are required to reach a consensus, and images labelled by multiple experts

are very limited. This can be challenging when training deep learning models. Thus typi-

cally augmentation techniques with spatial, intensity, and elastic deformations or with syn-

thetic data (see Chapter 5) are employed. Using image translation or domain adaptation as

augmentation strategy to reconcile lack of annotated data has been proposed with cycle con-

sistency [90, 96, 166, 167], and disentanglement [97] losses. In domain adaptation, multimodal

images are related with different augmentations [168], histogram matching [169] or adversarial

losses [170]. A different line of approach takes advantage of the (usually) large number of

unannotated images with semi-supervised learning.

3.5.3.2 Semi-supervised Segmentation

Semi-supervised segmentation has been proposed for cardiac image analysis using an iterative

approach, where a convolutional network is alternately trained on labelled and post-processed

unlabelled sets [171]. GANs were used in [172], for a gland segmentation task, involving su-

pervised and unsupervised adversarial costs. Another approach [173] aims to minimise the

distance between embeddings of labelled and unlabelled examples by comparing them in fea-

ture space. More recent medical semi-supervised image segmentation approaches include [174]

and [175]. In [174] they address a multi-instance segmentation task in which they have bound-
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ing boxes for all instances, but pixel-level segmentation masks for only some instances. [175]

approach semi-supervised segmentation with adversarial learning and a confidence network.

More recently, an additional classification task of the area of the left ventricle has been used as

a regulariser for the segmentation task, using both labelled and unlabelled data [176]. Regu-

larisation by predicting anatomical positions, that are already available, has also been shown to

improve segmentation when training with a small number of subjects [177].

Semi-supervised learning with GANs was also proposed for semantic segmentation. The dis-

criminator classifies between real and synthetic segmentation masks produced by the generator

in [178], while in [179] the generator is used to increase the dataset size and the discriminator

performs segmentation. Semi-supervised segmentation through data augmentation can also be

achieved by learning deformation and intensity transformations of the labelled data by using

the unlabelled images [180]. For a recent review see [181].

Although many categories of semi-supervised learning have been proposed, for example using

iterative and adversarial losses, or by encouraging shared features, our methods of Chapter 6

take advantage of reconstruction costs for utilising unannotated images. The lack of annotations

can be alternatively addressed if the same subject is imaged in another modality. Multimodal

learning does not only help with lack of annotated data, but also when segmenting one modality

is more challenging, for instance due to reduced tissue contrast. Here we differentiate in two

categories of multimodal learning with registered and unregistered images.

3.5.3.3 Multimodal Segmentation with Registered Images

Early work on multimodal deep learning concatenated co-registered multimodal images in dif-

ferent input channels, in order to improve MR brain segmentation [18]. Common feature rep-

resentations were achieved with multiple encoders that were proposed for cross-modal classi-

fication [182]. Furthermore, generalising to new unseen modalities has been studied in [127]

using feature factorisation into modality descriptive and modality conditioned features.

Another aspect of multimodal learning is information fusion, used to combine complementary

information. Most commonly, fusion is performed on the latent features [18], although, fusion

at multiple levels can be achieved with densely connected layers [183, 184] to exploit multi-

scale correlations. The fusion operator can also be learned with a fully connected layer [185] to

merge multimodal temporal information describing disease progression. Furthermore, cross-
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modal convolutions are used as a way to weigh each modality’s contribution [186]. Finally,

attention modules and residual learning focus on specific regions for brain MRI segmenta-

tion [187]. Chapters 4, and 7 adopt the max-fusion operator for combining multimodal in-

formation, which has the advantage of selecting the most informative features, and does not

depend on specific number of inputs.

3.5.3.4 Multimodal Segmentation with Unregistered Images

Image misalignments are common in multimodal data. In the brain, registration can be reli-

able but in the heart and other moving organs performance cannot be guaranteed. Correcting

misalignments at feature space is possible with Spatial Transformer Networks (STN) [188],

which can be incorporated as layers in the training process, see Chapters 4 and 7. In summary,

STNs make registration a differentiable operation, such that it can be part of a neural network.

A STN consists of three components, a localisation network, a grid generator and a sampler.

The localisation network, given a source and target feature map, predicts the parameters of a

transformation, for instance an affine transformation matrix. The grid generator applies the

learned (differentiable) transformation on a set of points arranged in a regular grid. Finally, the

transformed feature map is the result of a differentiable sampler that applies a sampling kernel,

e.g. bilinear interpolation, on the transformed grid and target feature map.

An alternative to feature alignment is with encoder-decoder setups that can learn shared features

by co-learning with multimodal data. An exploration of different setups [189] showed that

separate encoders and decoders sharing the last and first layer achieve the highest performance.

In cardiac image analysis approaches are limited. Multiple inputs can be combined by adapting

segmentation masks with contour models [190, 191]. Alternatively, reducing the field of view

to the patch level and ensembling using results from several atlases can alleviate the effect of

committed errors [4]. A recent work [192] proposes simultaneous segmentation and registration

of multimodal CMR by modelling the joint distribution with Multivariate Mixture Models.

Multimodal images can further be used as different samples of the same data distribution to

form an expanded dataset [193], or be used for fine tuning of a pre-trained network [194].

Masks of the same subject from a labelled modality can be “proxy” for an unlabelled modality

with a carefully balanced segmentation loss [195]. Finally, multimodal registration, although

susceptible to errors, can create “noisy” labels [196], or concatenated multimodal pairs [197].
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Our approach in Chapter 7 combines disentangled representations with STN to correct mis-

aligned multimodal features, and perform multimodal fusion on aligned features.

3.6 Metrics

The methods of the subsequent chapters are evaluated by comparing with state-of-the-art bench-

marks. Given 2D images x, x̂ ∈ X and segmentation masks m, m̂ ∈ M , where x and m are

real and x̂ and m̂ are predictions from some model, and X ⊂ IRH×W , M := {0, 1}H×W×L

with H , W being the image height and width respectively, we consider the following metrics.

Mean Squared Error (MSE). MSE is the mean squared difference and is defined as:

MSE(x̂, x) =
1

H ∗W
∑
h∈H

∑
w∈W

[x̂(h,w)− x(h,w)]2 . (3.4)

Mean Absolute Error (MAE). MAE is mean absolute difference and defined as:

MAE(x̂, x) =
1

H ∗W
∑
h∈H

∑
w∈W

|x̂(h,w)− x(h,w)| . (3.5)

Structural Similarity Index (SSIM). SSIM measures image quality. Given µx and σ2x the

mean and variance of image x, and σx̂x the covariance between x and the prediction x̂, SSIM

is computed as follows:

SSIM(x̂, x) =
(2µx̂µx + c1)(2σx̂x + c2)

(µ2x̂ + µ2x + c1)(σ2x̂ + σ2x + c2)
. (3.6)

Peak Signal to Noise Ratio (PSNR). PSNR also is a measure of image quality and is com-

puted as follows, where MAXx is the maximum pixel value of the image:

PSNR(x̂, x) = 10 log10

(
MAX2

x

MSE(x̂, x)

)
. (3.7)
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Figure 3.5: Graphical representation of different neural network layers. These are categorised

in layers defining a linear operation (convolutional and fully connected layers), non-linear func-

tions (Leaky ReLU, ReLU, sigmoid), normalisation layers (batch and instance normalisation),

and pooling and reshaping layers (max-pooling and nearest neighbour up-sampling). When

applicable, the number of layer parameters are also provided, e.g. 3× 3× 64 conv2D defines

a 2D convolution with 3 × 3 kernels resulting in a 64-channel feature map, and FC50 a fully

connected layer with 50 neurons.

Dice coefficient. Dice is a measure of overlap, and is used to evaluate categorical images, e.g.

segmentation masks. Dice is defined as:

DICE(m̂,m) = 2
|m̂ ∩m|
|m̂|+ |m|

. (3.8)

3.7 Model architecture graphs

All proposed methods are based on neural networks, which are defined as a series of linear and

non-linear computational blocks. The network architectures can therefore be described graphi-

cally using a glossary of components that are defined in Figure 3.5. These components are used

in the figures of the following chapters to depict the architectures of the proposed methods, and

can be grouped in categories depending on the performed operation. These categories are linear

layers, that include 2D convolution and fully connected layers, non-linear activation functions,

such as the Rectified Linear Unit (ReLU), Leaky ReLU and sigmoid functions, normalisation

layers at batch or instance level, and finally downsampling and upsampling operations that

include max pooling and 2D upsampling with nearest neighbour layers.

3.8 Overview

This chapter has discussed background material on technical deep learning preliminaries. We

have presented literature on multimodal and disentangled representation learning, described
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challenges, and also methods from the medical and computer vision communities. Finally, we

have focused on cardiac segmentation, a task challenged by the lack of annotations, and have

presented related literature on supervised, semi-supervised, and multimodal segmentation. The

following chapters present our approaches to multimodal and disentangled representation learn-

ing that are evaluated on medical synthesis and segmentation tasks. Note that each following

chapter contains a related work section to highlight the state-of-the-art literature at the time that

the methods and corresponding publications were released.
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Chapter 4
Multimodal Image Synthesis

4.1 Introduction

In this chapter we investigate representations for multimodal learning. We show that images,

specifically multi-channel feature maps produced by neural network encoders, are suitable la-

tent variables to capture and combine spatial information from multiple inputs. As briefly

described in Chapter 1, we approach the multimodal learning challenge through brain im-

age synthesis tasks shown in Figure 4.1, and investigate different modality synthesis setups

of single-input to single-output (Figure 4.1a), multi-input to single-output (Figure 4.1b), and

multi-input to multi-output (Figure 4.1c).

By synthesis here we mean a model that takes a number of images as input, showing the same

organs in different modalities, and outputs synthetic images of that same anatomy in one or

more new modalities. Image synthesis [198] has attracted a lot of attention due to exciting

(a) single-input to single-

output synthesis

(b) multi-input to single-

output synthesis

(c) multi-input to multi-

output synthesis

Figure 4.1: Three examples of brain image synthesis with different number of input and outut

modalities and an intermediate spatial representation.

This chapter is based on:

• Chartsias, A., Joyce, T., Giuffrida, M.V., Tsaftaris, S.A., 2018. Multimodal MR synthesis via modality-
invariant latent representation. IEEE Transactions on Medical Imaging, 37(3), pp. 803-814.

• Joyce, T., Chartsias, A., Tsaftaris, S.A., 2017. Robust multi-modal MR image synthesis. In International
Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 347-355). Springer,
Cham.
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potential applications in medical imaging: synthesised data for example may be used to impute

missing or corrupt images [199], to derive images lacking a particular pathology, which is not

present in the input modality [69, 80], to improve algorithm performance on other medical

imaging tasks, such as image segmentation [199], and others.

The current state-of-the-art methods in image synthesis learn mappings between pairs of image

modalities [71, 76, 78]. However, it is often the case that we have several modalities available

(a typical clinical MR protocol collects a multitude of images), and taking advantage of their

collective information could potentially improve synthetic results. In fact, different modalities

highlight different anatomy (or pathology) in the body and, by using them together, it is possible

to obtain better synthesis results through information sharing. For this reason, state-of-the-art

methods use multi-input architectures [71] and obtain higher quality synthetic images. On

the other hand, if a specific number of input modalities is mandatory for a model, then this

reduces the number of applicable cases to the ones strictly containing this complete set of

image modalities. To overcome this we propose a multi-input (and multi-output) deep neural

network, which does not require all inputs in order to synthesise outputs, but can make use of

additional inputs, when available, to achieve enhanced accuracy.

An additional consideration when dealing with multiple inputs, is the misalignment between the

images of different modalities. The inclusion of a Spatial Transformer Network (STN) [188]

makes our model more robust to such misalignments. Another key problem in MRI synthesis

is that many different MR scanners are used, and the different images produced (of the non

parametric type) have non-identical statistical properties, which typically require several pre-

processing steps to alleviate. Thus, an algorithm trained on images from a particular scanner

may degrade significantly in performance when applied to images from other sources. To

address this, we demonstrate transfer learning by fine-tuning a trained decoder with a very

small number of volumes from a different source.

4.1.1 Approach Overview

The proposed end-to-end model, illustrated in Figure 4.2, takes 2D images as input, making

use of multiple modalities when available, thus allowing users to simply provide any of the

available modalities at test time. It outperforms a neural network, and random forest method

when trained on a single modality, with results improving further when additional modalities

are given as input. The model processes input images in four stages: encoding, alignment,
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Figure 4.2: Model schematic for multimodal synthesis at inference time. X1, . . . , XN repre-

sent images of N input modalities and Y1, . . . , YK represent images of K output modalities.

The f represent encoders, parameterised by their respective θ, which map inputs into latent

representations. These are aligned with a Spatial Transformer Network (STN) and fused with

an operator α. Finally, decoders g, parameterised by ψ, decode the representation into outputs.

representation fusion, and decoding. As each stage is independent, our approach is modular,

i.e. encoders and/or decoders can be added to accommodate additional modalities.

4.1.2 Contributions

In summary, our contributions are:

1. We present a novel modular convolutional deep network for MR image synthesis that

improves the quality of images synthesised from a single input modality compared to

current leading methods. 1

2. We show that information from multiple inputs can be combined to further improve syn-

thesis quality.

3. By using a single shared decoder for each output modality and a custom loss function, we

are able to learn a modality-invariant latent representation to which all input modalities

are mapped. This renders the model robust to missing inputs.

4. We demonstrate that the model can be easily extended to new output modalities through

the addition of decoders which can be trained in isolation.

1Note that comparisons were performed with the state-of-the-art methods at the time of publication.
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5. We propose the use of a spatial transformer module [188] for representation alignment.

This allows being robust to data misalignment between subjects, reducing the need for

co-registered images across modalities.

6. We improve synthesis errors of pathological images by including information from lesion

segmentation masks. In this setting, images with synthetic lesions can be generated on

request, by adding the affected region as defined by a segmentation mask.

7. We show that our method works for both skull-stripped and non skull-stripped brain data,

with no change required, demonstrating that the latent representation is flexible, and not

overly tailored to a specific task.

This chapter is organised as follows. Section 4.2 mentions previous work related to ours. Sec-

tion 4.3 discusses the requirements of a multi-input fusion method. Section 4.4 describes the

model details. Section 4.5 describes experimental setup and datasets used. Finally, results are

presented in Section 4.6, and Section 4.7 concludes the chapter.

4.2 Related Work

Because of its broad applicability, there has been significant work on MR image synthesis.

Previously, an output modality was synthesised from a single input modality, for example by

matching input patches to atlases [73]. One main drawback of these approaches is their in-

ability to robustly exploit multiple input modalities. In addition, patch–based methods can be

prohibitively slow at test time. Further, the overhead of having many unimodal models from

an application standpoint is significant since all these different models have to be trained and

maintained. Certainly, there could be a benefit to learning a single multi-purpose model.

Improvements can be made by incorporating information into the input, in addition to raw pixel

intensities [71, 78]. In [78] the Location Sensitive Deep Network (LSDN) is proposed, which

improves results by conditioning the synthesis on the position in the volume from which the

patch comes. Another approach [71], uses random forests to solve the patch based regression

problem, and incorporates both multi-scale information and context description features in or-

der to improve the final synthesis. However, although both approaches can fuse information

from multiple sources to produce accurate synthetic results, they are not designed to robustly

handle missing input modalities.
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Although for segmentation rather than synthesis, Hetero-Modal Image Segmentation (HeMIS),

a convolutional neural network model, uses a robust fusion method to address the challenge

of missing input data [67]. Similar to our approach, HeMIS learns a multi-input mapping to

a latent representation in a way that is benefited by, but not dependent on, each of the input

modalities. We discuss this approach in more detail in Section 4.4.6, and use their proposed

multi-input fusion method as a benchmark in our experiments.

The model we propose here addresses the challenge of multi-input, multi-output synthesis, and

does so in a robust way: outperforming existing approaches, and, when inputs are missing,

performing as well as a model trained specifically for that fewer input case. Central to our

approach to multimodal data is the embedding of inputs into a latent space.

This has been previously approached for example in Correlational Neural Networks [61], which

encourage correlated latent representations of multimodal data. However, their current formu-

lation restricts them to the bi-modal setting, due to the use of explicit correlation calculations.

Here we are interested in fusing any number of modalities, and we do not use the formulation

of Correlational Neural Network directly. Instead, as our inputs are already similar, in that they

are all images of the same organ, and differ only in intensity patterns, we propose a simple

method of training that enforces the same constraints: minimising reconstruction error and

the distance between the embeddings in the common space, which indirectly maximises the

correlation. Thus, our approach is broadly similar to the statistical regularisation approach in

[24], in which cross-modal scene representations are learnt. However, in [24], the regularisation

is done by encouraging the latent representation activations for all modalities to follow the same

distribution. Whereas here, as the various inputs are sufficiently similar, we directly encourage

the activations to be equal. Our approach to representation learning is detailed in Section 4.4.5.

4.3 Fusion Requirements

Many synthesis approaches learn to synthesise one modality from another. Thus, when N

modalities are being considered, there exist N(N − 1) possible one input one output synthesis

tasks, and a separate model would be required for each one. This approach not only becomes

infeasible as N grows, but also does not benefit from other input sources despite the fact they

may be available. On the other hand, if the accuracy of a model is improved by leveraging

multiple input modalities, but all inputs are required, the applicability is reduced to only those
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Figure 4.3: Architecture of U-Net [13] like encoder(s) f(·|θ). Each input modality i has its

own encoder, parametrised by θi, that maps the input image in modality i to the latent space

Ri. We use C = 16 channels in the latent space.

situations in which all required modalities are available.

The challenge is to build a model which can take as input any subset of the N image modalities

to produce its output. We achieve this goal by approaching the task in three stages. Firstly, all

inputs are projected into a shared latent representation space, then these latent representations

are aligned and fused into a single representation, and finally, mapped to the required output

modality. The fusion step, detailed in Sections 4.4.3 and 4.4.6, can be performed on any number

of latent representations and having all of the input modalities improves results.

4.4 Proposed Approach

The proposed model is a fully convolutional deep network, that can map multiple input to

multiple output modalities. It takes as input 2D volume slices of any subset of modalities, and

synthesises the corresponding 2D slices in all output modalities. The model is trained end-to-

end with gradient descent, and simultaneously learns both encoders and decoders. Through the

use of a multi-component cost function the model is encouraged to learn latent representations

that balance modality-invariance with the retention of modality specific information. During the
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fusion step, the latent representations produced by each of the encoders are combined to form a

single latent representation, which is then decoded to produce the final output. Below, we will

first describe the four sections of our model in order: encoders, alignment, fusion method, and

decoders. We then discuss in depth the importance of learning good representations, and detail

a multi-component cost function, providing the motivations for each component.

4.4.1 Encoding

The model learns one independent encoder for each input modality i, with an architecture

as shown in Figure 4.3. The encoders embed a single-channel input image xi ∈ Xi, where

X ⊂ IRH×W with H , W the image height and width respectively, into a multi-channel latent

space. Specifically, the latent representation ri ∈ Ri ⊂ IRH×W×C is a C channel image of the

same size as the input image. The encoder modules follow a U-Net [13] architecture. The idea

behind the U-Net’s down-sampling followed by up-sampling and skip connection architecture is

to allow the network to exploit information at larger spatial scales than those of the filters, whilst

also not losing useful local information. In addition, skip connections facilitate gradient flow

during training, as discussed in [200]. An encoder shallower than the original U-Net is used,

having only two downsample (and upsample) steps compared to U-Net’s four downsample

(and upsample) steps. This reduces the training and run times for the model. Although the final

quality of synthesis shown herein already outperforms the compared approaches, it may be

possible to decrease the error further through the use of deeper encoders. We also replaced the

ReLU in the standard U-Net with Leaky ReLU, as we found that the network is easier to train

and it improves the quality of the latent representations.2 Throughout the network, a stride of 1

is used, and images are padded by repeating the border pixels, so that the final output has the

same width and height as the original input. An encoder f is trained for each input modality i to

learn the set of parameters θi (the network’s weights) that fully describes the map from images

of the i-th input modality to the latent spaceRi. In this model a 16-channel latent representation

is used. Experiments with different latent representation sizes showed that this produced good

results, whilst keeping the model small enough to easily train (see Section 4.6.1).

2One common problem was that the network often got stuck in a bad local optimum when all zero channels
in the latent representation developed early in training. The use of LeakyReLUs significantly eased the problem,
resulting in consistent performance across runs, likely due to the fact that they always provide a small gradient,
whereas ReLUs have 0 gradient when deactivated.
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Figure 4.4: The spatial transformer module, that calculates the parameters of an affine trans-

formation used to align latent representations of unregistered images.

Figure 4.5: The decoder module g(·|ψ), which is built from two residual blocks. Each output

modality k has its own decoder, parameterised by ψk, that maps latent representations to images

of that modality. The channels in the latent space C are set to be 16.

4.4.2 Alignment

The N latent representations can be aligned using the spatial transformer module [188], yield-

ing aligned representations r∗1, . . . , r
∗
N . The spatial transformer stn is a neural network able to

learn to apply affine transformations to its inputs, and its architecture can be seen in Figure 4.4.

Here, it is used to align all latent representations to the first. To achieve this, the spatial trans-

former takes r1 and ri as input to produce r∗i , i.e. r∗i = stn(r1, ri), i ∈ [2, n], where r∗i is a

geometrically transformed ri. As all other representations are transformed to match r1, r1 is

left unchanged, and so r∗1 = r1. The parameters of the spatial transformer are learnt implicitly

by the overall cost function, see Section 4.4.5.

4.4.3 Fusion

During the fusion step, a fusion operation, α, combines each of the individual representations

produced by the encoders into a single fused representation, termed rα. It is this fusion step

that gives the model its robustness to missing input data. In theory, α could be chosen to

be any function that takes as input any number of latent representations, and returns a single

fused latent representation. This fused representation should integrate information present in

the various inputs, such that not only commonly represented features are preserved, but also
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unique features expressed in one modality but not the others are retained. Additionally, the

fused representation should be robust to varying numbers of inputs and if some input modalities

are missing, it should accommodate such missing inputs. Specifically, the aim is that, given any

subset of latent representations, a fused latent representation is produced that is at least as good

as each of the constituent latent representations, in terms of synthesis quality.

To this end, we use the pixel-wise max function to combine the latent representations into

a fused representation. We also consider alternative approaches that include mean feature

fusion, HeMIS-like fusion [67], and mean output fusion. These are discussed in detail in

Section 4.4.6 and evaluated in Section 4.6.6. All fusion approaches considered are suitable

since they do not require a fixed number of inputs. However, fusion approaches other than the

max involve all representations, and thus cannot preserve features that are unique to some but

not all latent representations. The use of the max means that, in each channel, each pixel of

the latent representation has exactly the value of the corresponding pixel in one of the original

latent representations. In particular, if the signal is large and positive in one constituent latent

representation, then it will be chosen for the fused representation. For N input modalities and

corresponding individual latent representations, the fusion operator α is defined as:

rα = α(r∗1, . . . , r
∗
N ) = max(r∗1, . . . , r

∗
N ). (4.1)

The fused representation is exactly the same size and shape as each representation ri. The per-

formance of this fusion method is intimately linked with the nature of the learnt representations,

which is detailed in Section 4.4.5. Note that the use of max does not bias the method towards

bright final outputs, as the intensities of the synthesised image depend on the decoding step.

4.4.4 Decoding

The decoding stage of the model uses a fully-convolutional network to map the latent rep-

resentation to a target output modality. Here the input is a multi-channel image-sized latent

representation, and the output is a single channel image of the required modality. The exact

architecture of the decoder g is shown in Figure 4.5. One decoder is trained for each output

modality k, learning the parameters ψk, i.e. the network’s weights, to map the latent space to

the k-th output modality. We kept the decoder shallower than the encoder to encourage the la-

tent representation to contain the useful information in a simple way. Deeper decoders showed

no considerable improvement, whilst increasing the computational overhead.
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4.4.5 Learning Modality-Invariant Latent Representations

The nature of the latent representation learnt depends critically on the cost function used to train

it. The network is trained to minimise a cost function constituted from three cost components,

introduced below. The final cost drives the network to achieve three goals:

1. Each modality’s individual latent representation should produce all outputs as accurately

as possible.

2. The latent representations from all input modalities should be close in the Euclidean

sense, and as such be “modality-invariant”.

3. The fused latent representation resulting from α should produce all outputs as accurately

as possible.

Together these constraints are sufficient to ensure that this architecture works well with a variety

of fusion operations, as well as the pixel-wise max approach discussed in 4.4.3.

