5 research outputs found

    Slow and steady feature analysis: higher order temporal coherence in video

    Full text link
    How can unlabeled video augment visual learning? Existing methods perform "slow" feature analysis, encouraging the representations of temporally close frames to exhibit only small differences. While this standard approach captures the fact that high-level visual signals change slowly over time, it fails to capture *how* the visual content changes. We propose to generalize slow feature analysis to "steady" feature analysis. The key idea is to impose a prior that higher order derivatives in the learned feature space must be small. To this end, we train a convolutional neural network with a regularizer on tuples of sequential frames from unlabeled video. It encourages feature changes over time to be smooth, i.e., similar to the most recent changes. Using five diverse datasets, including unlabeled YouTube and KITTI videos, we demonstrate our method's impact on object, scene, and action recognition tasks. We further show that our features learned from unlabeled video can even surpass a standard heavily supervised pretraining approach.Comment: in Computer Vision and Pattern Recognition (CVPR) 2016, Las Vegas, NV, June 201

    Automatic analysis of facial actions: a survey

    Get PDF
    As one of the most comprehensive and objective ways to describe facial expressions, the Facial Action Coding System (FACS) has recently received significant attention. Over the past 30 years, extensive research has been conducted by psychologists and neuroscientists on various aspects of facial expression analysis using FACS. Automating FACS coding would make this research faster and more widely applicable, opening up new avenues to understanding how we communicate through facial expressions. Such an automated process can also potentially increase the reliability, precision and temporal resolution of coding. This paper provides a comprehensive survey of research into machine analysis of facial actions. We systematically review all components of such systems: pre-processing, feature extraction and machine coding of facial actions. In addition, the existing FACS-coded facial expression databases are summarised. Finally, challenges that have to be addressed to make automatic facial action analysis applicable in real-life situations are extensively discussed. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the future of machine recognition of facial actions: what are the challenges and opportunities that researchers in the field face

    A benchmark of dynamic versus static methods for facial action unit detection

    Get PDF
    Action Units activation is a set of local individual facial muscle parts that occur in time constituting a natural facial expression event. AUs occurrence activation detection can be inferred as temporally consecutive evolving movements of these parts. Detecting AUs automatically can provide explicit benefits since it considers both static and dynamic facial features. Our work is divided into three contributions: first, we extracted the features from Local Binary Patterns, Local Phase Quantisation, and dynamic texture descriptor LPQTOP with two distinct leveraged network models from different CNN architectures for local deep visual learning for AU image analysis. Second, cascading the LPQTOP feature vector with Long Short-Term Memory is used for coding longer term temporal information. Next, we discovered the importance of stacking LSTM on top of CNN for learning temporal information in combining the spatially and temporally schemes simultaneously. Also, we hypothesised that using an unsupervised Slow Feature Analysis method is able to leach invariant information from dynamic textures. Third, we compared continuous scoring predictions between LPQTOP and SVM, LPQTOP with LSTM, and AlexNet. A competitive substantial performance evaluation was carried out on the Enhanced CK dataset. Overall, the results indicate that CNN is very promising and surpassed all other method

    Artificial Intelligence Tools for Facial Expression Analysis.

    Get PDF
    Inner emotions show visibly upon the human face and are understood as a basic guide to an individual’s inner world. It is, therefore, possible to determine a person’s attitudes and the effects of others’ behaviour on their deeper feelings through examining facial expressions. In real world applications, machines that interact with people need strong facial expression recognition. This recognition is seen to hold advantages for varied applications in affective computing, advanced human-computer interaction, security, stress and depression analysis, robotic systems, and machine learning. This thesis starts by proposing a benchmark of dynamic versus static methods for facial Action Unit (AU) detection. AU activation is a set of local individual facial muscle parts that occur in unison constituting a natural facial expression event. Detecting AUs automatically can provide explicit benefits since it considers both static and dynamic facial features. For this research, AU occurrence activation detection was conducted by extracting features (static and dynamic) of both nominal hand-crafted and deep learning representation from each static image of a video. This confirmed the superior ability of a pretrained model that leaps in performance. Next, temporal modelling was investigated to detect the underlying temporal variation phases using supervised and unsupervised methods from dynamic sequences. During these processes, the importance of stacking dynamic on top of static was discovered in encoding deep features for learning temporal information when combining the spatial and temporal schemes simultaneously. Also, this study found that fusing both temporal and temporal features will give more long term temporal pattern information. Moreover, we hypothesised that using an unsupervised method would enable the leaching of invariant information from dynamic textures. Recently, fresh cutting-edge developments have been created by approaches based on Generative Adversarial Networks (GANs). In the second section of this thesis, we propose a model based on the adoption of an unsupervised DCGAN for the facial features’ extraction and classification to achieve the following: the creation of facial expression images under different arbitrary poses (frontal, multi-view, and in the wild), and the recognition of emotion categories and AUs, in an attempt to resolve the problem of recognising the static seven classes of emotion in the wild. Thorough experimentation with the proposed cross-database performance demonstrates that this approach can improve the generalization results. Additionally, we showed that the features learnt by the DCGAN process are poorly suited to encoding facial expressions when observed under multiple views, or when trained from a limited number of positive examples. Finally, this research focuses on disentangling identity from expression for facial expression recognition. A novel technique was implemented for emotion recognition from a single monocular image. A large-scale dataset (Face vid) was created from facial image videos which were rich in variations and distribution of facial dynamics, appearance, identities, expressions, and 3D poses. This dataset was used to train a DCNN (ResNet) to regress the expression parameters from a 3D Morphable Model jointly with a back-end classifier

    Simultaneous multi-object tracking and classification via approximate variational inference

    Get PDF
    In modern applications, robots are expected to work in complex dynamic environments and extract meaningful information from low-level, noisy data. In particular, they must build a description of the objects they interact with. This description should be both qualitative and quantitative. The former can be expressed in terms of object classes, while the latter is expressed by the object dynamics. Qualitative descriptors can be thought of as discrete assignments of object trajectories to category labels that represent different motion patterns in the environment. Obtaining these descriptors along with the kinematic states of the objects, from data, is a challenging task due to the noisy nature of sensor measurements, sensor failure, object occlusions and the presence of objects with infrequent dynamics. Quantitative descriptors such as locations and velocities are usually obtained using widely known filtering techniques derived from the Kalman filter. Nevertheless, when dealing with measurements originated by multiple objects, associating these measurements with individual objects generates a number of hypotheses that grows combinatorially with the number of measurements, and exponentially with time. Generating these assignments, while also estimating the kinematic state and classes of the objects is a computationally intractable problem. This thesis proposes a probabilistic model that exploits the correlations between object trajectories and classes and an inference procedure that renders the problem tractable through a structured variational approximation. The framework presented is very generic, and can be used for various tracking applications. It can handle objects with different and/or infrequent dynamics, such as cars and pedestrians, and it can seamlessly integrate multi-modal features, for example object dynamics and appearanc
    corecore