23,540 research outputs found

    CT-SRCNN: Cascade Trained and Trimmed Deep Convolutional Neural Networks for Image Super Resolution

    Full text link
    We propose methodologies to train highly accurate and efficient deep convolutional neural networks (CNNs) for image super resolution (SR). A cascade training approach to deep learning is proposed to improve the accuracy of the neural networks while gradually increasing the number of network layers. Next, we explore how to improve the SR efficiency by making the network slimmer. Two methodologies, the one-shot trimming and the cascade trimming, are proposed. With the cascade trimming, the network's size is gradually reduced layer by layer, without significant loss on its discriminative ability. Experiments on benchmark image datasets show that our proposed SR network achieves the state-of-the-art super resolution accuracy, while being more than 4 times faster compared to existing deep super resolution networks.Comment: Accepted to IEEE Winter Conf. on Applications of Computer Vision (WACV) 2018, Lake Tahoe, US

    Clustering-Oriented Multiple Convolutional Neural Networks for Single Image Super-Resolution

    Get PDF
    In contrast to the human visual system (HVS) that applies different processing schemes to visual information of different textural categories, most existing deep learning models for image super-resolution tend to exploit an indiscriminate scheme for processing one whole image. Inspired by the human cognitive mechanism, we propose a multiple convolutional neural network framework trained based on different textural clusters of image local patches. To this end, we commence by grouping patches into K clusters via K-means, which enables each cluster center to encode image priors of a certain texture category. We then train K convolutional neural networks for super-resolution based on the K clusters of patches separately, such that the multiple convolutional neural networks comprehensively capture the patch textural variability. Furthermore, each convolutional neural network characterizes one specific texture category and is used for restoring patches belonging to the cluster. In this way, the texture variation within a whole image is characterized by assigning local patches to their closest cluster centers, and the super-resolution of each local patch is conducted via the convolutional neural network trained by its cluster. Our proposed framework not only exploits the deep learning capability of convolutional neural networks but also adapts them to depict texture diversities for super-resolution. Experimental super-resolution evaluations on benchmark image datasets validate that our framework achieves state-of-the-art performance in terms of peak signal-to-noise ratio and structural similarity. Our multiple convolutional neural network framework provides an enhanced image super-resolution strategy over existing single-mode deep learning models
    • …
    corecore