It is the fusion step that gives the model its robustness to missing input data as the fusion op-

eration α, can be applied to any number of latent representations, and always yields a single

fused latent representation. However, the quality of this fused representation depends critically

on both the latent representations produced by the encoders, and the nature of this fusion oper-

ation. As noted in [61], simply embedding inputs into the same representation space does not

ensure that they share a meaningful latent representation. The embeddings, if not encouraged

to do so, have no reason to use the latent space in a comparable way. If this is the case, then

decoding one latent representation is distinct from decoding the other, and moreover, fusion

becomes difficult, as operations such as taking the mean are no longer meaningful. Another

way to state this same problem is that, if the different embeddings use the latent space in dif-

ferent ways, then in order to know how to decode a latent representation, you need to know

from which modality it originally came, i.e. the meaning of the latent representation is depen-

dent on its initial modality. Thus, in order to overcome this issue we need to produce a latent

representation that is independent of the originating modality.

Let ri be the latent representation of image xi in modality i, i.e. ri = f(xi|θi). One requirement

of our model is that any input alone should produce good synthesis results, since the model

should work well with any subset of inputs, including a single input. Thus, if yk is the k-th

image in a target output modality k, then we want g(ri|ψk) to equal yk for every input modality
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i. Essentially, each modality’s individual latent representation should produce all outputs as

accurately as possible, when decoded.

Cost component L1: This desire gives rise to the first cost component. Given N input and

K output modalities, the model is fully described by the N encoders, the STN, and the K

decoders. We define L1 as:

L1(f, stn, g) = E
xi,yk

[
1

K

K∑
k=1

‖g(r∗i |ψk)− yk‖1

]
, (4.2)

where r∗i = stn(f(x1), f(xi)) is the aligned representation of image xi in modality i, and yk

is the corresponding slice in output modality k. Note that we divide by k to average over all

outputs. Thus, this cost can be seen as the sum of each modality’s average reconstruction error

across all outputs. We use the `1 here instead of the most common `2 distance, since `1 helps

reduce blurring [11].

Note that decoders, g, are shared, i.e. for each output modality there is exactly one decoder,

which is used to decode the latent representations from each of the input modalities. This pro-

vides some encouragement for the encoders to come to a shared, modality-invariant representa-

tion during training. However, due to the highly non-linear, non-injective nature of the decoder,

it is possible for very different latent representations (i.e. ones with a large Euclidean distance

between them) to be decoded into very similar output images. Thus, although Equation (4.2)

encourages the latent representations to be mutually compatible with a shared decoder, it does

not necessarily result in embeddings that share the same semantics. In order to ensure that

we can meaningfully fuse latent representations, we exploit the fact that the input images are

already highly correlated, since they are images of the same subject, and directly encourage the

encoders for the different modalities to produce similar embeddings for a given image.

Cost component L2: To this end, we introduce a second cost that captures the desire that

representations from all input modalities should be similar. Although what we really mean

by similar here is related to both the details of the fusion operation α and the decoder, we

encourage the representations to be close under the Euclidian norm, as if they are sufficiently

similar under this metric they will also be sufficiently similar in the required way. In order to

bring all latent representations together, we minimise their mean pixel-wise variance (c and p
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index the channels and pixels respectively and r∗i = stn(f(x1), f(xi))):

L2(f, stn) = E
xi

 1

|C||P |
∑
c∈C

∑
p∈P

var(r∗1[p, c], . . . , r∗N [p, c])

 . (4.3)

Cost component L3: Although L1,L2 encourage the encoders to learn a shared, modality-

independent latent representation, so far there is nothing to encourage this representation to be

especially suitable for the fusion operation α used in the model. In fact, so far the particular

fusion method chosen has no bearing on the training of the network. The shared representation

learnt should be admissible for a wide range of fusion options, but if we decide on a fusion

operation in advance, then there is potential to learn a shared representation that works partic-

ularly well with that fusion method. As well as meeting the two constraints from above, there

may also be sufficient flexibility in the final representation for it to specialise towards the fu-

sion operation in use. To this end, we include a final component in the cost function to directly

encourages the minimisation of the reconstruction error from the fused representation:

L3(f, stn, g) = E
xi,yk

[
1

K

K∑
k=1

‖g(α(r∗1, . . . , r
∗
N )|ψk)− yk‖1

]
, (4.4)

where r∗i = stn(f(x1), f(xi)). This is the only cost that involves the fusion operation α.

4.4.6 Other Approaches to Fusion

This multi-component cost function encourages modality-invariant, yet informative, latent rep-

resentation that can be used with a variety of fusion techniques. Here we discuss alternatives to

the pixel-wise max approach (which are also compared with in the experiments).

Latent Mean Fusion: A simple way to fuse latent representations is to average over them. With

this approach, the fused representation is the pixel-wise mean of the individual representations:

rα = mean(r∗1, . . . , r
∗
N ). (4.5)

This approach should work well if the individual latent representations are approximately noisy

versions of a common latent representation. On the other hand, in situations where one input

modality can detect details that cannot be seen in the others, this averaging would smooth out

these details. Also, it is unable to preferentially select specific input modalities. Therefore, the
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information in the latent representation from a highly informative input could be partially lost

through averaging with the latent representations from several other less informative inputs.

HeMIS-like Fusion: One approach to the creation of a fused representation, introduced in [67],

defines it as the concatenation of the mean and variance of the individual r∗i :

rα = concat(mean(r∗1, . . . , r
∗
N ), var(r∗1, . . . , r

∗
N )). (4.6)

This method was shown to work very well for image segmentation, producing state-of-the-

art results. Our experiments using this fusion showed competitive results also for modality

synthesis. HeMIS uses both the mean and variance over the individual representations, and

thus the decoder has information about where the representations most disagree, as well as

their average value. However, it is still the case that all input representations contribute equally.

Unlike max fusion, HeMIS-like fusion can’t explicitly rely on more informative inputs. To

achieve a 16-channel latent representation with this method we generate eight channels with

the encoder, so that the concatenation of the mean and variance is sixteen channels.

Output Mean: As a final baseline, we take the average of the synthesised images decoded

from each individual latent representation r∗1, . . . , r
∗
N independently. Thus, instead of decoding

a fused representation to get a single synthesised output, we decode each individual represen-

tation into a synthetic image and take the average of those individual images.

4.5 Experimental Setup

This section describes a series of experiments that demonstrate the contributions of the pro-

posed model, and compare with current state-of-the-art methods for medical image synthesis.

4.5.1 Data and Pre-processing

Data from three sources are used in the experimental evaluation: ISLES (Section 2.6.1.1),

BRATS (Section 2.6.1.2), and IXI (Section 2.6.1.3). We pre-process data by trimming excess

border pixels resulting in volumes of 224× 160 pixel images for ISLES, 240× 240 for BRATS

and 256×256 for IXI. Trimming removes uninformative background areas, and is done in such

a way that the resulting image size is divisible by 4, so that the two 2×2 max-pooling, followed

by the two 2× 2 upsampling operations of the encoder do not change the image size. We keep
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Figure 4.6: The model setup during training for a two input one output case. As we are dealing

with a single output there is only one decoder, g|ψ1, used three times: once to decode each of

the two individual latent representations R1, R2, and once to decode the fused representation

Rα. At test time we use the synthesis result from the fused representation as our output. Here

we write Y1,i to mean the output synthesised from latent representation Ri.

all slices, which is ≈ 150, although the number of slices differs slightly between volumes.

As a final pre-processing step we normalise each volume by dividing by the volume’s average

intensity. As well as centralising all the volumes across all modalities to a mean of 1, this also

keeps all values positive, all background values as 0, and maintains the slight differences in

volume variance seen between healthy and unhealthy volumes. For the DeepMedic [66] test

in Section 4.6.8, we instead normalise the data by subtracting the mean and dividing by the

standard deviation, as this is a requirement for the model.

4.5.2 Training and Implementation Details

We train our model w.r.t. a cost function given by the three constituent parts described in

Section 4.4.5. The final cost function is:

L(f, stn, g) = L1(f, stn, g) + L2(f, stn) + L3(f, stn, g). (4.7)

The model is trained using Adam [201] with default parameters. We use a batch size of 16

images. The code is written in Python with Keras [202] and the implementation is available

at https://github.com/agis85/multimodal_brain_synthesis. We train all

models using 5-fold cross-validation. For each cross-validation split, we divide the datasets

into training, validation (used to determine when to stop training to avoid overfitting), and

test examples. In each fold different test and validation volumes are used, and the remaining
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volumes are used for training. In the case of ISLES, the training, validation and test sets consist

of 22, 3 and 3 volumes respectively, with one unhealthy volume in each of the validation and

test sets, and the remaining 7 in the training set. For BRATS, the training, validation and test

sets consist of 42, 6 and 6 volumes respectively, except when using FLAIR images, when we

excluded three volumes from the training set as large portions of those volumes were missing

in the FLAIR data. For IXI, we use 22 volumes for training, 3 for validation and 3 for testing.

The model at inference time is shown in Figure 4.2. However, during training additional outputs

are required by the cost in Equation 4.7, and thus the network has the layout of Figure 4.6.

4.5.3 Benchmark Methods Details

As well as comparing the results of our model with those produced by the fusion approaches

discussed in Section 4.4.6 we also compare with three synthesis methods detailed below:

(a) MP: Modality Propagation (MP) is a standard synthesis benchmark [73]. We use our

own implementation with parameters taken from the original paper. As it is prohibitively

slow to synthesise a volume, and it has been shown that the method is outperformed by

LSDN [78], we run MP on the ISLES dataset to show that it performs as expected, that

is, with a slightly higher MSE than LSDN. See Table 4.2 for details.

(b) LDSN: We implemented the Location Sensitive Deep Network (LSDN) as described

in [78]. Specifically, we implemented the larger 400,40 neuron version (referred to as

LSDN-2 in the paper) without the shrink-connect optimisation, as this is the variant

shown to produce the best results in the paper. We train the model to minimise the MSE

using stochastic gradient descent with a batch size of 128.

(c) REPLICA: Our final baseline method is Regression Ensembles with Patch Learning for

Image Contrast Agreement (REPLICA) [71], a supervised random forest image synthesis

approach which uses multi-scale features to achieve accurate synthesis results. As this

method is able to handle multi-input situations, we compare it to our model in unimodal

and multimodal settings. We implemented REPLICA in Python.
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4.5.4 Evaluation Metrics

Performance is evaluated with MSE, SSIM and PSNR (defined in Section 3.6) that are calcu-

lated at a volume level. Furthermore, we compare our method to the best baseline method in

each experiment using a paired t-test and testing for significance at the 5% level. Significant

results are shown in bold in the tables.

4.6 Results and Discussion

Here we present the results of a series of experiments examining our proposed model and com-

paring it to other approaches. In 4.6.1 we first perform experiments to determine the number of

channels to use in our latent representation. In 4.6.2 we show the performance of our model on

unimodal synthesis. Subsequently, in 4.6.3 we demonstrate that adding inputs increases perfor-

mance. We also demonstrate robustness to missing inputs comparing against individual models

trained specifically for the inputs present. In 4.6.4 we show the importance of each of the three

components of our cost function. Next, in 4.6.5, we proceed to demonstrate that we can train

a new decoder for an unseen output without learning a new latent representation. In 4.6.6 we

show that our model can be used with other fusion methods. In 4.6.7 we demonstrate that our

model also works for non skull-stripped data. In 4.6.8 we show that segmentation masks can

be used to further improve our model’s results, and that they permit the generation of synthetic

lesions. In 4.6.9 we show that our model can synthesise images from views not seen during

training, and also demonstrate that our synthetic volumes have off-plane consistency. Finally,

in Sections 4.6.10 and 4.6.11, we evaluate the STN effect on correcting artificial input misalign-

ments, and test the model generalisability on synthesising new output modalities respectively.

Note that the experiments of the final two sections are performed on a smaller resolution.

4.6.1 Latent Representation Size

We first determine experimentally the best latent representation size. Table 4.1 results show

that the 16 channel representation outperforms both the 4 and 8 channel versions statistically

significantly in both MSE and PSNR, and also by a small margin in SSIM. Although increasing

the number of channels beyond 16 may further improve performance, the 16 channel represen-

tation achieves the best results while keeping the network’s size manageable, and we thus use

it for our model in all experiments. Although we could optimally tune the latent representation
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Figure 4.7: Comparison of the unimodal models for T1→ T2 on a healthy and unhealthy test

case. The columns show the input image, the target output image and then the synthesis results

of MP, LSDN, REPLICA, and our model respectively. The first row shows a healthy brain, and

the second row shows the results on a brain with a large lesion.

4 channels 8 channels 16 channels

MSE 0.184 (0.07) 0.191 (0.08) 0.171 (0.06)

SSIM 0.866 (0.02) 0.865 (0.02) 0.869 (0.02)

PSNR 31.61 (1.69) 31.50 (1.72) 31.10 (1.59)

Table 4.1: Comparison of different sized latent representations for T1, T2, DWI→ FLAIR.

size for each experimental setup, here we are interested in demonstrating that a single model

can perform well in a range of tasks, and thus fix the latent representation size throughout.

4.6.2 Unimodal Synthesis

In our first experiment we train two unimodal models to generate T2 and FLAIR images re-

spectively from T1 inputs. We repeat the experiment for the ISLES and BRATS dataset and

compare our models with the benchmark methods described in Section 4.5. The results are

presented in Tables 4.2 and 4.3 and show that our model outperforms the other methods. In

addition, statistically significant differences are produced on the ISLES dataset for SSIM, and

on the BRATS dataset for all metrics. Examples images are shown in Figure 4.7.
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Figure 4.8: Example multimodal synthesis from our model, using all three inputs to synthesise

FLAIR. The first row shows the T1, T2 and DWI inputs respectively. In the second row, the

images below each input show the synthesis result from that input’s latent representation alone

(i.e. single input results), the fourth image shows the synthesis result from the fused latent

representation, and the final image is the FLAIR ground-truth.

4.6.3 Multimodal Synthesis

To assess the performance of our method on multiple inputs we compare two experimental

setups using the ISLES dataset, with T1, T2, DWI as inputs, and FLAIR as output. In Exper-

T2 MP [73] LSDN [78] REPLICA [71] Proposed

MSE 0.397 (0.15) 0.345 (0.12) 0.325 (0.12) 0.299 (0.11)

SSIM 0.798 (0.02) 0.811 (0.03) 0.823 (0.24) 0.831 (0.03)

PSNR 25.22 (0.96) 25.22 (1.36) 25.51 (1.20) 25.78 (1.39)

FLAIR MP [73] LSDN [78] REPLICA [71] Proposed

MSE 0.343 (0.12) 0.286 (0.10) 0.301 (0.11) 0.268 (0.10)

SSIM 0.802 (0.03) 0.820 (0.03) 0.814 (0.03) 0.831 (0.04)

PSNR 28.81 (2.13) 29.61 (2.17) 29.43 (2.25) 29.99 (2.24)

Table 4.2: T1→ T2 and T1→ FLAIR synthesis from unimodal models on ISLES dataset.
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T2 LSDN [78] REPLICA [71] Proposed

MSE 0.449 (0.12) 0.573 (0.17) 0.333 (0.13)

SSIM 0.909 (0.02) 0.901 (0.01) 0.929 (0.17)

PSNR 30.12 (1.62) 28.62 (1.69) 30.96 (1.85)

FLAIR LSDN [78] REPLICA [71] Proposed

MSE 0.332 (0.16) 0.432 (0.17) 0.283 (0.14)

SSIM 0.887 (0.01) 0.870 (0.01) 0.897 (0.01)

PSNR 29.68 (1.56) 28.32 (1.38) 30.32 (1.61)

Table 4.3: T1→ T2 and T1→ FLAIR synthesis from unimodal models on BRATS dataset.

iment A we train distinct instances of our model for each possible combination of T1, T2, and

DWI inputs, synthesising FLAIR in all the cases. Thus, in total we train 7 different models: 3

unimodal, 3 bi-modal, and 1 tri-modal. As a baseline comparison we also train 7 REPLICA

models for the same tasks. In Experiment B we take our trained tri-modal model from Experi-

ment A, and at test time, provide different subsets of the inputs (e.g. only T1 images, only T2

and DWI images, etc), to evaluate robustness to missing inputs.

The results of both setups are reported in Table 4.4, and a test example is shown in Figure 4.8. In

the table we show in bold results where REPLICA is outperformed with statistical significance.

Overall, in all three experiments, we observe the positive effect of multimodal inputs. With our

model, this gain does not penalise flexibility as its performance when data is missing (Experi-

ment B) is never worse than the performance of a model trained specifically for the fewer input

case (Experiment A). This demonstrates that our model, due to the effectiveness of the latent

representation, is able to exploit the input modalities when available, without becoming reliant

on them. Our model outperforms REPLICA in 6 of the 7 experimental setups, with statistically

significant improvements in 5 cases, when using one model with missing inputs (Table 4.4).

This experiment’s setup also allows us to compare our model for different input combinations.

Three observations can be made. Firstly, T2 alone gives the highest error, and all other input

combinations, (including T1 alone and DWI alone) result in statistically significant improve-

ments over just T2. Secondly, in all two-input cases, the results are better than the results for the

constituent modalities individually, and this improvement is also statistically significant in each
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Combinations of Input MSE (FLAIR modality)

T1 T2 DWI REPLICA Proposed: Exp. A Proposed: Exp. B

� — — 0.301 (0.11) 0.268 (0.10) 0.249 (0.09)

— � — 0.374 (0.16) 0.328 (0.14) 0.321 (0.12)

— — � 0.278 (0.09) 0.303 (0.13) 0.285 (0.13)

— � � 0.235 (0.08) 0.215 (0.09) 0.214 (0.09)

� — � 0.225 (0.08) 0.208 (0.09) 0.198 (0.02)

� � — 0.271 (0.12) 0.218 (0.08) 0.214 (0.08)

� � � 0.210 (0.08) 0.171 (0.06) 0.171 (0.06)

Average: 0.271 0.244 0.236

Table 4.4: Synthesis of FLAIR images in Experiment A and Experiment B setups.

case (e.g. when T1 and DWI are given as input the results outperform those for either T1 or

DWI alone). Lastly, when T1, T2 and DWI are all provided as input the results are significantly

better than in all other cases. To summarise: in all cases adding an additional input modality

resulted in a statistically significant improvement, when compared to the results without that

additional input. It is worth noting that, as all outputs are coming from the same fixed FLAIR

decoder, these significant differences can be understood both as significant differences in the

final outputs, and/or as significant differences in the fused latent representations. We also visu-

alise the behaviour of the max-fusion operator α in the three input case, (Figure 4.9). As can

be seen, all inputs contribute to the final fused latent representation, and the contributions of

the different modalities are not related to tissue classes in a simple way.

4.6.4 Influence of Cost Components

Here we demonstrate that the robustness seen previously stems from the composition of our

cost function. To show this, we evaluate the effect of each of the three components described

in Section 4.4.5 by assessing the model performance when each component is individually

removed. We train three models for synthesising FLAIR from T1, T2, DWI using the ISLES

dataset, each with one of the cost components removed. These results, along with the results

for training with the full cost function are shown in Table 4.5. The best result is achieved when

67



Multimodal Image Synthesis

Figure 4.9: Visualisation of the max-fusion behaviour, showing from which inputs the values

in the latent representation originate. As can be seen, there is no simple relationship between

the input selected and the underlying anatomy. The first row shows T1, T2 and DWI inputs.

The first three images in the second row show, for a single channel, the pixels of the individual

latent representations that are selected from the max-fusion operator. The fourth image shows

the three results simultaneously, with pixels coming from T1, T2 and DWI shown in red, green

and blue respectively. The final row is the same as the second row, but rather than showing the

results for a single channel, it shows the result averaged over all 16. Note that this figure shows

only which inputs are chosen, not the values of the latent representations themselves.

all cost components are employed. Specifically, without L1 the synthesis result is very good

when the model has all inputs, but considerably worse when inputs are missing. Without L2,

the single input results are good, but results with multiple inputs are worse. Finally, when

removing L3, there is a slight degradation in the results with a single missing input, and when

all three inputs are given the model is significantly worse. Thus, the multi-component cost, the

model achieves high accuracy, whilst retaining robustness to missing data.

The influence of the cost components can also be seen visually in the latent representations

learnt by our model, see Figure 4.10. Observe the similarity of all latent representations

achieved by minimising their variance through the cost function of Equation (4.3). At the

same time the fusion operation α, preserves unique information across the latent components

corresponding to bright pixels of the individual latent representations. Note that these bright
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Inputs MSE (FLAIR)

T1 T2 DWI all costs no L1 no L2 no L3

� — — 0.249 (0.09) 0.546 (0.19) 0.261 (0.10) 0.250 (0.10)

— � — 0.321 (0.12) 0.903 (0.47) 0.331 (0.14) 0.316 (0.13)

— — � 0.285 (0.13) 0.497 (0.19) 0.293 (0.14) 0.286 (0.13)

— � � 0.214 (0.09) 0.324 (0.16) 0.262 (0.12) 0.276 (0.11)

� — � 0.198 (0.02) 0.252 (0.10) 0.240 (0.09) 0.228 (0.09)

� � — 0.214 (0.08) 0.329 (0.12) 0.345 (0.17) 0.277 (0.10)

� � � 0.171 (0.06) 0.185 (0.08) 0.176 (0.07) 0.278 (0.11)

Average: 0.236 0.434 0.273 0.273

Table 4.5: Synthesis of FLAIR images when training with different cost functions.

pixels represent strong features, and do not necessarily correspond to bright pixels in the output.

4.6.5 Adding New Decoders

One aim of our latent representations is to introduce modality invariance. This should allow

adding inputs and outputs to an already trained network, with minimal performance change.

Here we demonstrate that an additional output can be appended to an already trained network.

We train a model with inputs T1 and T2, and outputs DWI and FLAIR. At test time, the MSE

of DWI images is 0.218. Next, we train another model with the same inputs, but only FLAIR as

output; to this already trained model, we add just a DWI decoder that we then train in isolation.

The test error for DWI was 0.263, which is ∼ 17% higher, and not a statistically significant

difference, compared with the previous case.

4.6.6 Alternative Fusion Operations

In this experiment we demonstrate that our model is still effective with other fusion methods,

such as those described in Section 4.4.6. To this end, we train one model for each of these fusion

methods with T1, T2, and DWI as inputs, and FLAIR as output on the ISLES dataset. We get

the best MSE with our max fusion method, which is equal to 0.171. HeMIS MSE is 0.178,

while latent and output mean follow with 0.187 and 0.193 respectively. We also experiment
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rT1 rT2 rDWI rα

Figure 4.10: A channel from the 16-channel latent representation of our model with T1, T2,

DWI inputs. The first three images show the latent representations learnt by the three inputs, T1,

T2, DWI respectively. The fourth column shows the fused representation. The high-intensity

regions in rT2, which correspond to lesions, are preserved in the fused representation rα despite

the latent representations rT1 and rDWI showing minimal or no lesion information.

with missing inputs with the HeMIS and latent mean fusion methods. On average, across all

seven input combinations, our model achieved an MSE of 0.236 as shown in Table 4.5, whereas

HeMIS and latent mean achieved 0.239 and 0.246 respectively, demonstrating that the model

still works well with missing inputs in these cases, but performs best with our suggested fusion.

4.6.7 Non Skull-Stripped Data

In these experiments we explore the model in situations where the brain data has not been skull-

stripped. As also discussed in [71], synthesising non skull-stripped volumes is difficult because

of the intensity inhomogeneity in MR images caused by the dark skull regions surrounded

by bright skin and fat regions. REPLICA [71], which is being used as a baseline has been

demonstrated to be effective on non skull-stripped data, producing state-of-the-art results, and

we compare our method with this approach for evaluation. For this experiment we use 28

volume pairs of PD-weighted and T2 modalities of the IXI dataset. The results are given in

Table 4.6. As can be seen, our method outperforms REPLICA, with statistical significance, in

all three error metrics. Non skull-stripped example results are shown in Figure 4.11. Although

we initially used 28 subjects to be comparable to the ISLES dataset size, to demonstrate that

our model scales well and benefits from more training data we trained our model on the full

IXI dataset, which consists of 577 volumes (347 training, 115 validation and 115 testing). This

significantly improved the performance (compare with Table 4.6), with MSE dropping to 0.067,
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PD T2 REPLICA Ours

Figure 4.11: Non skull-stripped synthesis examples. The two rows show slices from different

test volumes. The columns show the input PD, the ground truth T2, the REPLICA synthetic T2

and our model’s synthetic T2 image respectively. Our method produces more accurate outputs.

REPLICA [71] Proposed

MSE 0.293 (0.05) 0.129 (0.04)

SSIM 0.854 (0.03) 0.865 (0.03)

PSNR 28.93 (1.20) 32.92 (1.06)

Table 4.6: Results from PD to T2 synthesis on the non skull-stripped IXI dataset.

and SSIM and PSNR rising to 0.872 and 35.20 respectively.

