1,691 research outputs found

    Learning a human-perceived softness measure of virtual 3D objects

    Get PDF
    We introduce the problem of computing a human-perceived softness measure for virtual 3D objects. As the virtual objects do not exist in the real world, we do not directly consider their physical properties but instead compute the human-perceived softness of the geometric shapes. We collect crowdsourced data where humans rank their perception of the softness of vertex pairs on virtual 3D models. We then compute shape descriptors and use a learning to-rank approach to learn a softness measure mapping any vertex to a softness value. Finally, we demonstrate our framework with a variety of 3D shapes

    A Human-Perceived Softness Measure of Virtual 3D Objects

    Get PDF
    We introduce the problem of computing a human-perceived softness measure for virtual 3D objects. As the virtual objects do not exist in the real world, we do not directly consider their physical properties but instead compute the human-perceived softness of the geometric shapes. In an initial experiment, we find that humans are highly consistent in their responses when given a pair of vertices on a 3D model and asked to select the vertex that they perceive to be more soft. This motivates us to take a crowdsourcing and machine learning framework. We collect crowdsourced data for such pairs of vertices. We then combine a learning-to-rank approach and a multi-layer neural network to learn a non-linear softness measure mapping any vertex to a softness value. For a new 3D shape, we can use the learned measure to compute the relative softness of every vertex on its surface. We demonstrate the robustness of our framework with a variety of 3D shapes and compare our non-linear learning approach with a linear method from previous work. Finally, we demonstrate the accuracy of our learned measure with user studies comparing our measure with the human-perceived softness of both virtual and real objects, and we show the usefulness of our measure with some applications

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Pseudo-haptics survey: Human-computer interaction in extended reality & teleoperation

    Get PDF
    Pseudo-haptic techniques are becoming increasingly popular in human-computer interaction. They replicate haptic sensations by leveraging primarily visual feedback rather than mechanical actuators. These techniques bridge the gap between the real and virtual worlds by exploring the brain’s ability to integrate visual and haptic information. One of the many advantages of pseudo-haptic techniques is that they are cost-effective, portable, and flexible. They eliminate the need for direct attachment of haptic devices to the body, which can be heavy and large and require a lot of power and maintenance. Recent research has focused on applying these techniques to extended reality and mid-air interactions. To better understand the potential of pseudo-haptic techniques, the authors developed a novel taxonomy encompassing tactile feedback, kinesthetic feedback, and combined categories in multimodal approaches, ground not covered by previous surveys. This survey highlights multimodal strategies and potential avenues for future studies, particularly regarding integrating these techniques into extended reality and collaborative virtual environments.info:eu-repo/semantics/publishedVersio

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    W-FYD: a Wearable Fabric-based Display for Haptic Multi-Cue Delivery and Tactile Augmented Reality

    Get PDF
    Despite the importance of softness, there is no evidence of wearable haptic systems able to deliver controllable softness cues. Here, we present the Wearable Fabric Yielding Display (W-FYD), a fabric-based display for multi-cue delivery that can be worn on user's finger and enables, for the first time, both active and passive softness exploration. It can also induce a sliding effect under the finger-pad. A given stiffness profile can be obtained by modulating the stretching state of the fabric through two motors. Furthermore, a lifting mechanism allows to put the fabric in contact with the user's finger-pad, to enable passive softness rendering. In this paper, we describe the architecture of W-FYD, and a thorough characterization of its stiffness workspace, frequency response and softness rendering capabilities. We also computed device Just Noticeable Difference in both active and passive exploratory conditions, for linear and non-linear stiffness rendering as well as for sliding direction perception. The effect of device weight was also considered. Furthermore, performance of participants and their subjective quantitative evaluation in detecting sliding direction and softness discrimination tasks are reported. Finally, applications of W-FYD in tactile augmented reality for open palpation are discussed, opening interesting perspectives in many fields of human-machine interaction

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fifteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health Contract P01-DC00361National Institutes of Health Contract N01-DC22402National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-94-C-0087U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-93-1-1399U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-94-1-1079U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-92-J-1814National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-88-K-0604National Aeronautics and Space Administration Grant NCC 2-771U.S. Air Force - Office of Scientific Research Grant F49620-94-1-0236U.S. Air Force - Office of Scientific Research Agreement with Brandeis Universit

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility
    • …
    corecore