134 research outputs found

    Fusion of Head and Full-Body Detectors for Multi-Object Tracking

    Full text link
    In order to track all persons in a scene, the tracking-by-detection paradigm has proven to be a very effective approach. Yet, relying solely on a single detector is also a major limitation, as useful image information might be ignored. Consequently, this work demonstrates how to fuse two detectors into a tracking system. To obtain the trajectories, we propose to formulate tracking as a weighted graph labeling problem, resulting in a binary quadratic program. As such problems are NP-hard, the solution can only be approximated. Based on the Frank-Wolfe algorithm, we present a new solver that is crucial to handle such difficult problems. Evaluation on pedestrian tracking is provided for multiple scenarios, showing superior results over single detector tracking and standard QP-solvers. Finally, our tracker ranks 2nd on the MOT16 benchmark and 1st on the new MOT17 benchmark, outperforming over 90 trackers.Comment: 10 pages, 4 figures; Winner of the MOT17 challenge; CVPRW 201

    FollowMe: Efficient Online Min-Cost Flow Tracking with Bounded Memory and Computation

    Full text link
    One of the most popular approaches to multi-target tracking is tracking-by-detection. Current min-cost flow algorithms which solve the data association problem optimally have three main drawbacks: they are computationally expensive, they assume that the whole video is given as a batch, and they scale badly in memory and computation with the length of the video sequence. In this paper, we address each of these issues, resulting in a computationally and memory-bounded solution. First, we introduce a dynamic version of the successive shortest-path algorithm which solves the data association problem optimally while reusing computation, resulting in significantly faster inference than standard solvers. Second, we address the optimal solution to the data association problem when dealing with an incoming stream of data (i.e., online setting). Finally, we present our main contribution which is an approximate online solution with bounded memory and computation which is capable of handling videos of arbitrarily length while performing tracking in real time. We demonstrate the effectiveness of our algorithms on the KITTI and PETS2009 benchmarks and show state-of-the-art performance, while being significantly faster than existing solvers

    Identity Retention of Multiple Objects under Extreme Occlusion Scenarios using Feature Descriptors

    Get PDF
    Identity assignment and retention needs multiple object detection and tracking. It plays a vital role in behavior analysis and gait recognition. The objective of Multiple Object Tracking (MOT) is to detect, track and retain identities from an image sequence. An occlusion is a major resistance in identity retention. It is a challenging task to handle occlusion while tracking varying number of person in the complex scene using a monocular camera. In MOT, occlusion remains a challenging task in real world applications. This paper uses Gaussian Mixture Model (GMM) and Hungarian Assignment (HA) for person detection and tracking. We propose an identity retention algorithm using Rotation Scale and Translation (RST) invariant feature descriptors. In addition, a segmentation based optimum demerge handling algorithm is proposed to retain proper identities under occlusion. The proposed approach is evaluated on a standard surveillance dataset sequences and it achieves 97 % object detection accuracy and 85% tracking accuracy for PETS-S2.L1 sequence and 69.7% accuracy as well as 72.3% precision for Town Centre Sequence
    • …
    corecore