4.6.8 Augmenting Inputs with Segmentation Masks

The ISLES dataset includes segmentation masks that delineate unhealthy regions. We provide

the segmentation mask as an additional input channel. With this augmented input, the model

can directly modulate its behaviour on affected regions. Specifically, when we train a network

with DWI input and FLAIR output, we obtain a MSE of 0.303. When we train a similar network

where the mask is provided as an extra channel in the input, the MSE reduces to 0.290. Even

though the improvement is ≈ 3%, we observed that affected regions in the synthesised images

are sharper (also note unhealthy regions are only a small part of a few volumes).

With the same augmented inputs, we can also generate synthetic lesions. To achieve this at
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true FLAIR lesion masksynthetic FLAIR synthetic FLAIR with lesion

Figure 4.12: Synthesis of a lesion by including a segmentation mask when synthesising an

otherwise healthy image. This subject is taken from ISLES dataset in the FLAIR modality.

test time, we use the lesion mask from an unhealthy brain on a healthy brain, and then run the

synthesis as normal. A visual example is shown in Figure 4.12. We then train DeepMedic [66]

to segment lesions using the FLAIR modality of the ISLES dataset as input. In order to test

the quality of our synthetic images, we use DeepMedic to segment the synthetic lesion and get

≈ 84% accuracy (Dice coefficient) on a single test-case.

4.6.9 View-transfer Synthesis

We demonstrate that our architecture can synthesise images (at test time) taken from a different

perspective of the 3D volume. Here, we train a model with T1, T2 and DWI inputs and FLAIR

output on axial-plane slices as normal, but we test on coronal view slices. An example result

is shown in Figure 4.13. Observe that the synthetic image contains all the details including the

ischemic lesion, seen in the other modalities and in the ground-truth FLAIR image, visually

demonstrating transfer learning capabilities w.r.t. the point of views (axial-coronal planes in

this example). Finally, as our method synthesises volumes slice by slice, we evaluate intensity

consistency between slices in off-plane reconstructions. As the examples in Figure 4.14 show,

consistency is good.

4.6.10 Robustness to Data Misalignment

To examine the performance of our model on unaligned data we trained and tested a model

for synthesising FLAIR from T1 and DWI on data in which each T1 volume was randomly

rotated about all axes by a number of degrees sampled uniformly at random from [−8, 8] and

was shifted randomly on each axis by a (not necessarily integer) number of pixels from [−2, 2].

This produced data with misalignment between modalities of the sort that remains after a sim-
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T1 T2 synthetic FLAIRDWI

Figure 4.13: A visual demonstration of our model’s robustness of to view transfer. We take

the model trained on axial-plane slices and test using coronal-plane slices (shown). The image

shows the T1, T2 and DWI input slices, the synthesised FLAIR slice, and the ground-truth

FLAIR image respectively.

Figure 4.14: Off-plane reconstruction examples. The volume was constructed by synthesising

axial slices. Sagittal and coronal slices are taken from this reconstructed volume and compared

them to ground truth images. From left to right, the images show a target T1 image, and the off-

plane reconstruction, a target FLAIR image, and the corresponding off-plane reconstruction.

ple alignment procedure had been performed. When trained on aligned data, our model and

REPLICA achieve MSE of 0.661 and 0.712 respectively, which increases to 0.793 and 0.885

respectively on the unaligned task. However, compared to the unimodal case where only DWI

is given as input, which achieves MSEs of 0.821 and 0.901, we observe an improvement of 6%

and 2% for our model and REPLICA respectively.3 Although seemingly a small improvement,

rotating and shifting across the z-axis changes the anatomy in the image, necessarily result-

ing in performance degradation and loss of information by blurring during rotation. However,

the model still captures the limited information of the distorted T1 input to improve on the

unimodal result.

3We remind here that these results correspond to images of lower resolution. The equivalent results for aligned
data of full resolution are presented above in Table 4.4.
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4.6.11 Transfer Learning

Here we examine the model’s ability to generalise to MRI data with different intensity charac-

teristics, not seen during training. We use a model synthesising T2 from T1 trained on BRATS,

and test it on ISLES volumes. We first use the model as-is without any fine tuning and get a

MSE of 3.990 which we use as a baseline. Then, based on the assumption that the deeper layers

of the network are task specific [203], we fine-tune just the decoder using 1, 2 and 3 volumes

and get a MSE of 1.439, 1.356 and 1.227 respectively. 4 In addition, fine tuning the decoder is

extremely fast, taking ∼ 4 minutes on one Titan X GPU.

4.7 Conclusion

In this chapter, we proposed a multi-input, multi-output end-to-end deep convolutional network

for synthesis of MR images, capable of fusing information contained in different modalities.

Previous synthesis approaches were single-input single-output and thus did not take advantage

of the correlated information available within clinical exams. We designed a modular architec-

ture composed of three parts: encoder, latent representation fusion, and decoder. These modules

are learnt end-to-end, using a cost function that encourages representations to be modality-

invariant, whilst the individual reconstruction error is kept low.

When trained with a single input, our method outperforms the current best methods in all three

metrics in each experiment. In particular, significantly outperforming in SSIM in all experi-

ments, and in all metrics on the BRATS dataset. We also demonstrate improved performance

on non skull-stripped brain images compared to previous methods. When more inputs are

added, the error is further reduced, and our approach is shown to outperform REPLICA statis-

tically significantly in all multi-input experiments. We also show in our experiments that our

architecture and cost function can be used in conjunction with various fusion methods, includ-

ing the one proposed in HeMIS [67]. We also demonstrate that the model is robust to missing

inputs: for any subset of inputs it performs as well as a model trained specifically for the sub-

set. Central to our design is the quest towards modality-invariant latent representations. This

is achieved via a cost function that aims to unearth shared information whilst still preserving

unique (to a specific input) semantics. Such modality invariance has many benefits such as the

ability to train new decoders (as demonstrated in 4.6.5).

4Note that these results correspond to images of lower resolution.
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In addition, the model is also robust to misaligned inputs. In particular, it benefits from multiple

inputs, even when they are not well aligned, such that it still outperforms the single input case,

even though misalignment means that the slice may well contain different anatomy. Finally, we

demonstrated that fine-tuning only the network’s decoder on a very small number of volumes

allows synthesising volumes from an otherwise unseen data source with high accuracy.

We used MSE, SSIM, and PSNR as evaluation criteria, but these may not directly reflect di-

agnostic quality. Investigations of new, useful for synthesis, metrics, is an ongoing process in

the community. Application-specific metrics are also sought-after and our application driven

DeepMedic-based evaluation of pseudo-lesion synthesis points to that direction. This work

used three datasets independently, but there is potential for combining information across many

sources. This has benefited deep learning in many domains: its application in our context re-

quires suitable pre-processing schemes to alleviate intensity distribution differences between

the different sources. Finally, we opted for encoders/decoders that were “small” and fast but

still performed exceptionally well. Fine-tuning their design could improve performance further.

Although our approach outperforms the baseline methods in all three metrics, the images pro-

duced by LSDN appear sharper than those produced by our method. We believe this is a result

of LSDN independently processing small 3×3×3 voxel cubes to predict a single output voxel.

However, although the LSDN approach promotes sharpness, the numerical results show sharp-

ness does not necessarily translate to accuracy: it is certainly possible to have a very sharp, but

inaccurate synthetic output.

In summary, this chapter presented a multi-input, multi-output end-to-end deep convolutional

network for synthesis of MR images, that was tested on three different brain datasets. We

showed that the model is robust, performs well and can handle a variety of different challenges

such as robustness to missing input, learning just a new decoder for an unseen modality and

even synthesising new (unseen) views of the data. We see that such multimodal models could

be well placed to impute data on large databases (e.g. biobanks) w.r.t unimodal approaches.

From a deployment perspective they are less complex (one vs many different models to de-

ploy/maintain), more flexible (new outputs can be added with minimal training) and more im-

portantly are robust by taking advantage of information across input modalities, without being

reliant on any of them.

Furthermore, we showed that using images as latent variables is suitable for producing multi-
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modal representations, as well as for fusing spatial information. Nevertheless, training requires

paired data, i.e. pairs of input and output images of the same subject in different modalities.

As mentioned in Section 1.1, acquiring such data is challenging in cardiac imaging, and thus

prohibits adopting fully supervised approaches for cardiac synthesis. In Chapter 5 we extend

this work for unpaired images, using multimodal datasets acquired at different hospitals and

containing different subjects. Although, information fusion is not feasible, we will investigate

the use of such multimodal data to learn cross-modal correlations for synthesis.
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Chapter 5
Cross-Modal Cardiac Synthesis

5.1 Introduction

This chapter extends the work of Chapter 4 on multimodal datasets that contain different sub-

jects, i.e. are unpaired. Specifically, we consider cardiac datasets of MR and CT modalities that

are acquired in different hospitals and contain different subjects. In this case we cannot learn a

multimodal synthesis model with supervised costs, neither can we learn multimodal representa-

tions with similarity costs and fusion as in Chapter 4, since there are no spatial correspondences

between the images. Instead, we learn cross-modal synthesis directly from one modality to the

other. As seen in Figure 5.1, cross-modal cardiac synthesis is learned through a cycle that maps

images and corresponding segmentation masks from MR to CT and back to MR (Figure 5.1a),

and vice versa (Figure 5.1b). In this method the role of image representations is taken by a pair

of synthetic images and segmentation masks.

As discussed in Chapter 3, techniques for generating synthetic images have undergone sig-

nificant improvement with the development of GANs. In this chapter, we use CycleGAN to

transform unpaired images of one modality into the same image, but in a different modality.

(a) cycle 1: MR to CT to MR synthesis (b) cycle 2: CT to MR to CT synthesis

Figure 5.1: Two cycles of cardiac image synthesis between MR and CT modalities.

This chapter is based on:

• Chartsias, A., Joyce, T., Dharmakumar, R., Tsaftaris, S.A., 2017, September. Adversarial image synthesis
for unpaired multi-modal cardiac data. In International workshop on simulation and synthesis in medical
imaging (pp. 3-13). Springer, Cham.
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Figure 5.2: A high-level schematic of the synthesis pipeline for cardiac data. The CycleGAN

also produces synthetic CT images but here we only use the synthetic MR.

This is particularly useful in cardiac image synthesis, where paired and perfectly aligned images

are rare. However, although style transfer for artistic purposes (the original application of Cy-

cleGANs) only requires that the resulting images are realistic and maintain semantic content,

medical image synthesis is more stringent, and requires preserving precise pixel-level corre-

spondences. We therefore propose a pipeline for directly transforming labelled data into the

modality of interest, that incorporates the available labels (segmentation masks) in the transla-

tion, such that correspondences between image and labels are preserved in both domains. We

demonstrate that the synthetic data consists of examples with potentially beneficial anatomical

information. When combined with the original data, this larger and more diverse dataset can

then be used to train an improved model for a particular task. Here, we demonstrate this for

myocardial segmentation.

5.1.1 Approach Overview

Given two datasets of MR and CT images, the pipeline for our approach is as follows: firstly,

we perform a view alignment step, transforming the scale, position and viewing angle of CT

images, so that they are broadly the same to the MR images (Section 5.3.1). Secondly, we train

a CycleGAN model with adversarial and cycle consistency losses, described in Section 5.3.2,

that also includes segmentation masks in training (Section 5.3.3). Once trained, we use the

learnt transformation to convert all CT to synthetic MR. A schematic overview of our approach

is given in Figure 5.2.

Directly quantitatively assessing the quality of synthetic data when no ground truth exists is

challenging. We demonstrate the synthetic data’s utility by showing it significantly improves

results in a segmentation task.
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5.1.2 Contributions

This chapter makes the following contributions:

1. We theoretically explore CycleGAN synthesis in the medical domain and introduce a

flexible pipeline for transforming labelled data in auxiliary modalities into labelled data

in the modality of interest.

2. We demonstrate that augmenting real with synthetic data significantly improves perfor-

mance in a segmentation task.

3. We compare our synthetic augmentation with standard augmentation, showing the syn-

thesis approach to be favourable.

4. Finally, we demonstrate a recommended approach, which combines both synthesis and

augmentation, and results in the best performance overall.

This chapter is organised as follows. Section 5.2 mentions related work on image synthesis.

Then Section 5.3 discusses limitations and presents our approach to cardiac synthesis using a

CycleGAN model. Sections 5.4 and 5.5 describe the experimental setup and results, respec-

tively, and finally Section 5.6 concludes the chapter.

5.2 Related Work

To date, there has been very little work on cardiac image synthesis. Our work is based on

learning an image transformation function to transfer anatomical information from a source

to a target modality. Similar methods have been proposed for cross-modal synthesis of brain

images (see Chapter 4), although they require paired and co-registered multimodal datasets.

Here, we focus on unsupervised learning of image transformations with no ground-truth target

images, which has been revolutionalised by the adversarial training of neural networks [43,48].

Adversarial learning was used for image style transformation in [59], and this method is directly

applicable to cardiac data, where there is a lack of paired data.

Although synthesis offers a flexible approach that can be directly applied to expand available

data, it is still important to weigh synthesis up, critically, against other approaches. As there is

no direct way to measure accuracy when ground truth images do not exist, the value of synthesis
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CT image MR image view aligned MR image

Figure 5.3: An example from the view alignment procedure. The first two images show an

original CT and MR slice respectively, and the third image on the right shows the corresponding

slice from the view-aligned MR data. Note that, although not co-registered, the first and last

images are structurally similar, and essentially differ only in the statistics of the intensities.

should be measured by considering how well it achieves auxiliary tasks. However, this means

that synthesis should also be compared with alternative methods for achieving these same goals.

In this chapter we demonstrate the utility of synthesis for improving segmentation via enlarg-

ing the set of available training data. Besides synthesis, a dataset can also be expanded using

simple geometric augmentation, for example by rotating and reflecting the images. Although

simple transformation based augmentation is commonly used to improve results on cardiac seg-

mentation [153, 156], this approach produces derivative examples, and does not benefit from

the existence of auxiliary data, which could potentially provide additional real anatomical ex-

amples. We directly compare this standard data augmentation with our synthesis approach in

Section 5.4, and, as the approaches are not mutually exclusive, we also explore combining both.

5.3 Proposed Approach

We now give step-by-step details of our method, describing the view alignment, the training of

the CycleGAN and the generation of the synthetic data. We describe the process in the cardiac

setting, using the dataset described in Section 5.4.2, which consists of 40 MR and CT volumes

that have been segmented into 7 tissues.

5.3.1 View Alignment

In the view alignment step we make the CT and MR image sets broadly similar in terms of

structure. Specifically, we aim to make the layout of the images (the position and size of

80



Cross-Modal Cardiac Synthesis

Figure 5.4: The CycleGAN during training. Although both generators occur twice in the graph

there is only a single instance of each, which is used in two places. The discriminator costs and

reconstruction costs correspond to Ladv and Lrec respectively as described in Section 5.3.2.

the anatomy for example) not informative as to the dataset from which the image originated.

Preventing this is important in order to ensure the adversarial training is effective, otherwise

the discriminator may learn to differentiate between real and synthetic data by attending to

structural differences, rather than intensity statistics. However, the alignment only needs to be

approximate, and any simple registration approach should suffice.

To achieve this we perform an affine transformation on each CT volume to approximately align

it to an arbitrary MR volume, re-sampling with tri-linear interpolation to produce an aligned

CT volume of the same size as the MR volume (see Figure 5.3 for an example alignment).

The exact method we use to align the data is as follows: for each volume we take the labels

volume and calculate the centre of mass for each of the 7 classes. This results in a list of 7

3D points for each volume, with each point representing the centre of a particular anatomical

region. In order to align the volumes, we calculate the affine transformation that minimizes

the squared distance between the corresponding points in two volumes. We then apply that

transform to the first volume, and use tri-linear interpolation to re-sample to a 3D array with

the same dimensions as the target volume. Any points in the new CT volume that correspond

to points outside of the original CT volume are set to 0. Additionally, any points in the MR

volume that correspond to points outside of the original CT volume are also set to 0. This again

is performed to make the volumes structurally similar, to aid the adversarial training.

5.3.2 Standard CycleGAN and Limitations

Since images are not paired, learning to transform from MR to CT is not straightforward.

However, a recent adversarial approach to this difficult task is the CycleGAN: an adversari-

ally trained deep network which simultaneously learns transformations between two datasets

containing the same information, but differently represented. It is powerful since it does not
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require paired training data, but instead learns via both a discriminator and a cycle loss.

A CycleGAN consists of four networks: two generators GX→Y and GY→X , and two discrim-

inators DX and DY . Given two sets of unpaired images, X and Y , the CycleGAN is trained

as follows (see Figure 5.4): The generator GX→Y first transforms images from domain X to

Y . The synthetic images are then transformed back to domain X by GY→X to complete the

cycle. A symmetric cycle in the opposite direction also exists. The training process involves

four losses. Two cycle losses, which are direct reconstruction losses between an input image

of domain X and the reconstruction produced after completing a cycle. The synthetic images

are also encouraged to look realistic by two adversarial losses imposed by the discriminators.

More formally, the CycleGAN loss function is defined in Equation 5.1:

L =Ladv(GX→Y , DY ) + Ladv(GY→X , DX)+

λLrec(GX→Y , GY→X , X) + λLrec(GY→X , GX→Y , Y ),
(5.1)

where λ is a hyperparameter set to λ = 10, as in the original paper [59]. Given input and output

samples x ∈ X and y ∈ Y , respectively, the first cycle and adversarial losses are defined in

Equations 5.2, and 5.3:

Lrec(GX→Y , GY→X) = E
x,y

[‖GY→X(GX→Y (x))− x‖1] , (5.2)

Ladv(GX→Y , DY ) = E
x,y

[
DY (GX→Y (x))2 + (DY (y)− 1)2

]
. (5.3)

The losses for the second cycle with y ∈ Y and x ∈ X being the inputs and outputs are

similarly defined. Here the adversarial loss corresponds to the Least-Square loss of [50]. The

discriminators are trained by maximising Ladv.

We apply CycleGAN to learn to transform a CT image into a synthetic MR image that cannot

be recognised as synthetic by a discriminator network. At the same time, the synthetic MR

image must be able to be accurately converted back into a CT image, as similar as possible

to the original CT image, via another learnt transformation. Thus, the synthetic MR image,

whilst appearing realistic, must also retain relevant information from the CT. This encourages

the synthetic MR to contain the same anatomy as is present in the input CT.
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CycleGAN Limitations for Medical Applications

Initially, we applied the CycleGAN directly to the MR and CT images. However, we found

that although the resulting images were promising in terms of realism, the myocardium in the

synthetic image was frequently shifted and deformed during a modality transformation (see

Figure 5.5). As a result, the synthetic MR data had no accurate labels, as we could not assume

the label was the same as in the input image. Two properties of CycleGAN cause this effect.

Deterministic transformations: By design CycleGAN’s generators learn deterministic trans-

formations, i.e. the same input image will always yield the same output image. Thus, in cases

where information is present in one modality, but not in the second, it must be deterministi-

cally invented by the transformation. For example, if in MR lungs do not have strong signal

(air has poor contrast), then the network has to realistically invent plausible signal for the CT.

Conversely, from CT to MR, the network will have to remove this signal but due to cycle-

consistency it has to then somehow add it back. So either the network weights must encode this

transformation or somehow the image synthesised must contain this information.

Fixed and altered image properties: A transformation between images will change some

properties of the input image, and leave others unchanged. CycleGAN implicitly captures this

split between properties. There is no explicit delineation of the two property types, instead the

transformed image must be indistinguishable from a real image. Thus, even in the CycleGAN’s

theoretical best-case when the distribution of synthetic images is identical to the distribution of

real images, the properties that change and the properties that are fixed by the transform are not

deducible. In other words, even knowing that the CycleGAN is working as well as possible, it

is still not possible to infer what exactly are the transformations it is doing.

Although for some applications this is acceptable, in medical image analysis understanding the

precise operation of the transformations is key. In our experiments small shifts occurred with

reasonable frequency. It appears that even the authors of [59] alluded to some of these issues

in their manuscript and project website, discussing tasks that require geometric transforma-

tions. The effects of the issues became apparent when CycleGAN-driven synthesis was used

for the first time in quantitative tasks since even such small shifts can cause problems in tasks

of segmentation and registration.
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CT image synthetic MR image blood pool difference

Figure 5.5: Example of spatial misalignment between an input CT image (left) and correspond-

ing synthetic MR image (centre). Although the synthetic MR image has realistic intensities, the

alignment with the original CT image is only approximate. The right most image shows the

difference between the inner contours of the blood pools of the two images. The area where

they agree is shown in yellow, and where they disagree is shown in red.

5.3.3 CycleGAN with Masks

For synthesis to be maximally useful, the anatomy in the synthesised images must be perfectly

aligned with the anatomy in the input images. However, the standard CycleGAN can warp the

anatomy during the transformation even when producing realistic images (see Figure 5.5). This

can be prominent when using small datasets for training, such as in our case (see Section 5.4.2),

in which the image variability is small. Due to the large capacity of the generator networks,

anatomy shifting could also be attributed to the network memorising images in the source and

target modalities.

To mitigate this issue, a need to regularise the geometric transformations emerges. Other ap-

proaches [167], trained a segmentation algorithm for one modality in unison with the Cycle-

GAN, as an additional supervised task. On the contrary, we included both the mask of the

myocardium and the image as two channel inputs to the CycleGAN, such that it learnt to trans-

form CT images and their corresponding myocardium segmentation mask into realistic MR

images and corresponding segmentation masks. This did not stop the anatomy shifting dur-

ing the transformation, but meant that we still had accurate (synthetic) labels for the synthetic

images. A schematic of this approach can be seen in Figure 5.6.

We apply the mapping learnt with the CycleGAN to the view-aligned CT images and masks,

producing a synthetic MR image and mask for every CT sample in the dataset. The result is a

synthetic labelled dataset of MR cardiac images, which can be used for any task of interest.
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Figure 5.6: Unfolded CycleGAN training for CT to MR synthesis: a CT image with its seg-

mentation mask is mapped to a synthetic MR image and mask by a generator network. A MR

discriminator then tries to discriminate real from synthetic MR. The CT and Mask are also re-

constructed form the synthetic MR by a second generator network, which aims to reconstruct

the original CT exactly. The generator learns both by trying to fool the discriminator, and by

minimising the discrepancy between the real CT and its reconstruction.

5.4 Experimental Setup

In this section we examine the effect of synthetic results in the accuracy of myocardium seg-

mentation. We train a segmentation model, detailed in Section 5.4.1, on various combinations

of synthetic and real data, with and without augmentation and report the Dice coefficient, de-

scribed Section 3.6, on 3-fold cross validation. The data and pre-processing steps are described

in Section 5.4.2, and the experimental details in Section 5.4.3.

5.4.1 Segmentation

To segment the images, we train a neural network with an architecture similar to the U-Net [13].

Specifically, the network consists of 3 downsample and 3 upsample blocks with skip connec-

tions between each block of equal size filters. This architecture was chosen as similar fully

convolutional networks have been shown to achieve state-of-the-art results in various segmen-

tation tasks, including cardiac, and U-Net is a standard benchmark approach. Here we have

not specifically optimised the architecture or hyperparameters for the segmentation task being

considered, since the aim is to evaluate the synthetic results. Our model is implemented in
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Keras [202] and trained using Adam [201] with batch-size 16 and an early stopping criterion,

based on the validation data, to avoid overfitting.

5.4.2 Data and Pre-processing

The experiments use data from MM-WHS that is described in Section 2.6.2.1. We centered

the anatomy (the bounding box of the labelled anatomical regions) within the MR volumes,

and trimmed each volume to 232× 232, padding with 0s where necessary, but maintaining the

native resolution. Then, for each volume, we clipped the top 1% of pixel values and re-scaled

the values to [−1, 1]. Finally, we removed slices that did not contain myocardium, resulting in

20 volumes with an average of 41 slices per volume (816 slices in total). For the cardiac CT

data no centering or trimming was necessary, as the data is aligned with the MR data in the

view alignment step of Section 5.3.1. However, we again clipped the top 1% of values, and

scaled the values to [−1, 1].

5.4.3 Experiment Details

Below we detail the five experiments we used to evaluate the quality of the synthesised cardiac

MR data. We repeated all experiments on three different splits of the data, each time training

a CycleGAN on 15 MR and 15 CT volumes, and then training the segmentation network de-

scribed in Section 5.4.1. In every split, the 5 MR volumes used for testing the segmentation

network were excluded, as were the 5 CT volumes which were aligned with them in the view

alignment step. Thus the final test volumes have not been used anywhere in the pipeline. Out

of the remaining 15 MR volumes, we used 10 for training and 5 for validation.

(a) Real: Firstly, as a baseline we train the segmentation network on 10 real MR volumes,

using the other 5 MR volumes for validation, and obtain a mean test Dice of 0.613.

(b) Synthetic: Secondly, to directly evaluate the quality of synthetic data, we train the seg-

mentation network on 10 synthetic volumes, validating on 5 synthetic volumes. We then

test the final model on the 5 real MR volumes and obtain a Dice coefficient of 0.580.

(c) Real and Synthetic: Next we combine the real and synthetic data and train the seg-

mentation network on a total of 25 volumes (10 real and 15 synthetic), again using 5

real volumes for validation. This combined training gives a performance gain of ∼ 15%
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training data split 1 split 2 split 3 average relative to real

just synthetic 55.3 51.6 67.2 58.0 0.946

just real 58.4 61.3 64.2 61.3 1.000

augmented real 63.2 68.5 71.1 67.6 1.103

real and synthetic 65.7 69.9 75.7 70.4 1.148

augmented real and synthetic 65.0 73.8 74.8 71.2 1.161

Table 5.1: Dice scores (%) of U-Nets trained on various data combinations. In all cases the

model is evaluated on real MR images.

compared to training on real data alone.

(d) Augmented Real: Next we augment the real data using horizontal and vertical flips gen-

erating a total training set of 25 volumes (10 real 15 flipped) to allow direct comparison

with synthetic augmentation.

(e) Augmented Real and Synthetic: Synthesis and data augmentation are not mutually

exclusive and can be simultaneously used along with the existing real MR data. We

therefore combine the real and synthetic training data, and also use horizontal and vertical

flips to expand the data to double the size. This results in 50 training volumes, and we

again use 5 real volumes for validation during training.

5.5 Results and Discussion

All results are presented side-by-side in Table 5.1. In addition, Figure 5.7 provides examples of

synthetic results. The first observation is that using just the synthetic data is almost as good as

using the real data, in terms of resulting segmentation, only resulting in a 5% loss of accuracy

and this difference is not statistically significant at the 5% level. This is likely the result of small

errors present in the synthetic images. Next, it is informative to compare real data with standard

augmentations against the combined real and synthetic data. In both cases the segmentation

algorithm was trained on 25 volumes, including the same 10 real volumes, and both approaches

improve the final segmentation accuracy with synthetic and geometric augmentation leading

to 14.8% and 10.3% improvements respectively. Finally, when the real and synthetic data is

combined, and geometric augmentations are also applied, the greatest improvement is seen,
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Figure 5.7: Two examples of MR synthesis. From left to right it is shown, the real CT image,

the resulting synthetic MR image, the synthetic segmentation mask and finally the real MR

image of the volume to which the real CT volume was aligned in the view alignment step. Note

that the shape and position of the myocardium is similar but not identical between the CT input

and corresponding synthetic MR output. Also, observe that in the upper row the synthetic data

contains a dark artifact within the ventricle.

with a 16.1% increase in accuracy over the baseline.

The difference in performance between the real and synthetic data, and just the real data is

significant at the 5% level, as is the difference between the real and synthetic data and the

augmented real data. Further, adding augmentation to the real and synthetic data does not lead

to a statistically significant improvement.

5.6 Conclusion

We have demonstrated that it is possible to produce synthetic cardiac data from unpaired images

coming from different individuals. Moreover, these synthetic images are accurate enough to be

of significant benefit for further tasks, either used alone or to enlarge existing datasets. Specif-

ically, we have shown that it is possible to produce synthetic cardiac MR images from cardiac

CT images, and that these images can be used to improve the accuracy of a segmentation algo-
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rithm by 16% when used in combination with standard geometric augmentation techniques. We

also demonstrated that the synthetic data alone was sufficient to train a segmentation algorithm

only 5% less accurate than the same algorithm trained entirely on real data.

As can be seen in the results, the largest gains are made when the synthetic data is included in

the training set, suggesting that new anatomy, containing additional examples of real structure

and natural local variations, being introduced from the auxiliary data is most beneficial for

improving results.

Finally, and as discussed in Section 5.3.2, initial attempts to train the CycleGAN on images

alone resulted in synthetic images that were not aligned with the mask of the image from which

they were synthesised, meaning that the synthetic images were no longer accurately labelled,

and so could not be evaluated through training of segmentation algorithms as above. Here, we

overcame the issue though the inclusion of the myocardium mask as input to the CycleGAN,

which resulted in accurately labelled synthetic images. However, this unveils the ability of

CycleGAN architectures to introduce transformations during translation.

Further problems arise when the information capacity between the translation domains is differ-

ent, for example when one domain is a categorical segmentation. Chapter 6 demonstrates this

limitation, as well as how neural networks attempt to “invent” or “hide” information in order to

achieve such translations. In Chapter 6 we also propose disentangled representations as a way

of introducing auxiliary variables to overcome this information loss. This renders cyclic (re-

construction) constraints useful in segmentation tasks, and creates the potential for using such

representations in other medical image analysis tasks.
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Chapter 6

Disentangled Representation Learning

6.1 Introduction

Similar to single-input, single-output synthesis discussed in Chapters 4 and 5, this chapter con-

siders image segmentation as a synthesis task, in which the input domain consists of cardiac

images but the target domain is rather a semantic map of the heart. Similar to Chapter 4 we

use paired data (supervised) to learn a translation from images to semantic maps (segmenta-

tion), but simultaneously, as in Chapter 5, we also use unpaired images, i.e. unlabelled, to

improve performance (unsupervised). Since the two domains differ in information capacity,

we approach the task from a representation learning view, and propose two approaches in Sec-

tions 6.4 and 6.5 with schematics illustrated in Figure 6.1 that respectively learn a representation

of the myocardium and residual anatomical information (Figure 6.1a) and a representation of

anatomical and imaging information (Figure 6.1b).

(a) representation of myocardium seg-

mentation and residual image

(b) representation of anatomy from image

modality

Figure 6.1: Two representations of cardiac images in disentangled spatial and vector factors.

This chapter is based on:

• Chartsias, A., Joyce, T., Papanastasiou, G., Semple, S., Williams, M., Newby, D.E., Dharmakumar, R.
and Tsaftaris, S.A., 2019. Disentangled representation learning in cardiac image analysis. Medical Image
Analysis, 58, p.101535.

• Chartsias, A., Joyce, T., Papanastasiou, G., Semple, S., Williams, M., Newby, D., Dharmakumar, R., Tsaf-
taris, S.A., 2018. Factorised spatial representation learning: Application in semi-supervised myocardial
segmentation. In International Conference on Medical Image Computing and Computer-Assisted Interven-
tion (pp. 490-498). Springer, Cham.

90



Disentangled Representation Learning

In representation learning, latent variables must be maximally informative for the task at hand,

whilst being invariant to unrelated information (e.g. variations in imaging and noise), so that

they can generalise to unseen examples [17]. Invariance to some factors, e.g. translations, can

be attributed to the architecture, for instance with the use of convolution and max-pooling, but

invariance to more complex factors is achieved by the learning process, and can be encouraged

with regularisers. At a high level the aim is to keep relevant but discard irrelevant informa-

tion, however which information is relevant is strongly task dependent. We therefore consider

disentangling representations into meaningful components (factors).

Disentangled representations offer many benefits. For example, they ensure the preservation of

information not directly related to the primary task, which would otherwise be discarded, whilst

they also facilitate the use of only the relevant aspects of the data as input to later tasks [17].

They also have considerable potential in the analysis of medical data. In this chapter we com-

bine recent developments in disentangled representation learning with strong prior knowledge

about medical image data: that they necessarily contain information on the anatomy and the

image modality.

6.1.1 Approach Overview

We propose two models for learning different decompositions of anatomy and modality using

spatial and non-spatial factors. The first model, Spatial Myocardial Disentanglement Network

(SMDNet), decomposes input images into a segmentation map of the myocardium (spatial

factor) and a latent vector of image intensity and surrounding anatomical information (non-

spatial factor), and is presented in Section 6.4. The second model, Spatial Disentanglement

Network (SDNet), is more generic and decomposes input images in a semantic anatomical

map (multi-channel spatial factor) and a latent vector of only image intensity information (non-

spatial factor), and is presented in Section 6.5.

In both models, part or all anatomical information is represented spatially (as a semantic map)

to maintain pixel-level correspondences with the input. As we demonstrate below, a spatial

anatomical representation is useful for various modality independent tasks, for example in seg-

mentation (single-class myocardium segmentation in Section 6.4.3.2 and multi-class cardiac

segmentation in Section 6.5.3.1), as well as in calculating cardiac functional indices (Sec-

tion 6.5.3.2). Disentanglement of anatomy and modality factors in SDNet also allows a mean-

ingful representation of the anatomy that can be generalised to any modality, and provides a
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suitable format for pooling information from various imaging modalities.

In both models the non-spatial factor contains the spatial factor’s residual information, such as

global image modality information, specifying how the anatomy is rendered in the final im-

age. Maintaining a representation of the modality characteristics allows, among other things,

the ability to use data from different modalities (Section 6.5.3.3). In SMDNet the non-spatial

factor further encodes information of the anatomical structures surrounding the myocardium.

Encoding this residual information within the non-spatial factor most importantly enables re-

constructing the input, which is key in utilising unlabelled data for semi-supervised learning.

Finally, the ability to learn this factorisation using a very limited number of labels is of consid-

erable significance in medical image analysis, as labelling data are tedious and costly. Thus,

it will be demonstrated that the proposed factorisations, in addition to being interpretable, lead

to considerable performance improvements in (single-class and multi-class) segmentation tasks

when using a very limited number of labelled images.

6.1.2 Contributions

In summary, our contributions are the following:

1. We propose new methods for disentangling images into a spatial map and a continuous

vector, which are directly applicable to medical images for representing anatomical and

non-anatomical information. We also apply constraints on the spatial representation to

be semantically meaningful, so that it corresponds to one or multiple anatomical regions.

2. We demonstrate the utility of our methods in a semi-supervised segmentation task and

on different datasets, and show that we maintain a good performance even when training

with labelled images from only a single subject.

3. We show properties of the decomposed latent space by generating examples using latent

space arithmetics.

4. We show that a semantic anatomical representation is useful for other anatomical tasks,

such as inferring the Left Ventricular Volume (LVV). More critically, we show that we

can also learn from such auxiliary tasks demonstrating the benefits of multi-task learning,

whilst also improving the learnt representation.
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5. Finally, we demonstrate that disentangling anatomy and modality factors enables multi-

modal learning, where a single encoder is used with both MR and CT data, and show that

information from additional modalities improves segmentation accuracy.

This chapter is organised as follows. Section 6.2 discusses previous work related to disentan-

gled representations and semi-supervised segmentation. Then, Section 6.3 presents the bench-

marks used in the experimental evaluation our methods. Sections 6.4 and 6.5 present the two

proposed approaches respectively, and finally, Section 6.6 concludes the chapter.

6.2 Related Work

Here we review previous work on disentangled representation learning, which is typically a fo-

cus of research on generative models (Section 6.2.1). We then review its application in domain

adaptation, which is achieved by a factorisation of style and content (Section 6.2.2). Finally,

we review semi-supervised methods in medical imaging in Section 6.2.3.

6.2.1 Disentangled Representation Learning

Interest in learning independent factors of variation of data distributions is growing. Several

variations of VAE [12,118] and GAN [119] have been proposed to achieve such a factorisation.

These methods learn disentangled representations in terms of continuous or discrete variables;

however, spatial information could be directly represented in a convolutional map, and this

would be useful when the learning task is semantic segmentation. Our proposed methods pro-

duces a decomposition as a combination of spatial and non-spatial information. This makes our

learned representation directly applicable to segmentation tasks.

6.2.2 Style and Content Disentanglement

Our approach here can be seen as similar to a disentanglement of an image into style and con-

tent, where we represent content (i.e. in our case the underlying anatomy) spatially. Concurrent

to our approach, there have been recent disentanglement models that also use vector and spatial

representations for the style and content respectively [25, 130–132]. The intricacies of medical

images differentiate us by necessitating the expression of the spatial content factor as categori-

cal in order to produce a semantically meaningful (interpretable) representation of the anatomy,
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which cannot be estimated and rather needs to be learned from the data. This discretisation of

the spatial factor also prevents the spatial representation from being associated with a particular

medical image modality. The remainder of this chapter uses the terms anatomy and modality

to refer to the synonymous content and style.

6.2.3 Semi-supervised Segmentation

A powerful property of disentangled representations is their ability for semi-supervised learning

[21]. An important application in medical image analysis is (semi-supervised) segmentation.

Semi-supervised segmentation has been proposed for cardiac image analysis using an iterative

approach and conditional random fields post-processing [171].

6.3 Benchmark Methods

In Sections 6.4, and 6.5 that demonstrate semi-supervised segmentation, we use the following

benchmarks for comparison.

(a) We use U-Net [13] as a fully supervised baseline because of its effectiveness in vari-

ous medical segmentation problems, and also since it is frequently used by participants

of cardiac challenges, such as MM-WHS and ACDC. It’s architecture follows the one

proposed in the original paper.

(b) As a semi-supervised benchmark, shorthanded as UNetGAN below, we add an GAN

with a mask discriminator to the U-Net’s supervised loss, to allow adversarial train-

ing [178]. This is useful when there are images with no ground truth masks, although

learning to produce a segmentation mask does not guarantee preserving spatial corre-

spondence between the input image and the generated masks.

(c) We also use the self-train method of [171], which proposes an iterative method of using

unlabelled data to retrain a segmentation network. In the original paper a conditional

random field post-processing is applied. Here, we use U-Net as a segmentation network

(such that the same architecture is used by all benchmarks) and we do not perform any

post-processing for a fair comparison with the other methods we present.
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6.4 Spatial Myocardial Disentanglement Network

We propose a Spatial Myocardial Disentanglement Network (SMDNet), that disentangles im-

ages into a myocardial segmentation mask, and a latent vector of intensity and residual anatom-

ical information. Specifically, we train two networks: one that learns a decomposition into

spatial and non-spatial latent factors, and one that learns to reconstruct the input image using

the decomposed representation. We demonstrate our method in semi-supervised myocardium

segmentation, using a small amount of labelled but a large pool of unlabelled cardiac cine-MR

images. In this application, our method learns to decompose the shape and location of the my-

ocardium from information related to surrounding structures and pixel intensities (related to

scanner properties and other imaging characteristics).

6.4.1 Materials and Methods

6.4.1.1 Motivation

A useful latent representation is one that describes the data well. Spatial (segmentation) maps

can be considered a form of latent variable that allows visual inspection of what a network

learns. At the same time, an easy (unsupervised) way to see whether a latent representation

captures the data is to use a decoder to reconstruct the input. In fact, even CycleGANs are

autoencoders: they encode (and decode) the input via an intermediate output and thus inspire

the design of our approach. Yet they have problems particularly when the intermediate out-

put is discretised (a binary mask) and supervised losses are introduced. Their performance

heavily depends on the weighting of the losses, as shown in Figure 6.2. If the segmentation

loss is weighted higher than the reconstruction loss, it is not possible to reconstruct the input

since the binary mask does not contain enough information for the transformation. When dif-

ferently weighted, information is stored in the binary mask ruining semantics. This confirms

findings of others, that a CycleGAN resolves the many-to-one/one-to-many problem by stor-

ing low-frequency information in the output image [204]. We can see that the two losses are

antagonistic, and a standard CycleGAN is not suitable as is. We need to introduce variables

that break the many-to-one problem, encouraging a balance between the losses to achieve good

segmentation and reconstruction.
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Figure 6.2: Input images, segmentation masks and reconstructions produced by a CycleGAN.

Left: high weight on segmentation, right: high weight on reconstruction.

6.4.1.2 SMDNet

Our model can be seen as an encoder-decoder and is comprised of two interconnected neu-

ral networks, a “decomposer” and a “reconstructor”, as illustrated in Figure 6.3. The former

decomposes an input 2D image (slice in a cine acquisition) into two components: a spatial rep-

resentation of the myocardium in the form of a binary mask, and a latent representation of the

remaining anatomical and imaging features in the form of a vector. Thus, the mask is an im-

age having pixel to pixel correspondences with the input and is inherently spatial, whereas the

other representation is a vector representing information in a high level way that is not directly

spatial. The reconstructor receives the two representations and aims to synthesise the original

input image. Given a successful decomposition, the binary mask acts as a guide defining where

the reconstructed myocardium should be. The role of the vector component is then to learn

some topology around the myocardium and fill the necessary intensity patterns, and allow for

many-to-many mappings.

Costs

More formally, let f and g be the decomposer and reconstructor. Given an image slice x ∈

X ⊂ IRH×W , where H and W are the image height and width respectively, we aim to learn

weights of f to decompose into a mask m and a 16 dimensional vector z, that is f(x) =

{fM (x), fZ(x)} = {m, z}, and the weights of g to remap the decomposition back to an image

g(fM (x), fZ(x)).

In a semi-supervised setup data comes from a labelled set {XL,M}, whereM := {0, 1}H×W is

a set of segmentation masks for imagesX , and an unlabelled setXU where usually |XU | > |X|.

We now define the following losses. Firstly, a reconstruction loss from autoencoding an image
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Figure 6.3: Schematic of SMDNet: an image is decomposed as a spatial representation of

anatomy (in our case myocardial mask m) and a latent vector z that captures other anatomical

and imaging characteristics. Both mask and z are used to reconstruct the input. The model con-

sists of several convolutional (CB) and dense blocks (DB). BatchNormalization and LeakyRelu

activations are used throughout.

is defined in Equation 6.1:

Lrec(f, g) = E
x

[‖x− g(f(x))‖1] . (6.1)

Secondly, two supervised losses when having images with corresponding masks m ∈ M are

defined in Equations 6.2, and 6.3:

LM (f) = E
x,m

[Dice(m, fM (x))] , (6.2)

LX(f, g) = E
x,m

[‖x− g(m, fZ(x)))‖1] . (6.3)

Finally, an adversarial loss using an image discriminator DX is defined in Equation 6.4, where

networks f and g are trained to maximise this objective against an adversarial discriminator

trained to minimise it:

LXadv(f, g) = E
x
[Dx(g(f(x)))2 + (DX(x)− 1)2]. (6.4)
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Figure 6.4: An illustration of the training losses of SMDNet.

Similarly, we define an adversarial loss using a mask discriminator DM in Equation 6.5:

LMadv(f) = E
x,m

[DM (fM (x))2 + (DM (m)− 1)2]. (6.5)

Both adversarial losses are based on LeastSquares-GAN [50].

Implementation Details

The decomposer follows a U-Net [13] architecture (see Figure 6.3), and its last layer outputs

a segmentation mask of the myocardium via a sigmoid activation function. The model’s deep

spatial maps contain downsampled image information, which is used to derive the latent vector

z through a series of convolutions and fully connected layers, with the final output being passed

through a sigmoid so z is bounded. Following this, an architecture with three residual blocks is

employed as the reconstructor (see Figure 6.3).

The spatial and continuous representations are not explicitly made independent, so during train-

ing the model could still store all information needed for reconstructing the input as low values

in the spatial mask, as also observed in [204], since finding a mapping from a spatial repre-

sentation to an image is easier than combining two sources of information, namely the mask

and z. To prevent this, we apply a step function (i.e. a threshold) at the spatial input of the

reconstructor to binarise the mask in the forward pass, and encourage the reconstructor to learn

a mapping from both binary mask and a vector z to a target image. We store the original values

and bypass the step function during back-propagation, and apply the updates to the original

non-binary mask. Note that the binarisation of the mask only takes place at the input of the re-

constructor network and is not used by the discriminator, in order to encourage the decomposer

to produce binary masks, and also train with smoother gradients.
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6.4.2 Experimental Setup

6.4.2.1 Data

The experimental evaluation uses 2D cine-MR images that are rescaled to the range [-1,1] from

ACDC and QMRI, described in Sections 2.6.2.2 and 2.6.2.3, respectively.

6.4.2.2 Model and Training Details

The overall cost function is a sum of the individual cost functions, which are schematically

illustrated in Figure 6.4, and are defined in Equation 6.6:

LSMDNet(f, g) = λ1LM (f)+λ2L
M
adv(f)+λ3Lrec(f, g)+λ4LI(f, g)+λ5L

X
adv(f, g). (6.6)

The corresponding loss for images from the unlabelled set does not contain the first and fourth

terms. The λ are experimentally set to 10, 10, 1, 10 and 1 respectively. A higher λ value

has been selected for cost components that are related to segmentation (LM and LMadv), since

segmentation is a challenging task. Furthermore, λ4 has also been set to 10, since LI uses

ground truth segmentations to reconstruct the input, and this is critical for disentanglement of

the residual information to the vector component z.

The model is implemented in Keras [202], and trained with Adam [201] with a learning rate of

0.0001. Segmentation results report the test Dice score (Section 3.6) and are obtained through

3-fold cross validation with 70%, 15%, 15% of the images used in training, validation and

test splits respectively. SMDNet implementation is available at https://github.com/

agis85/spatial_factorisation.

6.4.3 Results and Discussion

We demonstrate the proposed decomposition in two ways. Firstly, we show the capability of

synthesising new images when combining factors of different slices (see Section 6.4.3.1), and

also demonstrate the learned representations by interpolating the latent vector between two

images. Secondly in a semi-supervised setting, where we show that we can leverage unlabelled

data to increase segmentation accuracy in the few-shot regime (see Section 6.4.3.2).
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xi mi g(mi,zi) g(mi,0)g(mj,zi) g(0,zi)

Figure 6.5: Reconstructions using different mi and zi combinations for two input images x1

and x2 (one per row), respectively. From left to right the columns contain the following: pre-

dicted segmentation masks m1 and m2; reconstructions g(m1, z1) and g(m2, z2); synthetic

images g(m2, z1) and g(m1, z2) by mixing masks and vectors; synthetic images g(0, z1) and

g(0, z2) by using a mask of zeros, which has the effect of producing cardiac images without

myocardium; finally, synthetic images g(m1, 0) and g(m2, 0) of only the myocardium.

g(m1, z2)g(m1, z1)

Figure 6.6: Reconstructions when using a fixed mask m1 and interpolating between two vec-

tors z1 and z2.

6.4.3.1 Latent Space Arithmetic

As a demonstration of the learned representation, Figure 6.5 shows reconstructions of input

images from the training set using different combinations of masks and z components. The

first three columns show the original input with the predicted mask and the input’s reconstruc-

tion. Next, we take the spatial representation mj from one image and combine it with the zi

component of the other image, and vice versa. As shown in the figure (4th column) the intensi-

ties and the anatomy around the myocardium remain unchanged, but the myocardial shape and

position, which are encoded in the mask, change to that of the second image. The final two

columns show reconstructions using a null mask (i.e. mi = 0) and the correct zi in 5th column,
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Figure 6.7: Two examples of segmentation performance: input, prediction and ground truth.

or using the original mask with a zi = 0 in the 6th column. In the first case, the produced image

does not contain myocardium, whereas in the second case the image contains only myocardium

and no other anatomical or MR characteristics.

Moreover, we qualitatively evaluate the smoothness of the residual representation with syn-

thetic images presented in Figure 6.6, which demonstrates how the underlying anatomy changes

slowly from the left-most image to the right-most image. The synthetic images are produced

by using a fixed myocardium mask, and by interpolating between two vectors z1 and z2, that

are obtained from the real input images.

6.4.3.2 Semi-supervised Results

The utility of the disentangled representation becomes evident in semi-supervised learning.

Qualitatively in Figure 6.7 we can see that our method closely follows ground truth segmenta-

tion masks (example from ACDC held-out test set) when trained with full supervision. Further-

6%3%1%

Input image

Real mask

6%3%1%

U-Net

UNetGAN

SMDNet

Input image

Real mask

(a) semi-supervised example (b) semi-supervised example: failure case

Figure 6.8: Example segmentation masks produced by U-Net, GAN, and SMDNet trained in

ACDC on low fractions of labelled data.
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Labels 100% 50% 25% 12.5% 6% 3% 1.5%

U-Net 81.708 80.008 78.209 65.719 58.117 35.623 02.601

self-train 79.210 71.114 52.027 54.221 48.219 31.114 03.902

UNetGAN 82.607 77.211 78.709 72.710 64.813 36.532 08.006

SMDNet 82.208 81.408 77.109 76.709 73.112 67.814 41.513

Table 6.1: Dice scores (%) and standard deviations of myocardium on ACDC data. The models

are trained with 1200 unlabelled images, and different proportions of labelled data shown in the

top row. The masks used for adversarial training do not correspond to any training images. Best

results are shown in bold font.

more, Figure 6.8 shows two segmentation examples produced by U-Net, UNetGAN, SMDNet

when trained on ACDC for 1%, 3% and 6% labelled images. At 1%, which corresponds to 11

images, the U-Net collapses and cannot produce a good segmentation, whereas the UNetGAN

produces a mask that looks circular to partially satisfy the shape constraint of the myocardium.

Even in the failure case of Figure 6.8b, SMDNet results are more consistent, although the my-

ocardium is under-segmented.

To assess our performance quantitatively we train a variety of setups varying the number of

labelled training images whilst keeping the unlabelled fixed (in both ACDC and QMRI cases).

We train SMDNet and the benchmarks (U-Net, self-train, and UNetGAN), and report results on

held-out test sets in Tables 6.1 and 6.2 for the two datasets respectively. We can see that even

when the number of labelled images is very low, our method is able to achieve segmentation

accuracy considerably higher than the other two methods. As the number of labelled images

increases, all models perform comparably good.

An extension can be considered, in which the spatial factor is a generic factor of the anatomy

and does not restrict to the myocardium. This offers many benefits, since it enables multi-

class segmentation, and also multi-task learning of further anatomical tasks. This extension is

presented in Section 6.5 below.
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Labels 100% 50% 25% 12.5%

U-Net 68.610 68.109 44.115 36.817

self-train 70.209 50.122 23.029 06.107

UNetGAN 79.506 75.607 58.012 06.106

SMDNet 79.404 77.207 68.614 42.414

Table 6.2: Dice scores (%) and standard deviations of myocardium on QMRI data. The models

are trained with 1200 unlabelled images, and different proportions of labelled data shown in the

top row. The masks used for adversarial training do not correspond to any training images. Best

results are shown in bold font.

6.5 Spatial Disentanglement Network

Section 6.4 presented a myocardial decomposition method for cardiac MR images. Learning a

decomposition of data into a spatial content factor and a non-spatial style factor has been a focus

of recent research in computer vision [25, 131] with the aim being to achieve diversity in style

transfer between domains. However, no consideration has been taken regarding the semantics

and the precision of the spatial factor. This is crucial in medical analysis tasks in order to be

able to extract quantifiable information directly from the spatial factor. In our previous work

of Section 6.4, we aimed to precisely address the need for interpretable semantics by explicitly

enforcing the spatial factor to be a binary myocardial segmentation. However, since the spatial

factor is a segmentation mask of only the myocardium, remaining anatomies must be encoded

in the non-spatial factor, which violates the concept of explicit factorisation into anatomical and

modality factors.

In this section instead, we propose Spatial Disentanglement Network (SDNet), schematic shown

in Figure 6.9, that learns a disentangled representation of medical images consisting of a spatial

map that semantically represents the anatomy, and a non-spatial latent vector containing image

modality information.

The anatomy is modelled as a multi-channel feature map, where each channel represents dif-

ferent anatomical substructures (e.g. myocardium, left and right ventricles). This spatial rep-

resentation is categorical with each pixel necessarily belonging to exactly one channel. This

strong restriction prevents the binary maps from encoding modality information, encouraging

the anatomy factors to be modality-agnostic (invariant), and further promotes factorisation of
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Figure 6.9: A schematic overview of the proposed model. An input image is first encoded to a

multi-channel spatial representation, the anatomy factor s, using an anatomy encoder fanatomy.

Then s can be used as an input to a segmentation network h to produce a multi-class segmen-

tation mask, (or some other task specific network). The factor s along with the input image

are used by a modality encoder fmodality to produce a latent vector z representing the imaging

modality. The two representations s and z are combined to reconstruct the input image through

the decoder network g.

the subject’s anatomy into meaningful topological regions.

On the other hand, the non-spatial factor contains modality-specific information, in particular

the distribution of intensities of the spatial regions. We encode the image intensities into a

smooth latent space, using a Variational Autoencoder (VAE) loss, such that nearby values in

this space correspond to neighbouring values in the intensity space.

Finally, since the representation should retain most of the required information about the input

(albeit in two factors), image reconstructions are possible by combining both factors.

6.5.1 Materials and Methods

Overall, our proposed model can be considered as an autoencoder, which takes as input a 2D

volume slice x ∈ X , where X ⊂ IRH×W is the set of all images in the data, with H and W

being the image’s height and width respectively. The model generates a reconstruction through
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Figure 6.10: The architectures of the four networks that make up SDNet. The anatomy encoder

is a standard U-Net [13] that produces a spatial anatomical representation s. The modality

encoder is a convolutional network (except for a fully connected final layer) that produces

the mean µ and standard deviation σ of a Gaussian distribution, used to sample the modality

representation z. The segmentor is a small fully convolutional network that produces the final

segmentation prediction of a multi-class mask (with V classes) given s. Finally the decoder

produces a reconstruction of the input image from s with its output modulated by z through

FiLM [14]. The anatomy factor’s channels parameter C, the modality factor’s size nz , and the

number of segmentation classes V depend on the specific task and are detailed in the main text.

an intermediate disentangled representation. The disentangled representation is comprised of a

multi-channel spatial map (a tensor) s ∈ S := {0, 1}H×W×C , where C is the number of chan-

nels, and a multi-dimensional continuous vector factor z ∈ Z := IRnz , where nz is the number

of dimensions. These are generated respectively by two encoders, modelled as convolutional

neural networks, fanatomy and fmodality. The two representations are combined by a decoder g

to reconstruct the input. In addition to the reconstruction cost, explicit supervision can be given

in the form of auxiliary tasks, for example with a segmentation task using a network h, or with

a regression task as we will demonstrate in Section 6.5.3.2. A schematic of our model can be

seen in Figure 6.9 and the detailed architectures of each network are shown in Figure 6.10.
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(a) Input, anatomical representation with binary thresholding, and reconstruction image.

(b) Input, anatomical representation with no binary thresholding, and reconstruction image.

Figure 6.11: (a) Example of a spatial representation, expressed as a multi-channel binary map.

Some channels represent defined anatomical parts such as the myocardium or the left ventricle,

and others the remaining anatomy required to describe the input image on the left. Observe how

sparse most of the informative channels are. (b) Spatial representation with no thresholding

applied. Each channel of the spatial map, also captures the intensity signal in different gray

level variations and is not sparse, in contrast to Figure 6.11a. This may hinder an anatomical

separation. Note that no specific channel ordering is imposed and thus the anatomical parts can

appear in different order in the anatomical representations across experiments.

6.5.1.1 Input Decomposition

The decomposition process yields representations for the anatomy and the modality character-

istics of medical images and is achieved by two dedicated neural networks. Whilst a decom-

position could also be performed with a single neural network with two separate outputs and

shared layer components, as done in our previous work (Section 6.4), we found that by using

two separate networks, as also done in [25, 131], we can control more easily the information

captured by each factor, and stabilise the behaviour of each encoder during training.

Anatomical Representation

The anatomy encoder is a fully convolutional neural network that maps 2D images to spatial

representations, fanatomy : X → S. We use a U-Net [13] architecture, containing down-

sampling and upsampling paths with skip connections between feature maps of the same size,

allowing effective fusion of important local and non-local information.

The spatial representation is a feature map consisting of a number of binary channels of the

same spatial dimensions as the input image, that is s ∈ {0, 1}H×W×Cs.t.
∑C

c=1 sh,w,c = 1
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∀h ∈ {1, . . . ,H}, w ∈ {1, . . . ,W}, where C is the number of channels. Some channels con-

tain individual anatomical (cardiac) sub-structures, while the other structures, necessary for

reconstruction, are freely dispersed in the remaining channels. Figure 6.11a shows an example

of a spatial representation, where the myocardium, the left and the right ventricle are clearly vis-

ible, and the remaining channels contain the surrounding image structures (albeit more mixed

and not anatomically distinct).

The spatial representation is derived using a softmax activation function to force each pixel to

have activations that sum to one across the channels. Since softmax functions encode contin-

uous distributions, we binarise the anatomical representation via the operator s 7→ bs + 0.5c,

which acts as a threshold for the pixel values of the spatial variables in the forward pass. Dur-

ing back-propagation the step function is bypassed and updates are applied to the original non-

binary representation, as in the straight-through operator [205].

Thresholding s is integral to the model design and offers two advantages. Firstly, it reduces

the capacity of the spatial factor, encouraging it to be a representation of only the anatomy,

while preventing encoding modality information. Secondly, it enforces a factorisation of the

spatial factor in distinct channels, as each pixel can only be active on one channel. To illustrate

the importance of this binarisation, an example of a non-thresholded spatial factor is shown

in Figure 6.11b. Observe, that the channels of s are not sparse with gray level variations now

evident. Image intensities are encoded spatially, using different grayscale values, allowing good

reconstructions to be achieved without a modality factor, which we explicitly want to avoid.

Modality Representation

Given samples of the data x ∈ X with their corresponding s ∈ S (deterministically obtained

by fanatomy), we learn the posterior distribution of latent factors z ∈ Z := IRnz , q(z|x, s).

Learning this posterior distribution follows the VAE principle [44]. In brief a VAE learns a low

dimensional latent space, such that the learnt latent representations match a prior distribution

that is set to be an isotropic multivariate Gaussian p(z) = N (0, 1). A VAE consists of an

encoder and a decoder. The encoder, given an input, predicts the parameters of a Gaussian

distribution (with diagonal co-variance matrix). This distribution is then sampled, using the

reparameterisation trick to allow learning through back propagation, and the resulting sample is

fed through the decoder to reconstruct the input. VAEs are trained to minimise a reconstruction
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error and the KL divergence of the estimated Gaussian distribution q(z|x, s) from the unit

Gaussian p(z) of Equation 6.7:

LKL(fanatomy, fmodality) = E
x

[KL(q(z|x, s)‖p(z))] , (6.7)

where KL(p‖q) =
∫
p(z)log p(z)

q(z|x,fanatomy(x))
dz. Once trained, sampling a vector from the

unit Gaussian over the latent space and passing it through the decoder approximates sampling

from the data, i.e. the decoder can be used as a generative model.

The posterior distribution is modelled with a stochastic encoder (this is analogous to the VAE

encoder) as a convolutional network, which encodes the image modality, fmodality : X × S →

Z. Specifically, the stochasticity of the encoder (for a sample x and its anatomy factor s) is

achieved as in the VAE formulation as follows: fmodality(x, s) produces first the mean and

standard deviation for an nz dimensional Gaussian, which is then sampled to yield the final z.

6.5.1.2 Segmentation

One important task for the model is to infer segmentation masks m ∈ M := {0, 1}H×W×V ,

where V is the number of anatomical segmentation categories in the training dataset, out of the

spatial representation. This is an integral part of the training process because it also defines the

anatomical structures that will be extracted from the image. The segmentation network1 is a

fully convolutional network consisting of two convolutional blocks followed by a final 1 × 1

convolution layer (see Figure 6.10), with the goal of refining the anatomy present in the spatial

maps and produce the final segmentation masks, h : S →M .

When labelled data are available, a supervised cost is employed that is based on a differentiable

Dice loss [206] between a real segmentation mask m of an image sample x and its predicted

segmentation h(fanatomy(x)), described in Equation 6.8:

Lsegm(fanatomy, h) = 1− 2× E
x,m

[∑
h,w,l(mh,w,l × h(fanatomy(x))h,w,l) + ε∑
h,w,l(mh,w,l + h(fanatomy(x))h,w,l) + ε

]
, (6.8)

where the added small constant ε prevents division by 0. In a semi-supervised scenario, where

1Experimental results showed that having an additional segmentor network, instead of enforcing our spatial
representation to contain the exact segmentation masks, improves the training stability of our method. Furthermore,
it offers flexibility in that the same anatomical representation can be used for multiple tasks, such as in segmentation
and the calculation of the left ventricular volume.
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there are images with no corresponding segmentations, an adversarial loss is defined in Equa-

tion 6.9, using a discriminator over masks DM , based on LeastSquares-GAN [50]. Networks

fanatomy and h are trained to maximise the adversarial objective, against DM which is trained

to minimise it:

Ladv(fanatomy, h) = E
x,m

[
DM (h(fanatomy(x)))2 + (DM (m)− 1)2

]
. (6.9)

The architecture of the discriminator is based on DCGAN discriminator [48], without Batch

Normalization.

6.5.1.3 Image Reconstruction

The two factors are combined by a decoder network g to generate an image y ∈ Y := IRH×W×1

with the anatomical characteristics specified by s and the imaging characteristics specified by

z, g : S × Z → Y . The fusion of the two factors acts as an inpainting mechanism where the

information stored in z, is used to derive the image signal intensities that will be used on the

anatomical structures, stored in s.

The reconstruction is achieved by a decoder convolutional network conditioned with four FiLM

[14] layers. This general purpose conditioning method learns scale and offset parameters for

each feature-map channel within a convolutional architecture. Thus, an affine transformation

(one per channel) learnt from the conditioning input is applied.

Here, a network of two fully connected layers (see Figure 6.10) maps z to the scale and offset

values γ and β for each intermediate feature map Fc of the decoder. Each channel of Fc is

modulated based on c pairs γc and βc as follows: FiLM(Fc|γc, βc) = γc � Fc + βc, where

element-wise multiplication (�) and addition are both broadcast over the spatial dimensions.

The decoder and FiLM parameters are learnt through the reconstruction of the input images

using the MAE, defined in Equation 6.10:

Lrec(fanatomy, fmodaliy, g) = E
x

[‖x− g(fanatomy(x), fmodality(x, fanatomy(x)))‖1] . (6.10)

The design of the decoding process restricts the type of information stored in z to only affect

the intensities of the produced image. This is important in the disentangling process as it pushes

z to not contain spatial anatomical information.
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The decoder can also be interpreted as a conditional generative model, where different samples

of z conditioned on a given s generate images of the same anatomical properties, but with

different appearances. The reconstruction process is the opposite of the decomposition process,

i.e. it learns the dependencies between the two factors in order to produce a realistic output.

Modality Factor Reconstruction

A common problem when training VAE is posterior collapse: a degenerate condition where the

decoder is ignoring some factors. In this case, even though the reconstruction is accurate, not

all data variation is captured in the underlying factors.

In our model posterior collapse manifests when some modality information is spatially encoded

within the anatomy factor.2 To overcome this we use a z reconstruction cost (Equation 6.11),

according to which an image y produced by a random z sample should produce the same modal-

ity factor when (re-)encoded,

Lzrec(fanatomy, fmodality, g) = E
z,x

[‖z − fmodality(y, fanatomy(y))‖1] . (6.11)

The faithful reconstruction of the modality factor z penalises the VAE for ignoring dimen-

sions of the latent distribution and encourages each encoded image to produce a low variance

Gaussian. This is in tension with the KL divergence cost which is optimal when the produced

distribution is a spherical Gaussian of zero mean and unit variance. A perfect score of the KL

divergence results in all samples producing the same distribution over z, and thus the sam-

ples are indistinguishable from each other based on z. Without Lzrec, the overall cost function

can be minimised if imaging information is encoded in s, thus resulting in posterior collapse.

Reconstructing the modality factor prevents this, and results in an equilibrium where a good

reconstruction is possible only with the use of both factors.

6.5.2 Experimental Setup

6.5.2.1 Data

Experiments use 2D images from four datasets, that are normalised to the range [-1, 1].

2Note that while using FiLM prevents z from encoding spatial information, it does not prevent the case of
posterior collapse i.e. that s encodes (all or part of) the modality information.
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(a) For the semi-supervised segmentation experiment (Section 6.5.3.1) and the latent space

arithmetic (Section 6.5.3.5) we use the ACDC dataset, described in Section 2.6.2.2.

(b) We also use data acquired at Edinburgh Imaging Facility QMRI (Section 2.6.2.3) for the

semi-supervised segmentation and multi-task experiments of Sections 6.5.3.1 and 6.5.3.2

respectively.

(c) Finally, we use cine-MR and CP-BOLD images from the BOLD dataset (Section 2.6.2.4

to further evaluate modality estimation (Section 6.5.3.4).

6.5.2.2 Model and Training Details

The overall cost function is a composition of the individual costs of each of the model’s com-

ponents and is defined in Equation 6.12:

LSDNet = λ1LKL + λ2Lsegm + λ3Ladv + λ4Lrec + λ5L
z
rec. (6.12)

The λ parameters are experimentally set to values: λ1=0.01, λ2=10, λ3=10, λ4=1, λ5=1. We

opt for a lower λ1 to prevent posterior collapse in the decoder (which would ignore z) and

adopt the value from [129] that also trains a VAE for modelling intensity variability. Separating

the anatomy into segmentation masks is a difficult task, and is also in tension with the recon-

struction process which pushes parts with similar intensities to be in the same channels. This

motivates our decision in increasing the values of the segmentation hyperparameters λ2 and λ3.

The remaining λ4 and λ5 are set to the default value of 1, such that the errors are in the same

value range as the errors of the previous loss components.

We set the dimension of the modality factor nz=8 as in [129] across all datasets. We also set the

number of channels of the spatial factor to C=8 for ACDC and QMRI and increase to C=16 for

MM-WHS, to support the increased number of segmented regions (7 in MM-WHS) and the fact

that CT and MR data have different contrasts and viewpoints. This additional flexibility allows

the network to use some channels of s for common information across the two modalities (MR

and CT) and some for unique (not common) information.

We train using Adam [201] with a learning rate of 0.0001. We used a batch size of 4 and

an early stopping criterion based on the segmentation cost of a validation set. All code was

developed in Keras [202]. The quantitative results of Section 6.5.3 are obtained through 3-fold
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cross validation, where each split contains a proportion of the total volumes of 70%, 15% and

15% corresponding to training, validation and test sets. SDNet implementation is available at

https://github.com/agis85/anatomy_modality_decomposition.

6.5.3 Results

We here present and discuss quantitative and qualitative results of our method in various exper-

imental scenarios. Initially, multi-class semi-supervised segmentation is evaluated in Section

6.5.3.1. Subsequently, Section 6.5.3.2 demonstrates multi-task learning with the addition of a

regression task in the training objectives. In Section 6.5.3.3, SDNet is evaluated in a multi-

modal scenario by concurrently segmenting MR and CT data. In Section 6.5.3.4 we investigate

whether the modality factor z captures multimodal information. Finally, Section 6.5.3.5 demon-

strates properties of the factorisation using latent space arithmetic, in order to show how z and

s interact to reconstruct images.

6.5.3.1 Semi-supervised Segmentation

We evaluate the utility of our method in a semi-supervised experiment, in which we combine

labelled images with a pool of unlabelled images to achieve multi-class semi-supervised seg-

mentation. Specifically, we explore the sensitivity of SDNet and the baselines of Section 6.3

to the number of labelled examples, by training with various numbers of labelled images. Our

objective is to show that we can achieve comparable results to a fully supervised network using

fewer annotations.

To simulate a more realistic clinical scenario, sampling of the labelled images does not happen

over the full image pool, but at a subject level: initially, a number of subjects are sampled,

and then all images of these subjects constitute the labelled dataset. The number of unlabelled

images is fixed and set equal to 1200 images: these are sampled at random from all subjects

of the training set and from cardiac phases other than End Systole (ES) and End Diastole (ED)

(for which no ground truth masks exist). The real segmentation masks used to train the mask

discriminator are taken from the set of image-mask pairs from the same dataset.

In order to test the generalisability of all methods to different types of images, we use two cine-

MR datasets: ACDC which contains masks of the LV, MYO and RV; and QMRI which contains

masks of the LV and MYO. Spatial augmentations by rotating inputs up to 90◦ are applied
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Labels
U-Net UNetGAN self-train SDNet

MYO LV RV avg MYO LV RV avg MYO LV RV avg MYO LV RV avg

100% 837 886 7910 857 826 876 758 835 847 895 828 856 845 884 788 845

50% 837 877 7910 857 817 866 7510 827 8010 8510 7811 828 836 877 779 836

25% 779 829 6714 7511 789 858 7211 798 7613 8510 7015 7811 80∗
7 856 7311 81∗

6

12.5% 7113 8013 6117 7013 788 856 6913 798 6317 7713 5721 6715 798 857 6913 808

6% 6312 7613 5622 6513 7511 8111 6913 7512 4627 5923 3418 4723 779 8310 7112 78∗
9

3% 5519 6620 4620 5218 7332 7910 6714 7510 2015 3520 2214 2415 76∗
7 82∗

8 6814 77∗
8

1.5% 2619 3321 3517 2119 6721 7811 6312 6712 1110 1914 2512 1611 7012 7713 6415 73∗
12

Table 6.3: Dice score (%) on ACDC for MYO, LV, RV, and average. Standard deviations

are shown as subscripts. The models are trained with 1200 unlabelled and different fractions

of labelled images (each one corresponding to a proportion of selected subjects). For each of

the three components and the average separately, the best result is shown in bold font and an

asterisk indicates statistical significance at the 5% level compared to the second best method in

the same row/component.

to experiments using ACDC data to better simulate the orientation variability of the dataset.

No augmentations are applied in experiments using QMRI data since all images maintain a

canonical orientation.3 No further augmentations have been performed to fairly compare the

effect of the different methods.

We present the average cross-validation Dice score (Section 3.6) on held out test sets across

all labels, as well as the Dice score for each label separately, and the corresponding standard

deviations. Note that images from a given subject can only be present in exactly one of the

training, validation or test sets. Table 6.3 contains the ACDC results for all labels, MYO, LV

and RV respectively, and Table 6.4 contains the QMRI results for all labels, MYO, and LV

respectively. The test set for each fold contains 280 images of ED and ES phases, belonging

to 15 subjects for ACDC, and 35 images of the ED phase belonging to 4 subjects for QMRI.

The best results are shown in bold font, and an asterisk indicates statistical significance at the

5% level, compared to the second best result, computed using a paired t-test. In both tables the

3Using data that present different (non-canonical) orientations is possible to affect segmentation performance,
since features extracted by neural networks are not rotation invariant and thus might be biased to the training data.
This can be solved with appropriate data augmentation.
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Labels
U-Net UNetGAN self-train SDNet

MYO LV avg MYO LV avg MYO LV avg MYO LV avg

100% 729 906 837 757 933 864 759 925 867 756 934 864

50% 7215 8218 7415 719 867 835 6211 889 799 736 905 845

25% 5414 809 6910 687 867 815 3622 5629 4926 667 887 808

12.5% 5211 816 657 688 886 797 4216 6414 5814 679 886 807

6% 2114 4328 4320 649 8410 7510 86 2111 137 657 8710 795

Table 6.4: Dice score (%) on QMRI for MYO, LV, and average. Standard deviations are shown

as subscripts. The models are trained with 1200 unlabelled and different fractions of labelled

images (each one corresponding to a proportion of selected subjects). For each of the two

components and the average separately, the best result is shown in bold font and an asterisk

indicates statistical significance at the 5% level compared to the second best method in the

same row/component.

lowest amount of labelled data (1.5% for Table 6.3 and 6% for Table 6.4) correspond to images

selected from one subject. Segmentation examples for ACDC data using different number of

labelled images are shown in Figure 6.12, where different colours are used for the different

segmentation classes.

For both datasets, when the number of annotated images is high, then all methods perform

equally well, although our method achieves the lowest variance. In Table 6.3 the performance

of the supervised (U-Net) and self-trained methods decreases when the number of annotated

images reduces below 12.5%, since the limited annotations are not sufficiently representative

of the data. When using data from one or two subjects, these two methods which mostly rely

on supervision fail with a Dice score below 55%. On the other hand, even when the number of

labelled images is small, adversarial training used by SDNet and UNetGAN helps maintaining

a good performance. The reconstruction cost used by our method further regularises training

and consistently produces more accurate results, with Dice scores equal to 73%, 77% and 78%

for 1.5%, 3% and 6% labels respectively, that are also significantly better, with p-values 0.0006,

0.02, and 0.002, in a paired t-test.

It is interesting to compare the performance of SDNet with our previous work (Section 6.4). We

therefore modify our previous model for multi-class segmentation and repeat the experiment for
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100% 50% 25% 12.5% 6% 3% 1.5%

SDNet

UNetGAN

UNet

self-train

ground truth

input image

Figure 6.12: Segmentation example for different numbers of labelled images from the ACDC

dataset. Blue, green and red show the models prediction for MYO, LV and RV respectively.

the ACDC dataset. We compute the Dice scores and standard deviations for 100%, 50%, 25%,

12.5%, 6%, 3%, and 1.5% of labelled data to be respectively 79 ± 7%, 75 ± 8%, 79 ± 7%,

77± 10%, 75± 9%, 66± 15%, and 59± 13%. Comparing with the results of Table 6.3, SDNet

significantly outperforms our previous model (at the 5% level, paired t-test).

On the smaller QMRI dataset, the segmentation results are seen in Table 6.4, and correspond

to two masks instead of three. When using annotated images from just a single subject (cor-

responding to 6% of the data the lowest possible), the performance of the supervised method

reduces by almost 50% compared to when using the full dataset. SDNet and UNetGAN both

maintain a good performance of 75% and 79%, with no significant differences between them.

6.5.3.2 Left Ventricular Volume

It is common for clinicians to not manually annotate all endocardium and epicardium contours

for all patients if it is not necessary. Rather, a mixture of annotations and other metrics of

interest will be saved at the end of the study in the electronic health record. For example, we

can have a scenario with images of some patients that contain myocardium segmentations and

some images with the value of their left ventricular volume. Here we test our model in such a

multi-task scenario and show that we can benefit from such auxiliary and mixed annotations.

We will evaluate, firstly whether our model is capable of predicting a secondary output related
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to the anatomy (the volume of the left ventricle), and secondly whether this secondary task

improves the performance of the main segmentation task.

Using the QMRI dataset, we first calculate the ground truth left ventricular volume (LVV) for

each patient as follows: for each 2D slice, we first sum the pixels of the left ventricular cavity,

then multiply this sum with the pixel resolution to get the corresponding area and then multiply

the result with the slice thickness to get the volume occupied by each slice. The final volume is

the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a similar process to the one used to

calculate the ground truth values. We design a small neural network consisting of two con-

volutional layers (each having a 3 × 3 × 16 kernel followed by a ReLU activation), and two

fully connected layers of 16 and 1 neurons respectively, both followed by a ReLU activation.

This network regresses the sum of the pixels of the left ventricle, taking as input the spatial

representation. The predicted sum can then be used to calculate the LVV offline.

Using a pre-trained model of labelled images corresponding to one subject (last row in Ta-

ble 6.4 with 6% labels), we fine-tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find the average LVV over the test volumes equal to

138.57mL (standard deviation of 8.8), and the ground truth LVV equal to 139.23mL (standard

deviation of 2.26), with no statistical difference between them in a paired t-test. Both measure-

ments agree with the normal LVV values for ED cardiac phases, which was reported as 143mL

in a large population study [207]. The multi-task objective used to fine-tune the whole model

also benefits test segmentation accuracy, which is raised from 75.6% to 83.2% (statistically

significant at the 5% level). 4 for both labels individually: MYO accuracy rises from 63.3% to

70.6% and LV accuracy rises from 81.9% to 89.9%. While this is for a single split, observe that

using LVV as an auxiliary task effectively brought us closer to the range of having 50% anno-

tated masks (second row in Table 6.4). Thus, auxiliary tasks, such as LVV prediction, which

is related to the endocardial border segmentation, can be used to train models in a multi-task

setting and leverage supervision present in typical clinical settings.
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Figure 6.13: Example anatomical representations from one MR and two CT images respec-

tively. Green boxes mark common spatial information captured in the same channels, whereas

red boxes mark information present in one but not the other modalities.

6.5.3.3 Multimodal Learning

By design, our model separates the anatomy factor from the image modality factor. As a result,

it can be trained using multimodal data, with the spatial factor capturing the common anatom-

ical information and the non-spatial factor capturing the intensity information unique to each

image’s particular modality. Here we evaluate our model using a multimodal MR and CT input

to achieve segmentation and modality transformation.

Both these tasks rely on learning consistent anatomical representations across the two modali-

ties. However, it is well known that MR and CT have different contrasts that accentuate different

tissue properties and may also have different views. Thus, we would expect some channels of

the anatomy factor to be used in CT but not in MRI whereas some to be used by both. This

disentanglement of information captures both differences in tissue contrasts but also differences

in view when parts of the anatomy are not visible in all slice positions of a 3D volume.

This is illustrated in Figure 6.13, which shows three example anatomical representations from

one MR and two CT images, and specifically marks common anatomy factors that are captured

in the same respective channels, and unique factors that are captured in different channels.

Multimodal Segmentation

We train SDNet using MR and CT data with the aim to improve learning of the anatomy factor

from both MR and CT segmentation masks. In fact, we show below that when mixing data

from MR and CT images, we improve segmentation compared to when using each modality

4The multi-task objective in fact benefits the Dice score (statistically significant at the 5% level)
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separately. Since the aim is to specifically evaluate the effect of multimodal training in segmen-

tation accuracy, unlabelled images are not considered here as part of the training process, and

the models are trained with full supervision only.

In Table 6.5 we present the Dice score over held out MR and CT test sets, obtained when train-

ing a model with differing amounts of MR and CT data. Results for 12.5% of data correspond

to images obtained from one subject. Training with both data leads to improvements in both

individual MR and CT performances. This is the case even when we add 12.5% of CT on

100% of MR, and vice versa; this improves MR performance (from 75% to 76%, not statisti-

cally significant, although improvement becomes significant as more CT are added), but also

CT performance (from 77% to 81%, statistically significant).

We also train using different mixtures of MR and CT data, but keeping the total amount of

training data fixed. In the CT case, we observe that Dice ranges between 77% (at 100%) and

65% (at 12.5%). This shows that CT segmentation clearly benefits from training alongside MR,

since when training on CT alone with 12.5%, the corresponding Dice is 23%. In the MR case,

we observe that Dice ranges between 75% (at 100%) and 49% (at 12.5%). Here, the relative

reduction is larger than in the CT case, however MR training at 12.5% also benefits from the

CT data, since the Dice when training on 12.5% MR alone is 27%. Furthermore, the Dice score

for the other proportions of the data is relatively stable with a range of 69% to 74% for CT, and

a range of 67% to 75% for MR.

In both experimental setups, whether the total number of training data is fixed or not, having

additional data even when coming from another modality helps. This can have implications

for current or new datasets of a rare modality, which can be augmented with data from a more

common modality.

Modality Transformation

Although our method is not specifically designed for modality transformations, when trained

with multimodal data as input, we explore cross-modal transformations by mixing the disen-

tangled factors. This mixing of factors is a special case of latent space arithmetic that we

demonstrate concretely in Section 6.5.3.5. We combine different values of the modality factor

with the same fixed anatomy factor to achieve representations of the anatomy corresponding to

two different modalities.
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MR train CT train MR test CT test

100% 100% 785 801

100% 12.5% 763 566

12.5% 100% 397 811

12.5% 0% 2712 -

0% 12.5% - 237

100% 0% 753 -

87.5% 12.5% 745 656

75% 25% 752 693

62.5% 37.5% 722 692

50% 50% 685 733

37.5% 62.5% 674 734

25% 75% 676 743

12.5% 87.5% 497 736

0% 100% - 774

Table 6.5: Dice score (%) on MM-WHS (LV, RV, MYO, LA, RA, PA, AO) data, when training

with different mixtures of MR and CT data. Standard deviations are shown as subscripts.

To illustrate this we use the model trained with 100% of the MR and CT in the MM-WHS

dataset and demonstrate transformations between the two modalities. In Figure 6.14 we syn-

thesise CT images from MR (and MR from CT) by fusing a CT modality vector z with an

anatomy s from an MR image (and vice versa). We can readily see how the transformed im-

ages capture intensity characteristics typical of the domain. Note however, that as a result of the

properties of the anatomy factor and the decoder, synthetic images appear smooth (no texture)

and may lack realism. The anatomy factor resembles a multi-label segmentation, since each

channel is binary and corresponds to a particular image region, whereas the decoder combines

the anatomy and modality factor using FiLM, which applies affine transformations on feature

maps. The above make it challenging for the decoder to synthesise texture within an anatomical

region. This is also demonstrated in very recent work [15] by generating images from segmen-

tation masks, where it is shown that synthetic quality can be improved with alternative decoder

architectures. However, the goal of our approach is not cross-modal synthesis, and we use

reconstruction costs to learn disentangled representations and drive semi-supervised learning.
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Input MR Synthetic CT Input CT Synthetic MR

Figure 6.14: Modality transformation between MR and CT when a fixed anatomy is

combined with a modality vector derived from each imaging modality. Specifically,

let xMR, xCT be MR and CT images respectively. The left panel shows the origi-

nal MR image xMR, and a reconstruction of xMR using the modality component de-

rived from xCT , i.e. g(fanatomy(xMR), fmodality(xCT , fanatomy(xCT ))). The right panel

shows the original CT image xCT , and its reconstruction using the modality of xMR, i.e.

g(fanatomy(xCT ), fmodality(xMR, fanatomy(xMR))).

6.5.3.4 Modality Type Estimation

Our premise is that the learnt modality factor z captures imaging specific information. We

assess this in two different settings using multimodal MR and CT data and also cine-MR and

CP-BOLD MR data.

Taking one of the trained models of Table 6.5 corresponding to a split with 100% MR (14 sub-

jects of 2,837 images) and 100% CT images (14 subjects of 1,837 images)5, we learn posthoc

a logistic regression classifier (using the same training data) to predict the image modality (MR

or CT) from the modality factor z. The learnt regressor is able to correctly classify the input

images as CT or MR, on a held out test set (3 subjects of 420 images for MR and 3 subjects of

387 images for CT) 92% of the time. To find whether there is a single z dimension that cap-

tures best this binary semantic component (MR or CT) we repeat 8 independent experiments

training 8 single input logistic regressors, one for each dimension of z. We find that z5 obtains

an accuracy of 82%, whereas the remaining dimensions vary from 42% to 66% accuracy. Thus,

a single dimension (in this case z5) captures most of the intensity differences between MR and

CT which are global and affect all areas of the image.

5The results are based on a single split for ease of interpretation as between different splits we cannot relate the
different z dimensions.
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In a second complementary experiment we perform the same logistic regression classification

to discriminate between cine-MR and CP-BOLD MR images (which are also cine, but contain

additionally oxygen-level dependent contrast). Here, SDNet and the logistic regression model

are trained using 95 cine-MR and 214 CP-BOLD images from 7 subjects, and evaluated on a

test set of 27 and 31 images from 1 subject respectively. Unlike MR and CT which are easy to

differentiate due to differences in signal intensities across the whole anatomy, BOLD and cine

exhibit subtle spatially and temporally localised differences that are modulated by the amount

of oxygenated blood present (the BOLD effect) and the cardiac cycle and these are most acute

in the heart.6 Even here the classifier can detect BOLD presence with 96% accuracy, when all

dimensions of z are used. When each z dimension is used separately, accuracy ranges between

47% and 65%, and thus no single z dimension globally captures the presence (or lack) of BOLD

contrast.

These findings are revealing and have considerable implications. First they show that our

modality factor z does capture modality specific information which is obtained completely

unsupervised, and depending on context and complexity of the imaging modality, a single z

dimension may capture it almost completely (in the case of MR/CT).7

More importantly, it opens the question of how the spatial and modality factors interact to

reproduce the output. We address these questions below using latent space arithmetic.

6.5.3.5 Latent Space Arithmetic

Herein we demonstrate the properties of the disentanglement by separately examining the ef-

fects of anatomical and modality factors on the synthetic images and how modifications of each

alter the output. For these experiments we consider the model from Table 6.3, trained on ACDC

using 100% of the labelled training images.

Arithmetic on the spatial factor s: We start with the spatial factor and in Figure 6.15 we alter

the content of the spatial channels to qualitatively see how the decoder has learnt an association

between the position of each channel and different signal intensities of the anatomical parts. In

all these experiments the z factor remains the same. The first two images show the input and

6These subtle spatio-temporal differences can detect myocardial ischemia at rest as demonstrated in [10, 208].
7It is possible to detect the modality from the anatomy factor alone. If there are systematic differences between

the modalities, this can be exploited by a classifier for detection. However, in this case the modality information is
not actually contained in the anatomy factor.
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Figure 6.15: Reconstructions of an input image, when re-arranging the channels of the spatial

representation. The images from left to right are: input, original reconstruction, reconstruction

when moving the MYO to the LV channel, reconstruction when exchanging the content of the

MYO and the LV channels, and finally a reconstruction obtained after a random permutation of

the channels.

the original reconstruction. The third image is produced by adding the MYO spatial channel

with the LV spatial channel and by nulling (zeroing) the MYO channel. We can see that the

intensity of the myocardium is now the same as the intensity of the left ventricle. In the fourth

image, we swap the channels of the MYO with the one of the LV, resulting in reverse intensities

for the two substructures. Finally, the fifth image is produced by randomly shuffling the spatial

channels.

Arithmetic on the modality factor z: Next, we examine the information captured in each di-

mension of the modality factor. Since the modality factor follows a Gaussian distribution, we

can draw random samples or interpolate between samples in order to generate new images. In

this analysis, an image x is firstly encoded to factors s and z. Since the prior over z is an 8-

dimensional unit Normal distribution, 99.7% of its probability mass lies within three standard

deviations of the mean. As a result, the probability space is almost fully covered by values in

the range [−3, 3]. By interpolating each z-dimension between −3 and 3, and whilst keeping

the values of the remaining dimensions and s fixed, we can decode synthetic images that will

show the variability induced by every z-dimension.

To achieve this we consider a grid where each z dimension is considered over 7 fixed steps from

−3 and 3. Each row of the grid corresponds to one of the 8 z dimensions, whereas a column a

specific z-th value in the range [−3, 3]. This grid is visualised in Figure 6.16.

Mathematically described, for i ∈ {1, 2, . . . , 8} and j ∈ {1, 2, . . . , 7}, an image in the ith row
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and jth column of the grid is g(s, z � vi + (1 − vi) � δj), where � denotes element-wise

multiplication, vi is a vector of length 8 with all entries 1 except for a 0 in the ith position, and

δj = −3 + 6(j − 1).

In order to assess the effect of zi (the ith dimension of z) on the intensities of the synthetic

results, we calculate a correlation image and a difference image (for every row of results).

The value of each pixel in the correlation image is calculated using the Pearson correlation

coefficient between the interpolation values of a zi and the intensity values of the synthetic

images for this pixel:

ρ(zi, yh,w) =

∑7
j=1(z

j
i − z̄i)(y

j
h,w − ȳh,w)

σziσyh,w
∀ h,w ∈ H,W, (6.13)

where h,w are the height and width position of a pixel, z̄i is the mean value of zi, ȳh,w is the

mean value of a pixel across the interpolated images, and σzi and σyh,w denote the standard

deviations. The difference image is calculated for each row by subtracting the image in the last

column position on the grid (δj = 3) with the first position on the grid (δj = −3). 8

In Figure 6.16, the correlation images show large positive or negative correlation between each

z dimension and most pixels of the input image, demonstrating that z mostly captures global

image characteristics. However, local correlations are also evident for example between z1 and

all pixels of the heart, between z4 and the right ventricle and between z5 and the myocardium.

However, different magnitude changes are evident, as the difference image in the last column

of Figure 6.16 shows. z1 and z4 seem to alter significantly the local contrast of the left and

right ventricle, whereas small changes in the myocardium contrast are incurred by z5. Some z

dimensions, although correlated, do not seem to significantly affect the contrast of the image,

thus indicating that a smaller number of dimensions would suffice for this dataset.

6.5.3.6 Factor Sizes

While throughout this section we used C = 8 and nz = 8, it is worthwhile discussing the

effects of these important hyperparameters as they determine the capacity of the model.

We have found through experiments that when C > 8 many channels are all zero. This ad-

8Note that in order to keep the correlation and the difference image in the same scale [-1, 1], we rescale the
images from [-1, 1] to the [0,1], which does not have any effect on the results.

123



Disentangled Representation Learning

Figure 6.16: Reconstructions when interpolating between z vectors. Each row corresponds

to images obtained by changing the values of a single z-dimension. The final two columns

(correlation and ∆image) indicate areas of the image mostly affected by this change in z.

ditional capacity is helpful when we use multimodal data, as for example in the MR/CT ex-

periments, where C = 16. This allows to capture information common and unique across the

two modalities in different s-channels see Figure 6.13). On the other hand, making C small

(C < 4) we find that the model does not have enough capacity (for example an SDNet with

C = 4 trained at 100% labels has Dice performance 68.1± 8%, a drop compared to 84% when

C = 8, that is also statistically significant at 5%).

We used nz = 8 inspired by related literature [129]. Experiments with similar values of nz

maintain the segmentation performance, though this is decreased for high values of nz . Specif-

ically, an SDNet with 4, 32, and 128 dimensions trained at 100% labels has Dice 84 ± 5%,

83 ± 6%, and 82 ± 6%, respectively. Compared to 84% when nz = 8, the results for nz = 4
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and nz = 32 are similar, but the result for nz = 128 is worse (and also statistically significant at

5%), suggesting that the additional dimensions may negatively affect training and do not store

extra information. To assess this we used the methodology in [209] to find the capacity of each

z-dimension, which is also a measure of informativeness. This is calculated using the average

variance per dimension, where a smaller variance indicates higher capacity. A variance near

1 (with a mean=0) would indicate that this dimension encodes a Normal distribution for any

datapoint, and thus, according to [209], is uninformative and points to encoding the average of

the distribution mode. Using this analysis, for nz = 128 we observed that two z-dimensions

each had variance of 0.88, while the remaining 126 had an average variance of 0.91. Repeating

this analysis for nz = 32, nz = 8 and nz = 4 we get the following results. For nz = 32, two

dimensions each has variances 0.78 and 0.79, while the remaining 30 dimensions have an av-

erage variance of 0.81. For nz = 8, two z-dimensions each has variances 0.63 and 0.73, while

the remaining 6 have an average variance of 0.75. Finally for nz = 4, two dimensions have

variances 0.62 and 0.65, and the average variance of the other two is 0.77, which are similar to

the results of nz = 8. This analysis shows that with smaller nz , more informative content is

captured in the individual z-dimensions, and thus a high nz is redundant for this particular task.

6.6 Conclusion

We have presented two methods for disentangling images into spatial and (non-spatial) latent

representations employing an image reconstruction cost, while promoting interpretable latent

spaces. To the best of our knowledge this is the first work to investigate semantic spatial repre-

sentation factorisation, in which one factor of the representation is inherently spatial and thus

well suited to spatial tasks.

We firstly presented SMDNet, a method that decomposes cardiac images into a myocardial

segmentation and a vectorised latent representation of the residual anatomy and modality in-

formation. We demonstrated its applicability in semi-supervised myocardial segmentation. In

the low-data regime (≈ 1% of labelled with respect to unlabelled data) it achieves remarkable

results, showing the power of the proposed learned representation.

We have also presented SDNet, a method for disentangling cardiac images into a semantically

meaningful spatial factor of the anatomy and a non-spatial factor encoding the modality in-

formation. Moreover, through the incorporation of a variational autoencoder, we can treat our
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method as a generative model, which allows us to also efficiently model the intensity variability

of medical data.

We demonstrated the utility of SDNet in a semi-supervised segmentation task, where we achieve

high accuracy even when the amount of labelled images is substantially reduced. We also

demonstrated that the semantics of our spatial representation mean it is suitable for secondary

anatomically-based tasks, such as quantifying the left ventricular volume, which not only can be

accurately predicted, but also improve the accuracy of the primary task in a multi-task training

scenario. We also show that the factorisation of the model presented can be used in multimodal

learning, where both anatomical and imaging information can be encoded to create synthetic

MR and CT images, using even small fractions of CT and MR input images, respectively.

The methods of this chapter focused on jointly training with labelled and unlabelled images

from a single modality (semi-supervised learning), as well as with images from a secondary

modality. The latter can be considered as multimodal learning, although no information from

one modality directly benefits the other. An intuitive extension would be to investigate whether

disentangled latent representations can be used to combine (or fuse) multimodal information,

such that learning from one modality can explicitly aid another. This is presented in the follow-

ing Chapter 7.
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Chapter 7
Multimodal and Disentangled

Representation Learning

7.1 Introduction

Chapter 6 described SDNet, a methodology for disentangling medical images in anatomical

and imaging representations, and demonstrated a potential in using disentangled representa-

tions in multimodal learning through training with data of different modalities. In this chapter,

we aim to further improve segmentation by leveraging information from other modalities in a

multimodal and disentangled representation of anatomy and modality factors (see Figure 7.1).

On the basis of our prior work of Chapter 4, we not only train with multimodal data, but also

explicitly fuse disentangled anatomical features that are shared for all modalities. Indeed, dis-

entangled representations are suitable for multimodal learning, since they can address many

challenges posed by multimodal data. These include differences in signal intensities, a lack of

Figure 7.1: Multimodal and disentangled spatial and vector representations.

This chapter is based on:

• Chartsias, A., Papanastasiou, G., Wang, C., Semple, S., Newby, D., Dharmakumar, R., Tsaftaris, S.A., 2019.
Disentangle, align and fuse for multimodal and semi-supervised image segmentation. IEEE Transactions on
Medical Imaging (under review).

• Chartsias, A., Papanastasiou, G., Wang, C., Stirrat, C., Semple, S., Newby, D., Dharmakumar, R., Tsaftaris,
S.A., 2019. Multimodal Cardiac Segmentation Using Disentangled Representation Learning. In Interna-
tional Workshop on Statistical Atlases and Computational Models of the Heart (pp. 128-137). Springer,
Cham.
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annotated data, as well as anatomical and temporal misalignments due to varying spatial reso-

lutions or due to moving organs as in the case of dynamic imaging of the heart.

Multimodal learning, allows capturing information present in one modality (e.g. the anatomy)

for use in another modality that has higher pathological contrast. As a motivating example, my-

ocardial segmentation in LGE is challenging, since LGE mutes myocardial signal to accentuate

signal originating from myocardial infarction. In fact, in clinical practice, analysis of LGE is

typically combined with cine-MR [210].

A naive way to propagate knowledge between modalities would be co-registration. This has

been successful in the brain (see Section 3.5.3.3). But precise multimodal registration remains

challenging, due to the need for modality independent metrics [63]. Critically, the brain remains

static within an imaging session, whereas the heart is moving. Also, multimodal data are often

inconsistent both in the number of images (different slices, cardiac phases, and perhaps more

penalising resolution differences, e.g. slice thickness), as well as in the number of annotations.

In addition, some sequences are static (LGE) and others dynamic (cine-MR). This necessitates

solutions that alleviate misregistrations but also can pair input images.

7.1.1 Approach Overview

We propose a mechanism to represent data, that is suitable for learning how to propagate knowl-

edge for segmentation. We learn both with and without annotations using a reconstruction ob-

jective. More excitingly, our approach co-registers data within an anatomical representation

space, becoming thus robust to variations in imaging contrast. Our 2D approach, Disentangle

Align and Fuse Network (DAFNet), see Figure 7.2, achieves the above by mapping multimodal

images of the same subject into disentangled anatomy and modality factors.

Anatomy factors are represented as categorical feature maps. Each category corresponds to in-

put pixels that are, ideally, spatially similar, and hence belong to the same anatomical part. This

promotes semantic consistency and helps learn of spatial correspondences between anatomical

parts from different modalities. Modality factors encode pixel intensities in a smooth multi-

variate Gaussian manifold as per the Variational Autoencoder (VAE) [44]. Anatomy factors are

used to obtain segmentation masks, whereas their re-entanglement with the modality factors

achieves image reconstruction.

A disentangled representation is encouraged by minimising the information capacity of each
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and also in removing outliers.

Figure 7.2: DAFNet schematic in a LGE segmentation exemplar task using LGE and cine-MR

inputs. Firstly, disentangled anatomy factors of the LGE and cine-MR image are extracted.

Then, they are aligned (with a Spatial Transformer Network) and combined to a fused anatomy

factor, used to infer the final segmentation mask. Our approach can use multi-input (multi-

modal) data at training and inference. The latter is extremely useful when training with zero

annotations for an input modality

factor respectively: thresholding the anatomy factors, prevents storing low intensity texture and

imaging information, whereas the variational objective minimises the information in the modal-

ity factors [211]. Disentanglement is further influenced by the decoder design, either through

inductive biases (see discussion in Section 7.3.4 and evaluation in Section 7.5.8), or through

learning constraints (see cross-modal decoding of one anatomy in the modality of another in

Section 7.3.4, similar to [25]).

However, a disentangled representation is not enough for multimodal learning. This ability

comes from anatomy factors that are similar across modalities, and is achieved by weight shar-

ing in the anatomy encoders, as well as by shared segmentation and decoder networks. These

constraints implicitly create common anatomy semantics, which are essential when no labels,

but only images, are available for one of the modalities. In this case we project all images

to the common anatomical space, where a single segmentation network is trained with super-

vision only on the annotated modalities. When learning with multiple modalities, anatomy

factors obtained from multimodal images are co-registered with a Spatial Transformer Net-

work (STN) [188], fused with feature arithmetics, and also decoded in different modalities as

defined by the modality factors. Finally, when input data are not paired (e.g. due to temporal

or slice position differences) a new loss term in the cost function selects the most “informative”
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multimodal pairs by comparing anatomy factors.

7.1.2 Contributions

Our contributions are the following:

1. We propose a 2D method for learning disentangled representations of anatomy and modal-

ity factors in multimodal medical images for segmentation.

2. We demonstrate the importance of semantic anatomy factors, that is achieved through the

model design, since they allow learning registration and fusion operators.

3. We propose a loss term in the cost function that learns to select the most informative

multimodal pairs.

4. We demonstrate our method’s robustness over other approaches with extensive experi-

ments on several datasets, in cardiac MRI and abdominal segmentation.

5. We show that our model works both on unimodal and multimodal inference, and that

it outperforms other variants when trained with different amounts of annotations (semi-

supervised) or zero annotations for one of the modalities.

6. We discuss different decoder designs using Feature-wise Linear Modulation (FiLM) [14]

and Spatially-Adaptive (De)Normalization (SPADE) [15] respectively, and evaluate dis-

entanglement by estimating the dependence between the anatomy and modality factor

with distance correlation.

The remainder of this chapter is organised as follows. Section 7.2 presents recent related work

on multimodal image analysis. Section 7.3 details the proposed model. Section 7.4 describes

the data and benchmarks used. Section 7.5 presents the experimental results, and finally, Sec-

tion 7.6 concludes with a discussion of the method.

7.2 Related Work

Multimodal machine learning is an active research area that involves learning with diverse

sources of information. We consider multimodal learning as combining information of different

images, present at training and/or inference time.
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We review work on disentangled representations, the main focus of our method, and prior

art on multimodal medical imaging for segmentation. We highlight though that currently no

work exists that is able to simultaneously achieve multimodal fusion from unregistered data for

image segmentation, be robust to the number of training annotations, and be applied to single

or multimodal inference. These are made possible by the careful design of disentangled and

semantic anatomical representations.

7.2.1 Disentangled Representation Learning

Our approach leverages learning disentangled anatomy and modality factors. Many approaches

in computer vision [25] and in medical image analysis have been proposed for semi-supervised

segmentation (SDNet in Chapter 6), multi-task learning [138], lung nodule synthesis [142],

and registration [137]. Disentangling multimodal images has also been used for domain adap-

tation [145], although without applying information fusion.

As also discussed in Chapter 6, for anatomical features to be useful in clinical tasks, they

are required to be semantic and quantifiable. This is not guaranteed in disentanglement tech-

niques used for style transfer [25], or recent medical segmentation works [145] that do not

impose restrictions on the content features. Differently from others, we disentangle quantifi-

able anatomical features, such that they are useful for segmentation, whereas interpretability is

promoted with explicit design constraints (Section 7.3.1), which in addition enable registration

and simple fusion operators.

7.2.2 Multimodal Learning

Multimodal learning is challenging in the presence of misaligned images. As results of Chap-

ter 4 showed, a STN can be introduced in the learning process for performing affine trans-

formations, in order to allow information fusion. Alternatively, a shared representation with

both modalities can be learnt with encoder-decoder architectures. In particular, weight sharing

of the layer closest to this representation yields the most effective results according to [189].

In cardiac analysis, most commonly contour models directly deform initialised segmentation

masks [190,191]. Our method differs in that it does not require segmentation masks at inference

time, and is the first to jointly learn suitable representation, co-registration, and information fu-

sion for segmentation but in a semi-supervised setting.
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Figure 7.3: DAFNet training schematic with cine-MR and LGE input images. Each input

is disentangled into anatomical and modality factors. With a STN the deformation branches

(cine → LGE, LGE → cine) enable cross-modal synthesis and segmentation by deforming

the anatomy factors scine and sLGE . Losses are indicated on the right and are symmetrically

applied to the cine-MR branch outputs on the left. Lzrec is not shown. See text for definitions.

7.3 Proposed Approach

Here, we describe DAFNet, a multi-component 2D model for multimodal and semi-supervised

learning that is robust to input misalignments. Inference consists of three stages. Firstly, en-

coders map images to anatomy and modality factors, then anatomy factors are spatially aligned

and fused, and finally the fused factor produces segmentations.

Training is different with all involved costs and components illustrated in Figure 7.3. Input

images are encoded into anatomy and modality factors (Section 7.3.1). Then, anatomy fac-

tors are aligned with a STN (Section 7.3.2), and also participate in segmentation losses (Sec-

tion 7.3.3). Training further employs image reconstruction (Section 7.3.4) and modality recon-

struction losses (Section 7.3.5). Finally a multimodal pairing loss allows to dynamically learn

how to pair input image sources (Section 7.3.6). Below we detail the individual components,

as well as the employed cost functions.
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7.3.1 Encoding

Given modality i with samples xi ∈ Xi, where Xi ⊂ IRH×W is the set of images, and H and

W are the height and width respectively, the encoding process achieves a disentanglement of

anatomy and modality factors. Anatomy factors si are tensors produced by encoders dedicated

to each modality i: si = fanatomy(xi|θi), where θi are the encoder parameters. The encoder

architecture is modelled after the U-Net [13] and is shown in Figure 7.4. To reduce model

parameters, and encourage a common anatomical representation among the multimodal data,

we employ weight sharing in the decoder of each U-Net. Thus, the parameters θi are split into

the unique parameters φi of the encoding path, and the shared parameters ψ of the decoding

path: si = fanatomy(xi|φi, ψ).

An anatomy factor is represented as a binary tensor and thus cannot store different pixel intensi-

ties of an image as continuous values and this promotes the factorisation process. Furthermore,

every pixel can be active at exactly one channel and this enforces a particular image region

to appear in a single channel. More formally, si ∈ {0, 1}H×W×C , s.t.
∑C

c=1 s
h,w,c
i = 1

∀h ∈ {1, . . . ,H}, w ∈ {1, . . . ,W}. Two anatomy factors produced by a cine-MR and an LGE

image can be seen in Figure 7.5.

Anatomy factors are spatially aligned (Section 7.3.2), such that they can be fused and seg-

mented, whereas in conjunction with the modality factor are decoded to synthetic images.

Divergence loss LKL: The modality factors zi ∈ Z := IRnz are vectors produced by a single

stochastic encoder, that, given an image sample xi and its anatomy factor si, learns a probability

distribution q(zi|xi, si). In order to encourage a smooth space and minimise the encoded in-

formation [211], this posterior distribution is optimised to follow a multivariate Gaussian prior,

p(zi) = N (0, I), by minimising the KL−divergence with the re-parameterisation trick [44]:

LKL(fmodality, fanatomy) = E
xi

[KL(q(zi|xi, si)‖p(zi))] . (7.1)

The modality encoder is shown in Figure 7.4 and predicts the mean and standard deviation of a

Gaussian that are used to draw the random sample vector zi.
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Figure 7.4: Architecture diagrams of the individual DAFNet components: the anatomy en-

coder extracts anatomy factors; the modality encoder extracts parameters µ, σ of a Gaussian

distribution, and the modality factor is a sample from this distribution; the segmentation net-

work produces a mask given an anatomy factor; a Spatial Transformer Network receives two

anatomy factors and produces the 2D co-ordinates of 25 control points, used for interpolation;

finally, two decoder architecture based on FiLM [14] and SPADE [15] decode anatomy and

modality factors to images.
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LGE LGE anatomy factor

cine MR cine-MR anatomy factor

reconstruction

reconstruction

Figure 7.5: Anatomy factors from a cine-MR and a LGE. Observe how the same anatomical

regions appear in the same channels.

7.3.2 Alignment and Fusion of the Anatomy factors

Following factor encoding, two anatomy factors si and sj of modalities i and j respectively,

are aligned using non-linear registration. Given an initial grid of 5 × 5 control points, a STN

(architecture in Figure 7.4) first predicts the grid’s offsets. Then, Thin plate spline interpolates

the surface passing through the control points to register sj with si. The result of the alignment

step, sdeformedi = stn(sj , si), is a deformed anatomy factor corresponding to sj , and vice

versa (sdeformedj corresponds to si). We optimise the STN with gradients in image space (see

decoding cost of Section 7.3.4), as well as with the segmentation cost of Section 7.3.3, since

we aim to align segmentation masks.1

During inference, the deformed anatomies are combined, to produce a fused representation

containing all unique and shared features, that are present in the constituent anatomy factors.

Since they are spatially aligned, a pixel wise operation such as the pixel-wise max is able

to preserve all encoded features. More formally, sfusedi = max(si, s
deformed
j ) and sfusedj =

max(sj , s
deformed
i ). One benefit of max-fusion is that it is invariant to the number of inputs,

and is therefore directly applicable in cases with more than two modalities.

7.3.3 Segmentation

Given an anatomy factor si, a convolutional network (architecture in Figure 7.4) infers a corre-

sponding segmentation mask mi = h(si), s.t. mi ∈Mi := {0, 1}H×W×V , where Mi is the set

of masks of modality i and V the number of classes. The segmentation network is common for

1We avoid direct comparison of si and sdeformed
j , since they are binary and thus different small deformations

might generate the same error.
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all modalities, is also applied to the deformed and fused anatomies, and is optimised as follows.

Supervised loss Lsup: Given a set of images paired with masks (xi,mi), a supervised cost is

defined as a weighted sum of the differentiable Dice loss and Cross Entropy (CE):

Lsup(fanatomy, h, stn) = E
xi,mi

[(1−Dice(h(si),mi)) + αCE(h(si),mi)] , (7.2)

where α control the balance between the losses and is set to α = 0.1. The cross entropy and

differentiable Dice are respectively defined as:

CE(h(si),mi) = −
∑
v

(mh,w,v log(ph,w,c)), (7.3)

Dice(h(si),mi) = 2×

[∑
h,w,c(h(sih,w,c

)×mih,w,c
)∑

h,w,c(h(sih,w,c
) +mih,w,c

)

]
, (7.4)

where h, w, and c refer to the height, width and channel, and ph,w,v is the probability for a pixel

belonging to class v.

Adversarial loss LMadv: An unsupervised segmentation cost is defined with a mask discrimi-

nator DM , modelled after LS-GAN [50]. The adversarial objective given real masks sampled

from all modalities m ∼Mi, i ∈ {1, 2, . . . n} is:

LMadv(fmodality, h, stn) = E
xi,m

[
DM (h(si))

2 + (DM (m)− 1)2
]
, (7.5)

where the discriminator is adversarially trained against the segmentation network. The dis-

criminator’s architecture consists of 4 convolutional layers followed by LeakyReLU and a final

single neuron layer, and uses Spectral Normalisation [53] to stabilise training. In both segmen-

tation costs, the anatomy factors si come from either the input images directly, or are the result

of the alignment step of a secondary j modality: si ∈ {fanatomy(xi|θi), sdeformedj }, j 6= i. In

the latter case, the gradients produced by the segmentation cost are back-propagated to the STN

module to learn its parameters.2

Training with segmentation losses helps learn better anatomy factors that separate the anatomies

of interest in respective channels (see myocardium and left ventricle in Figure 7.5). If super-

vision is not available for modality i, training is performed with the adversarial loss LMadv and

2We omit the use of sfusedj as input to the segmentation network to avoid backpropagating gradients both to the
STN and the jth anatomy encoder, which might result in the STN not achieving a good convergence.
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with supervision of other modalities. This enables unsupervised segmentation of modality i,

since factors are shared and common.

7.3.4 Decoding

The anatomy factors are further decoded into an output image of a style dictated by a modality

factor zi: yi = g(si, zi). This can be performed with different decoders, which indirectly

influence the type of disentanglement, or in other words the type of information captured by the

anatomical and modality factors. We investigate two decoder architectures based on FiLM [14]

and SPADE [15].

The input of the FiLM-based decoder (Figure 7.4) is the anatomy factors, which, after a se-

ries of convolutions, are conditioned by z samples. These are used to predict a scale and

an offset parameter γ ∈ IRC and β ∈ IRC , which modulate each intermediate feature map

F ∈ IRH×W×C , where H , W and C are the height, width and number of channels respec-

tively: FiLM(F |γ, β) = F � γ + β.

We also consider a SPADE-based decoder (Figure 7.4), which has been demonstrated to gen-

erate texture details on synthetic images given segmentation masks. The input to this decoder

is a z sample, that is processed by a series of convolutional layers, conditioned by the anatomy

factor, defining the output “shape”. An Instance Normalisation layer with parameters µ and σ,

is firstly applied to a feature map F ∈ IRH×W×C , which is then modulated by tensors Γ and B

(same size as F ): SPADE(F |Γ,B) = Γ� F−µ
σ + B.

Reconstruction cost Lrec and LX,iadv: The decoders are trained to reconstruct the input with the

following loss:

Lrec(fanatomy, fmodality, g, stn) = E
xi

[‖xi − g(si, zi)‖1] , (7.6)

where zi = fmodality(xi, si). In addition, synthesis of realistic images is encouraged with an

adversarial loss of an image discriminator DX,i for each modality i (same architecture as DM ):

LXadv(fanatomy, fmodality, g, stn) = E
xi

[
DX,i(g(si, zi))

2 + (DX,i(xi)− 1)2
]
. (7.7)

As in the segmentation case, si is an encoding of image xi or a deformed encoding of another

image xj : si ∈ {fanatomy(xi|θi), sdeformedj }. When si = fanatomy(xi|θi), j 6= i, the model
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acts as an auto-encoder. This is critical to allow the use of non-annotated images and enable

semi-supervised learning. In the case, where si = sdeformedj , the backpropagated gradients are

used to train the STN module and also aid the factorisation process process (since the “style”

of the output image g(sdeformedj , zi), as specified by zi, corresponds to modality i and not j).

The decoder also participates in the following loss that promotes disentanglement.

7.3.5 Reconstruction of the Modality Factor Loss Lzrec

In order to encourage disentanglement and also avoid posterior collapse of the modality fac-

tor, we reconstruct the modality factor of a synthetic image. This prevents the decoder from

ignoring the z-factors and only use the anatomy factors. We minimise the reconstruction of the

modality factor:

Lzrec(fanatomy, fmodality, g) = E
z,x

[‖z − fmodality(y, fanatomy(y))‖1] , (7.8)

where z is a random sample from a unit Gaussian and y is the synthetic image produced by

this z sample. Encouraging the use of modality factors by the decoder is further achieved by

cross-reconstructing a deformed anatomy in a modality dictated by the corresponding z-factor.

7.3.6 Non-expert Pairing

Better multimodal fusion and STN registration will be achieved by multimodal image pairs

{xi, xj} that are more similar in terms of their spatial and temporal positions. In cases where

the multimodal images are not expertly paired, DAFNet can automatically measure anatomical

similarities with an optional cost, that directly compares the anatomy factors, and “selects” only

the most informative image pairs.

During training, and given an image xi and a set of K candidate images from modality j:

{x1j , x2j , . . . , xKj }, the multimodal segmentation and reconstruction losses for a sample xi are

weighted accordingly by K weights, s.t.
∑K

k=1wk = 1. Due to the semantics of the anatomy

factors, and the fact that they are categorical, we can be directly evaluate their overlap in terms

of the Dice score. The Dice for each pair, becomes the input to a small neural network υ of

two fully connected layers that outputs the weights, and is similar to the temperature scaling

technique proposed for calibrating classification outputs [212]. The segmentation and recon-
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struction costs given network υ are the following:

Lsup(fanatomy, stn, υ) =
K∑
k=1

wkLsup(mi,mk), (7.9)

Lrec(fanatomy, fmodality, g, stn, υ) =

K∑
k=1

wkLrec(xi, yk), (7.10)

where mk = h(fanatomy(x
k
j )), and yk = g(sdeformed,kj ), zi). By weighting the loss functions,

the STN module does not need to learn deformations for all pairs, nor does it need to match

slices with different anatomical content. At inference time, the most accurate segmentation is

produced from the weighted sum of the fusion with different slices sfused,1j , sfused,2j , . . . sfused,kj :

mi = w1h(sfused,1j ) + w2h(sfused,2j ) + . . .+ wkh(sfused,kj ). (7.11)

This optional weighting of the cost function is only used in unpaired data, and as shown in

experiment 7.5.3 converges to the same result as manual pairing.

7.4 Experimental Setup

7.4.1 Training Details

The model is trained with a multi-component loss function, L = 0.1 ·LKL+10 ·Lsup+LMadv+

Lrec+LXadv+Lzrec. The weights of the individual loss components are selected experimentally,

such that the errors are in the same value range. Nevertheless, we select a higher weight on Lsup

to encourage separation of segmentation classes, since segmentation is a challenging task. Fur-

thermore, a reduced LKL weight prevents posterior collapse, in which the z factor is ignored by

the decoder; however, an even lower LKL, would not promote a Gaussian prior approximation,

leading to a non-smooth intensity manifold. Number of s channels and z dimensions are set to

C = 8 and nz = 8 respectively, as in Chapter 6.

The code is written in Keras [202] and is available at https://github.com/agis85/

multimodal_segmentation. We train with Adam (learning rate of 10−4), and evalu-

ate using Stochastic Weight Averaging [213] to reliably compare between different methods.

Quantitative evaluation is performed on 3-fold cross-validation, where the training, validation

and test sets correspond to the 70%, 15% and 15% of the data volumes.
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7.4.2 Data

Experiments use multimodal datasets of a source and a target modality, rescaled to [−1, 1].

1. For LGE segmentation, we use cine-MR and LGE data of 28 patients [2], acquired at

Edinburgh Royal Infirmary (ERI) that are described in Section 2.6.2.5.

2. To evaluate robustness on different medical data, we use abdominal T1-dual inphase and

T2-SPIR data from CHAOS dataset, described in Section 2.6.3.1. We resample to an x-y

spacing of 1.89mm, and crop to 192× 192 pixels. In total, there are 1594 images.

3. Finally, we evaluate BOLD segmentation with a dataset (shorthand BOLD) of cine-MR

and CP-BOLD images of 10 canines, described in Section 2.6.2.4.

7.4.3 Baseline and Benchmark Methods

We consider the following baselines, which assume source masks being available at inference

time. Their performance directly depends on these source masks. If predicted masks were used

e.g. the result of a U-Net, an additional confounder would be introduced. Thus, we report

numbers with ground truth masks for a bias-free estimate, which albeit is elevated.

1. A lower bound computes the Dice score between real masks of two modalities, and is also

a measure of misalignment of the multimodal data. This is referred to as copy, and can

be used for segmenting a target modality without annotations from the target modality.

2. This lower bound can be improved after registering the multimodal images and applying

the registration field to the source masks. The deformation field is calculated by affine

registration using mutual information, followed by symmetric diffeomorphic using cross-

correlation [214]. This is referred to as register, and can also be used without annotations

of the target modality. “Copy” and “register” are common in clinical evaluation.

3. Finally, as non-deep learning method we implemented a version of a non-coupled active

contour model akin to the one in [191]. We initialised the contour using the “copy”

above. For each dataset, via a grid search, we found optimal contour length, smoothness,

and stepping hyperparameters as: for ERI [0.5, 0.15, 0.7], BOLD [0.01, 0.15, 0.7] and

CHAOS [0.5, 0.15, 0.7], respectively.

140



Multimodal and Disentangled Representation Learning

We also consider the following deep learning benchmarks.

1. As a supervised benchmark, we train a UNet on annotated data of the target modality,

and refer to it as UNet-single. We further re-train a UNet on mixed training data of all

modalities to evaluate its capability of concurrently handling multimodal data, and refer

to it as UNet-multi.

2. We train SDNet [32] with full or semi supervision on data of the target modality, and refer

to it as SDNet-single. We also train SDNet by mixing multimodal data, as demonstrated

in [32], and refer to it as SDNet-multi.

3. We get two final benchmarks by training Multimodal UNsupervised Image-to-image

Translation (MUNIT) [25] for image translation. The first uses MUNIT to translate im-

ages from source to target modality [97], and the second translates multimodal images to

a domain invariant space [145]. In both cases, segmentation is performed post-hoc with

a UNet on the combined data. We refer to these approaches as Translation and DADR

respectively.

4. Finally, we implement DualStream [189], the most recent Deep Learning based method

for handling multimodal data which does not require registered data.

7.5 Results and Discussion

Sections 7.5.1 and 7.5.2 present segmentation results, assuming a source modality that always

contains annotations during training. The source modality is cine-MR for ERI and BOLD

datasets, and T1 for CHAOS. The target modality is LGE, BOLD and T2 for ERI, BOLD and

CHAOS, respectively. Unless explicitly specified, DAFNet uses a FiLM-based decoder, and

we report test Dice of the fused anatomies. We evaluate the effects of: input pairing (Sec-

tion 7.5.3); registration (Section 7.5.4); and a SPADE-based decoder (Section 7.5.7). Section

7.5.8 evaluates disentanglement of each decoder design. Where appropriate, bold font denotes

the best (on average) method and an asterisk (*) denotes statistical significance of paired t-

tests (p < 0.05 assessed via permutations) comparing with the second best (to avoid multiple

comparisons).
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Methods Train Test

100% target annotations

Masks ERI BOLD CHAOS

in test LGE cine BOLD cine T2 T1

copy – multi Yes 6706 6706 8001 8001 7110 7110

register – multi Yes 6807 6705 8104 8405 7007 7305

AC – multi Yes 6615 6613 6802 7205 6522 6522

UNet single single No 7804 8508 9101 8901 8517 8605

SDNet single single No 8003 8409 8903 8804 8316 8508

UNet multi single No 8103 8308 8903 8802 8515 8803
SDNet multi single No 8005 8605 8902 8703 8511 8801
DualStream multi single No 8006 8609 8909 8802 8516 8509

Translation multi single No 7906 8405 8306 8802 8309 8706

DADR multi single No 7905 8306 8804 8602 8416 7222

DAFNet multi single No 8203 8602 8801 9102 8317 8801
DAFNet multi multi No 8203 8402 9101 9101 85∗05 8701

Table 7.1: Segmentation results on three datasets when full (100%) annotations are available.

For each dataset we show results on the target modality assuming the other one is the source

(and vice versa).

7.5.1 Multimodal Segmentation: Full and Zero Supervision Setting

The prime contribution of our work is the ability to learn and infer in a multimodal setting.Thus,

we first demonstrate that multiple inputs at training and inference time benefit segmentation.

Tables 7.1 and 7.2 present test Dice scores on three datasets for DAFNet and the benchmarks

of Section 7.4.3. Two setups are evaluated, assuming either that annotations are available for

the target modality or not.

In the 100% case shown in Table 7.1, training with multiple inputs improves accuracy, even

when multimodal data simply constitute an augmented dataset. When segmenting the target

modality, the usage of multiple inputs at inference time by DAFNet, obtains similar Dice as

other benchmarks, but considerably reduces the standard deviation, such as in the CHAOS case

from 11% to 5%.
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Methods Train Test

0% target annotations

Masks ERI BOLD CHAOS

in test LGE cine BOLD cine T2 T1

copy – multi Yes 6706 6706 8001 8001 7110 7110

register – multi Yes 6807 6705 8104 8405 7007 7305

AC – multi Yes 6615 6613 6802 7205 6522 6522

UNet single single No n/a n/a n/a n/a n/a n/a

SDNet single single No n/a n/a n/a n/a n/a n/a

UNet multi single No 3823 6812 6823 8505 – –

SDNet multi single No 6118 7307 8003 8503 5109 6313

DualStream multi single No 3823 6812 6823 8505 – –

Translation multi single No 3723 6113 6110 7407 – 4511

DADR multi single No 4619 6313 6811 8501 – 4917

DAFNet multi single No 7206 7805 7802 8203 7212 7406
DAFNet multi multi No 74∗04 7604 85∗03 8602 74∗03 7106

Table 7.2: Segmentation results on three datasets when zero (0%) target modality annotations

are available. For each dataset we show results on the target modality assuming the other one

is the source (and vice versa). Single input, single output models cannot be trained with no

annotations and are thus marked with n/a. Furthermore, we choose to omit results marked

with −, since training of these methods did not converge.

In the 0% case shown in Table 7.2, the (learned) benchmark methods fail to produce accurate

target segmentations for all datasets. As expected, models trained only on the source modality

learn modality-specific features, and as such cannot generalise to the unseen target modality.

DAFNet on the other hand, consistently maintains a better average and smaller variance by

leveraging information from the source modality. This is due to the aligning of the multimodal

representations in the anatomy space, which allows the shared segmentor trained with supervi-

sion on the source, to also segment the target modality with “zero” supervised examples.

We then exchange the source and target modality and report the cine-MR and T1 Dice by train-

ing new models where appropriate. The CP-BOLD sequence that creates the BOLD data is very

similar to cine-MR, showing anatomy, but has elevated T2 contrast (the BOLD effect) [10]. In
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addition, these data are acquired in controlled experiments in mechanically ventilated subjects,

with the cine-MR and BOLD images acquired one after the other in the protocol. Thus, all

methods perform well in the 0% case of cine-MR segmentation, with multiple inputs further

improving DAFNet performance. On the contrary, segmenting LGE (and T2) is more difficult,

and the LGE Dice is overall lower than the cine-MR one in the single-output DAFNet with

the difference being bigger in the 0% annotations case. As a result, this hurts the multi-output

cine-MR Dice. This is expected since the benefit of multimodal segmentation comes when one

modality is easier to segment.3 Therefore LGE benefits when considering cine-MR images, but

the contrary would only be beneficial in cine-MR reconstruction problems, e.g. in the presence

of motion artefacts [215].

7.5.2 Semi-supervised Segmentation

Here we evaluate the sensitivity of all methods on different amounts of ground truth annotations

available during training. Table 7.3 presents the average (across all labels) cross-validation

test set Dice score. Exemplar test results are shown in Figure 7.6. The number of images

for both source and target modalities are fixed, but the amount of target annotations varies.

Sampling the amount of annotations is performed on a subject-level, to avoid having a mixture

of annotated and non-annotated images of the same subject in the training set. The DAFNet

results correspond to using multiple inputs at inference time.

Average Dice for all methods is comparable when the number of annotations is high, although

DAFNet achieves the lowest variance. With a reducing number of annotations, the perfor-

mance of the competing methods also reduces with a simultaneous increase in the variance.

DAFNet maintains good results and robustness to edge cases, as evidenced by the small vari-

ance achieved throughout all setups.

7.5.3 Effect of Pair Matching

The results of Sections 7.5.1 and 7.5.2 correspond to expertly paired multimodal inputs. Here,

we evaluate the sensitivity of DAFNet on unpaired multimodal images, as well as the effect of

the automated pairing cost proposed in Section 7.3.6.

3Indeed, cine-MR is designed to show anatomical information, whereas LGE to highlight infarcted myocardium.
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Methods
ERI: Target LGE BOLD: Target BOLD CHAOS: Target T2

50% 25% 12.5% 50% 25% 12.5% 50% 25% 12.5%

copy 6706 6706 6706 8001 8001 8001 7110 7110 7110

register 6807 6807 6807 8104 8104 8104 7007 7007 7007

AC 6615 6615 6615 6802 6802 6802 6522 6522 6522

UNet-single 7612 6614 5121 7917 5927 4929 8017 7615 7217

SDNet-single 7604 6909 5418 8403 6817 6414 8214 7716 7514

UNet-both 7608 6711 5019 8703 7517 7213 8415 7916 7516

SDNet-both 7604 7307 6419 8607 8503 8003 8411 8013 7809

DualStream 7603 6113 4423 8601 5826 4928 8119 7816 7516

Translation 7507 6714 6214 8402 7906 4726 8107 7511 7010

DADR 7705 6611 5719 8702 7901 7115 8411 7714 7411

DAFNet 78∗04 76∗05 74∗05 8701 8603 85∗03 8405 8203 79∗05

Table 7.3: Segmentation results of LGE, BOLD and T2, when training with a varying amount

of annotations for ERI, BOLD, and CHAOS datasets respectively.

SDNet singleUNet single UNet multi SDNet multi DualStream DAFNet-single DAFNet-multiTranslation DADR

100%

50%

25%

0%

12.5%

LGE mask

LGE

cine-MR

Figure 7.6: Panel of LGE segmentation examples from ERI dataset, obtained with different

amount of LGE annotations.

We randomly shuffle the multimodal pairs by two positions, with the shuffled pairs differing up
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Pair matching copy DAFNet 0% DAFNet 100%

expert 6706 7404 8203

automated n/a 7106 8003

random 4416 6508 7706

Table 7.4: LGE segmentation results when the multimodal images are not expertly paired.

Figure 7.7: Evolution of weightswj across epochs. Weights are used as a measure of similarity

between each candidate multimodal pair. For more details see text.

to two spatial slices within a 3D volume.4 We measure the LGE segmentation Dice score on

ERI data when using 100% and 0% LGE annotations. We thus compare our automated method

with expert pairing (upper bound) and a random shuffle (lower bound). Table 7.4 presents the

results of copy method, as well as of DAFNet evaluated with both cine-MR and LGE inputs.

Shuffling the multimodal pairs decreases the copy performance considerably. In both cases

automated matching of candidate pairs based on the semantics of the anatomy factors proves

effective in ignoring distant slices (in the volume) with results very closely approaching the ones

achieved by expert pairing. As described in Section 7.3.6, DAFNet weighs the contribution of

each candidate slice to the fused representation. To show how appropriate weights are learnt,

given an LGE image, we plot the evolution of three weights corresponding to three candidate

cine-MR images across training epochs in Figure 7.7, wherew1 corresponds to the closest cine-

MR image and w3 to the most distant one. It can be seen that the weight w1 converges to one

early on in training, suggesting that the model is ignoring the more distant candidate images.

During inference, a “soft” segmentation mask is produced as a weighted sum between each

weight with its corresponding mask. However, this converges to using the prediction of the

“closest” pair, as evidenced by Figure 7.7.

4Similar results can be obtained by shuffling the different cardiac phases in the cine-MR temporal stack.
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cine-MR (source) cine-MR anatomy

LGE (target) LGE anatomy

cine-MR to LGE deformed cine anatomy

Figure 7.8: Example anatomy alignment. The source cine-MR anatomy (row 1) is deformed

by the STN to match the target LGE one (row 2), resulting in the one of the last row. Red boxes

mark channels of the areas of interest (left ventricle and myocardium).

7.5.4 Effect of STN

We assess the need for a registration module with an ablated model. We compare the accuracy

of a fused segmentation that is obtained with and without the STN module. Two DAFNet

models are compared, trained on ERI data with 100% and 0% LGE annotations. The mean

Dice without the STN is measured to be 75± 6% and 71± 6% respectively. This is lower than

the Dice of DAFNet with STN that is 82 ± 3% and 74 ± 4%. Furthermore, in the 100% case

the difference is statistically significant at the 1% level. Thus, clearly registration helps.

An example anatomy alignment is shown in Figure 7.8. Although not a perfect alignment of the

images is required, the left ventricle and myocardium of the cine-MR have deformed to match

the corresponding LGE (marked in red boxes).

7.5.5 Ablation Study on Cost Components

We assess the contribution of critical cost components in the fused segmentation on ERI with

100% and 0% LGE annotations. We evaluate the effect of adversarial training on masks, LMadv,

and images LXadv, respectively, and the effect of modality factor reconstruction, Lzrec.
5 Table 7.5

5We do not include ablations of the supervised segmentation, Lsup, the KL-divergence, LKL, and the recon-
struction cost, Lrec. We omitted Lsup because DAFNet is not fully unsupervised. Training without the LKL
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LMadv LXadv Lzrec DAFNet 0% DAFNet 100%

— X X 7202 8003

X — X 6505 7117

X X — 7104 8103

X X X 7404 8203

Table 7.5: Ablation study on the effect of individual cost components on LGE segmentation.

shows that best results are achieved with all cost components. Learning a data-driven recon-

struction cost (via the image discriminator) contributes the most: by encouraging more accurate

synthesis it helps to learn better anatomical representations.

7.5.6 Ablation on factor sizes C and nz

In all experiments, factor sizes are set to C=8, and nz=8. C is determined experimentally, such

that there is enough capacity for all segmentation classes and background anatomy. A large C

does not affect segmentation, and the redundant capacity is ignored, see “empty” channels of

Figure 7.5. This is confirmed with ablated models with C=4 or C=16 trained with 100% anno-

tations on ERI and CHAOS. The ERI model achieves 82±2% for both setups, the same as when

C=8. The CHAOS model achieves 74 ± 12% and 85 ± 5% for C=4 and C=16, respectively.

The performance significantly drops when C=4, since there is not enough capacity.

Size nz is determined according to our previous [32], and related work [25]. We experimented

with nz=4 and nz=16 and 100% annotations on ERI and CHAOS. We find no effect on seg-

mentation accuracy. However, nz affects the information capacity, approximated by the average

variance [209], of each z-dimension, where smaller variance implies higher informativeness.

With nz = 16, the lowest variance is 0.63, the first 8 dimensions have an average of 0.86 and

the remaining 8 an average of 0.95. For nz=8, the variance ranges between 0.47 and 0.80, and

for nz=4, between 0.43 and 0.60. Admittedly, lower nz results in higher information content in

each dimension, thus large nz seems redundant in this setup.

and Lrec significantly change the model to one lacking a smooth modality space and the ability for cross-modal
synthesis.
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Figure 7.9: Reconstructions with two decoders. The FiLM synthetic image is more flat and

lacks texture, in contrast to the SPADE synthetic image. Images taken from CHAOS dataset.

7.5.7 Effect of Decoder Design on Segmentation Accuracy

The modular design of DAFNet permits incorporation of components with different designs.

We evaluate segmentation accuracy achieved by two decoder architectures: FiLM and SPADE.

Specifically, we train a SPADE-based DAFNet on ERI and CHAOS and compare with the

FiLM-based DAFNet for 100% and 0% annotations.

With 100% annotations, the SPADE-based DAFNet achieves 82 ± 3% and 85 ± 5% on ERI

and CHAOS respectively, identical to the Dice achieved by FiLM. With 0% annotations, the

SPADE-based DAFNet achieves 73±4% and 75±7%, whereas FiLM-based results are 74±4%

and 74± 3% respectively on ERI and CHAOS.

We conclude that the regularising effect of the reconstruction process on extracting segmenta-

tions is similar in both decoder variants. However, different decoder designs influence the way

the anatomy and modality factors interact to produce a synthetic image. We explore this next.

7.5.8 Evaluating Disentanglement

Even though FiLM and SPADE decoders do not result in evident differences in segmentation

accuracy, they produce synthetic images of different quality (Figure 7.9). Since the anatomy

factors contain flat regions, FiLM-based conditioning with scalar parameters tends to produce

images with less texture details than SPADE-based conditioning.

Here, we aim to assess the information retained in the modality factors, and characterise the

achieved disentanglement. This is a challenging problem not addressed in existing literature:

all assume vector latent variables (e.g. BetaVAE score [44]). In DAFNet, and typically in
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Figure 7.10: FiLM based reconstructions. Images per row correspond to interpolating a single

z dimension. Last two columns (correlation, and difference image ∆image), indicate regions

mostly affected by each z dimension.

content/style disentanglement, the factors of variation are not of the same dimensionality, with

the anatomy being spatial. For the experiments below, we use models trained on CHAOS with

100% T2 annotations to assess (dis)entanglement using classification tests, factor arithmetics,

and a proposed metric of independence of random variables.

7.5.8.1 Modality Classification

On the premise that the common modality encoder correctly extracts modality features, a clas-

sifier should detect the modality type, given just the z-factor. We assess this hypothesis, by

training a logistic regression classifier to predict whether different z-factors correspond to T1
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Figure 7.11: SPADE based reconstructions. Images per row correspond to interpolating a

single z dimension. Last two columns (correlation, and difference image ∆image), indicate

regions mostly affected by each z dimension.

or T2 images. The classifier’s accuracy is 99% and 97% for FiLM and SPADE, respectively,

on a test set of three subjects.

We further evaluate whether specific dimensions in z capture the modality type by repeating

the experiment, for each dimension. In the FiLM model, the 2nd dimension achieves 100%

accuracy, whereas the rest vary between 54% and 64%. Similarly in the SPADE model, the 7th

dimension achieves 97% accuracy vs. 42% and 63% of the others.
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7.5.8.2 Modality Factor Arithmetics

We qualitatively examine the information retained in each dimension in vector z with latent

space arithmetics. The likelihood of the modality factor approximates a Gaussian prior, and

therefore interpolating in the range [−3, 3] covers the probability space. Figures 7.10 and 7.11

shows synthetic images arranged in a grid; images of each row are produced by interpolating

the values of a single dimension of z, with the remaining ones fixed. The final two columns

highlight affected regions by calculating the per-pixel Pearson correlation, as well as the differ-

ence, ∆image, between the synthetic images at extreme z values −3 and 3, respectively.

Both decoders have one z-dimension that has a global image effect (z2 and z7 respectively)

and controls the modality type. This finding is inline with the classification results above. Fur-

thermore, some dimensions of the FiLM decoder appear to be focused on specific anatomical

regions, such as z7 and z8, which affect the contrast of the left and right kidneys. In contrast,

the dimensions of the SPADE decoder produce more diffused correlation images. The same is

observed on the difference images, where specific z-dimensions affect areas of the image not

necessarily related to anatomical regions, such as z1 and z2. The latter is likely related to the

SPADE architecture, which uses z as input to encode information on the image layout without

a semantic correspondence to the anatomical layout of the anatomy factor. This helps with

generating texture, but means that z-dimensions do not condition meaningful regions. Finally,

in both FiLM and SPADE decoders, some z-dimensions do not have a significant effect on the

contrast of any image regions, thus indicating that fewer dimensions could have been used.

7.5.8.3 Disentanglement Metric

We propose the use of distance correlation [216], as a metric of factor independence (and disen-

tanglement), which is invariant to the input variable dimensionality, and can also detect linear

and non-linear associations. While distance correlation has been used before for reducing data

leakage [217], we use it here for measuring (dis)entanglement. Distance correlation is:

dCor(s, z) =
dCov(s, z)√

dV ar(s)dV ar(z)
, (7.12)

where dCov(s, z) is the distance covariance of s and z, and dV ar(.) is the distance variance

respectively. Given n random samples sk and zk with k ∈ [1, n], the distance covariance

is the product of two distance matrices (one for each variable) averaged by n2, where each
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distance matrix d(.) is double centred by subtracting the mean row, the mean column and

the overall mean from each element: dCov2(s, z) = 1
n2

∑n
i=1

∑n
j=1 d(si, sj)d(zi, zj). The

distance variance is then dV ar2(s) = dCov2(s, s), and dV ar2(z) = dCov2(z, z).

The distance correlation between s and z values from a FiLM-based model is dCor = 0.55,

whereas the equivalent for a SPADE-based model is dCor = 0.78. This suggests that the

anatomical and modality factors obtained by a FiLM decoder are more independent, and there-

fore the FiLM-based model is more disentangled. Although distance correlation cannot explic-

itly evaluate the type of information in each variable, this result can be explained intuitively

by the decoder design. The SPADE decoder allows more flexibility to the z factors, and this

is evident both in the synthetic images, which contain more texture, and also in the diffused

correlation images of Figure 7.10, implying a higher anatomical correlation (and higher entan-

glement) between the z and s factors.

7.6 Conclusion

We have presented a method for multimodal learning, and specifically multimodal segmenta-

tion, that is robust to the requirement for registered and paired input images. This has been

made possible by disentangling images into semantic anatomy factors, that are consistently

represented across modalities, and modality factors that model the intensity variability of the

multimodal inputs into a smooth latent space.

This chapter combined the findings of Chapters 4–6 for multimodal and disentangled spatial

representations in a unified framework. We proposed DAFNet, which, to the best of our knowl-

edge, is the first work that enables multimodal segmentation by aligning disentangled anatom-

ical representations, and can be trained with few or zero annotations for one of the modalities.

We presented the benefit of multimodal (over unimodal) learning in cardiac and abdominal seg-

mentation, where we achieve high accuracy and low variance through the fusion of anatomical

information of different modalities. We further demonstrated robustness to misalignments in

the multimodal data (achieved by a Spatial Transformer Network), and robustness to the qual-

ity of the multimodal pair matching (with an optional pair weighting), both made possible by

comparing the semantic anatomy factors. Finally, we made a first step in evaluating the quality

of the content/style disentanglement using the distance correlation, although limitations remain

in the precise quantification of the type of information that is captured by each factor.

153



Chapter 8
Summary and Future Directions

This final chapter summarises the thesis contributions, discusses the significance of our work

in Section 8.1, and presents some limitations and avenues for the future in Section 8.2.

8.1 Summary

This thesis considered deep learning methods for medical image analysis, specifically for the

tasks of synthesis and segmentation. We proposed new methods that contribute to the medical

imaging research through their ability to combine complementary information from multimodal

images, as well as through their robustness to the number of annotations with semi-supervised

learning. We investigated spatial representations, and demonstrated that they are suitable latent

variables for learning cross-modal and multimodal correlations, as well as for representing fac-

tors of variation. Finally, we have contributed to the deep learning research by introducing dis-

entangled spatial representations as a way of separating structural and appearance information

from images. In brief we consider various image domains (modalities), and propose different

methods of encoder-decoder architecture that address the problems of synthesis, segmentation,

multimodal, and semi-supervised learning.

Chapter 4, explores multimodal synthesis by subsequently encoding and decoding images

through intermediate spatial representations. This method proves that images, i.e. multi-

channel feature maps, can be latent variables, and are suitable for synthesis problems of cardi-

nalities one-to-one, many-to-one, or many-to-many. Robustness to the number of inputs makes

the method applicable to scenarios with imperfect datasets, and feature fusion is important for

leveraging complementary information. However, this method requires paired data for training.

Chapter 5 overcomes the data pairing problem by learning one-to-one mapping functions be-

tween image domains with the cycle consistency principle, and demonstrates the utility of syn-

thetic images for data augmentation in auxiliary tasks. Our investigation shows that cycle con-

sistency is problematic when the domains do not have similar information capacity.
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Chapter 6 solves this information matching problem by introducing disentangled representa-

tions to encode the residual information of the lossy domain. Here, the mapping is bidirectional

between images and anatomical semantic maps. Thus the residual information corresponds to

appearance, i.e. pixel intensities of the medical images. In the proposed method, the anatom-

ical map is part of the disentangled factors, thus allowing visual inspection of what a network

learns. The presence of supervised segmentation, and unsupervised reconstruction losses make

disentangled representation methods directly applicable to semi-supervised tasks, by taking ad-

vantage of the utility and semantics of the spatial content. This scheme however presumes

single-domain images and segmentation labels, and cannot combine multimodal information.

Chapter 7, inspired by the multimodal synthesis method of Chapter 4, as well as by the findings

of Chapter 6 on disentangled representations, uses multiple encoders to map multimodal images

in a shared disentangled representation space. The common semantics of the anatomy factors

enable information fusion. Also, image misalignments that are common in multimodal medical

datasets, can be corrected in the spatial anatomy space, while the disentangled representation

offers the ability for semi-supervised learning. In addition, we show that the learning costs and

design biases also allow training in the absence of annotations for one modality.

The broader significance of our work is the disentanglement of medical image data into mean-

ingful spatial and non-spatial factors. This intuitive factorisation does not require the specific

network architecture choices used in this thesis, but rather is general in nature and thus could be

applied in diverse medical image analysis tasks. Already experimental results of Chapter 6 have

demonstrated the potential of combining imaging and non-imaging data, such as the ones avail-

able in electronic health records. Factorisation facilitates manipulations of the latent space and

as such probing and interpreting the model. Such interpretability is considered key to advance

the translation of advanced machine learning methods in healthcare.

8.2 Limitations and Future Directions

Our work has some limitations that inspire future directions. We can envision that extensions

to 3D (in lieu of 2D), would further improve applicability of our approaches in several domains

such as brain (which benefits from 3D view) and abdominal imaging. However, 3D models

also present challenges. The number of model parameters significantly increases, since 3D

convolutions are employed. Also, the effective size of datasets decreases, since each subject
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volume becomes a sample, in contrast to 2D methods, which treat volume slices independently.

Although the synthesis method of Chapter 4 showed coherent multi-view results, synthetic

results demonstrated a lack of sharpness to be considered realistic by medical experts. This

could be improved with new techniques that modern generative models use for high quality

synthesis, as for example in [218], where synthesis models are learnt progressively, starting

from low resolution and upscaling to high resolution image synthesis.

Our work of Chapter 6 further encourages future extensions to improve the fidelity of recon-

structed images by explicitly modelling image texture, which would benefit applications in ul-

trasound. This can be achieved with the design of more powerful decoders, although how best

to maintain the balance between the semantics of the spatial representation, promoted through

the thresholding operation, and the quality of the reconstruction is an open question. Texture

can be explicitly learned in additional latent variables by using deep feature activations, for

example by extracting the Gram matrix as originally proposed for style transfer [128].

Moreover, the applicability of the method in Chapter 6 could be extended in a completely un-

supervised setting where no annotated examples are available, or in a zero-shot setting where

some annotated examples of other classes are available. Unsupervised segmentation could

be possible by careful design of the mask adversarial training, for example with Wasserstein

GANs [51] and multi-scale discriminators, and by applying restrictions on the anatomy factor

that introduce statistical priors on the shape of the underlying organs. The aim for these con-

straints would be to achieve a disentanglement within the anatomy factor, with each channel

corresponding to a particular organ. In the current methodology, the contents of the anatomy

factor are biased by the image’s intensities: many channels encode regions of the image with

similar pixel values, resembling intensity clustering. Diversity of organ intensities through

multimodal learning (as in Chapter 7) in combination with adversarial training and constraints

such as minimum description length and connected component analysis would potentially help

organ separation in the anatomy factor, and thus unsupervised segmentation.

Disentangled representations, similar to multimodal learning, are also potentially useful to

transfer learning, for example for multi-site data of the same modality. In this case, the multi-

site variability would be encoded in the modality factor. In the transfer learning scenario, we

want to use a trained model on a new dataset with no annotations. The unseen intensity patterns

of the new data may potentially affect image disentanglement and therefore segmentation ac-
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(a) cardiac infarct (b) hypertrophic cardiomyopathy (c) brain tumour

Figure 8.1: Different pathology examples that affect appearance (hyperintense infarcted re-

gion), size (hypertrophic myocardium), and shape (brain tumour). Images are taken from

ERI [2] (Section 2.6.2.5), ACDC [5] (Section 2.6.2.2) and BRATS [16] (Section 2.6.1.2).

curacy. We believe that fine tuning the encoders (or their first few layers) for a small number of

epochs using the unsupervised costs would not affect the semantics of the anatomy space and

suffice for extending our model to the new data.

We further believe, that there is a big potential in the research of disentangled representations.

Currently, only two factors are considered, but explicitly learning hierarchical factors that better

capture semantic information (both in terms of anatomical and modality representations), would

create structured representations that help generalisation in different applications. For instance,

the discovery of pathology factors can have direct application in automatic pathology classifi-

cation, although different pathologies manifest in different ways. Some pathologies affect the

“appearance” of anatomical regions, e.g. cardiac infarct appears as hyperintense regions of the

myocardium in LGE, others affect the shape of the organ, e.g. hypertrophic cardiomyopathy

results in increased myocardial volume, and others deform the shape of healthy tissues, e.g. due

to introduction of cancerous mass. We believe that key in disentangling pathology is maintain-

ing a representation of the healthy anatomy. As such, an anatomy encoder should always extract

healthy anatomical features (encouraged by adversarial learning or statistical constraints, e.g.

size and shape), with the pathology factor being estimated as the residual representation re-

quired to reconstruct the image. Although it might be tempting to encode pathologies that

affect intensities in the modality factor, this would contradict the anatomy-modality disentan-

glement principle. Furthermore, disentangling pathologies that induce deformations, such as

brain tumour, is more challenging, since the anatomy encoder should “undo” the deformation,

similar to pseudo-healthy synthesis methods [69, 80].

157



Summary and Future Directions

Hierarchical representations that model conditional dependencies between latent variables can

also be employed to encourage decoding from coarse to fine-grained details. Indeed, this could

also be a step towards solutions requiring less (or weaker) supervision. Learning such an ex-

pressive generative model with hierarchical factors requires a different §decoder design, which

should generate images by compositionality, i.e. by combining (and colouring) separate objects.

Compositional methods in computer vision take advantage of data biases, where the same object

appears in different colours and poses. With appropriate adversarial and information theoretic

costs, the GAN method in [219] considers a sequential approach, where background, object

shape and appearance are generated in a sequence and “stiched” together. The data biases in

medical imaging are different: intensity variations between images of the same organ are typ-

ically very small, whereas large intensity variations among organs are not guaranteed, and if

any, they depend on physical properties, such as the hydrogen concentration. Nevertheless,

there is anatomical variability that is correlated to other attributes, e.g. the temporal frames of a

cine-MR sequence or the slice position within a 3D volume. We believe that compositional de-

coders that encode these factors along with traditional anatomy, modality and pathology factors

is a promising future direction. Furthermore, a separation between background and foreground

anatomy, which in CMR images corresponds to the heart and surrounding organs respectively,

is necessary for modelling the dependencies with the temporal and spatial factors. Initially, as-

suming some supervision on the heart, either strong (segmentation masks) or weak (bounding

boxes), a compositional generative model given temporal and spatial coordinates would respec-

tively: synthesise a background anatomy, a healthy heart, a representation of some pathology,

and finally would create a composition of the previous given a modality.

Finally, a theoretical characterisation of the disentangling process and precise quantification

of the type of information that is captured by each factor is required, in order to fully take

advantage and tune disentangled representation methods according to specific learning tasks.

This admittedly is more complex in spatial disentanglement than in vectorised latent spaces for

which metrics have been recently suggested [220]. An initial investigation has been performed

in Chapter 7 by using distance correlation between the anatomy and modality factors, whereas a

more thorough analysis examining several biases that affect disentanglement in different com-

puter vision models has been conducted in our article titled “Metrics for Exposing the Biases

of Content-Style Disentanglement”, which at the time of writing is under review.
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