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Abstract

Action Units activation is a set of local individual facial muscle parts that occur in time
constituting a natural facial expression event. AUs occurrence activation detection can
be inferred as temporally consecutive evolving movements of these parts. Detecting AUs
automatically can provide explicit benefits since it considers both static and dynamic facial
features. Our work is divided into three contributions: first, we extracted the features from
Local Binary Patterns, Local Phase Quantisation, and dynamic texture descriptor LPQ-
TOP with two distinct leveraged network models from different CNN architectures for
local deep visual learning for AU image analysis. Second, cascading the LPQTOP feature
vector with Long Short-Term Memory is used for coding longer term temporal informa-
tion. Next, we discovered the importance of stacking LSTM on top of CNN for learning
temporal information in combining the spatially and temporally schemes simultaneously.
Also, we hypothesised that using an unsupervised Slow Feature Analysis method is able to
leach invariant information from dynamic textures. Third, we compared continuous scor-
ing predictions between LPQTOP and SVM, LPQTOP with LSTM, and AlexNet. A com-
petitive substantial performance evaluation was carried out on the Enhanced CK dataset.
Overall, the results indicate that CNN is very promising and surpassed all other methods

1 INTRODUCTION

As humans, we are particularly gifted at recognizing other peo-
ple and inferring their mental states from even a cursory glance
at their faces – in fact, even young children can recognize hap-
piness and emulate smiles. If Artificial Intelligence and Robotic
systems are to spread wider in society, they will need to be able
to interact with people appropriately by recognizing and taking
into account their mood and state of mind: to detect, under-
stand, and react to the various affective states. For example, the
exact same words can carry very different meanings if spoken
in anger, annoyance, amusement or anxiety such as a through
feelings of rage, resentment, bitterness, discontent or irritation.
One essential difficulty of this task is the large range of differ-
ences between people’s faces and how they show emotion. In
addition, the timing, the speed and the relative duration, and the
appearance of the various facial action activation might differ
from spontaneous behaviour. Figure 1 shows how the temporal
dynamics importance of AUs has a crucial impact on the real
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meaning of facial expression and distinguishes between posed
and spontaneously occurring expressions.

The human face is able to display an assortment of facial
expressions. Facial expression is one of the most informative
key channels of non-verbal communication by cogent natural
way and concerns the facial atomic muscle component move-
ments. The Facial Action Coding System (FACS) is the most
comprehensive system that precisely describes the basic facial
expression movements by encoding the configuration of AU
or multiple AUs in terms of facial atomic activation muscle
actions. In a muscle-based approach, FACS defines 46 action
units assumed as the smallest fundamental measurement of vis-
ible discernible blocks of facial movements [1–3]. Further, this
system supports mapping from facial appearance changes to
emotion space. In the past, proposed approaches to automatic
facial expression analysis were mostly limited to basic emotion
categories (happiness, sadness, surprise, fear, anger, and dis-
gust). However, it is not certain whether all facial expressions
can be classified under those six basic emotion categories [4]:

252 wileyonlinelibrary.com/iet-joe J. Eng. 2021;2021:252–266.

https://orcid.org/0000-0002-3455-6280
mailto:la315@exeter.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-joe


ALHARBAWEE ET AL. 253

FIGURE 1 An example of using temporal information. The figure represents a continuous scoring prediction, detection of AU1 on the first half part of the
sequence (subject 1), and on the second half part of the sequence (subject 2) in which we used the feature vector from the enhanced CK dataset for training and for
testing a feature vector which included a sequence of two videos with two subjects. Each one consists of 900 frames from the ISL Facial Expression dataset using
LPQTOP dynamic descriptor

people can often show a mixture of emotional expressions. Fur-
thermore, pure facial expressions are rarely elicited. Yet to date,
psychological research on this topic remains scarce. Moreover,
from a technical standpoint, detecting real-time facial expres-
sion already presents a difficult challenge in computer vision
due to the level and ambiguity of the variability, the subtlety, and
the complexity in its appearance and subjects can be extremely
dynamic in their pose. Facial expression analysis refers to com-
puter applications that are designed to automatically recognize
facial feature changes using visual information. Facial changes
can be identified as facial action units or prototypic emotional
expressions depending on whether the temporal information is
used. This involves many sub-problems which are not yet fully
solved: detection of an image segment as a face, extraction of
information from the facial region, and classification of facial
AUs. Ideally, the typical structure of automatic facial AU recog-
nition processes consists of multiple steps, in three main stages:

FIGURE 2 The ideal proposed system

detection of facial regions/alignment and tracking, facial feature
extraction, and AU classification [7] (Figure 2).

Face detection typically serves as the first initial step across
facial analysis pipelines. Arguably, a popular strategy for find-
ing a face bounding box uses the classic real-time Viola–Jones
method. There are many available techniques for face detec-
tion and numerous tools exist in the field, for example, the dlib,
Seetaface, FaceReader2, Av+EC2015, Emotient1, IntraFace,
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and NVSIO3 [8, 9]. Face tracking is another aspect of facial
expression analysis which can often be a consequence of face
detection. Tracking means realizing the face in that frame of
sequence is identical to the same face in the last frame of the
sequence. Face landmarking is denoted as the detection and
localization of certain key characteristic points on the face.
These points are used to represent the information required to
classify an individual and to determine local patches to extract
features for AUs prediction. Landmarks are represented by the
centres and corners of the eyes, nostrils and mouth corners,
ear lobes, nose tips, the eyebrow arcs, cheeks, and chin. These
details are called fiducial landmarks in the face processing litera-
ture. Moreover, the purpose of face alignment is to locate facial
landmarks automatically and to map the rectified face image into
the same canonical pose view (typically, the front view) which is
important for some tasks, such as face tracking, security mon-
itoring, facial expression recognition, and 3D face modelling
[10]. After the face is detected, in this step, feature extraction
methods are used to extract a feature vector (features) that is
fed into a classification system. Feature extraction techniques
can be divided according to whether they focus on motion or
deformation of faces and facial features [5]. Classification tech-
niques are conducted for supervised learning algorithms such as
Euclidean distance classifier, nearest neighbour classifier, Fisher
face [5], neural networks, discriminant analysis, support vector
machines (SVM), and hidden Markov models (HMMs) [6]. Clas-
sification and predictions of AUs are the output of the system
and the final step in the pipeline.

The novelty of this work starts by proposing a benchmark
of dynamic versus static methods for facial expression recog-
nition. The potential advantages of this work are to design an
automated system that is capable of recognizing and estimating
the emotions of different individual’s feelings in real-time from
live broadcast footage. The proposed system can significantly
advance the existing work from different aspects and will extend
the state-of-the-art knowledge boundaries by looking at how
emotional cues can be learnt and recognized by discovering tem-
poral changes in facial appearance and how such patterns learnt
on test subjects can be generalized for applications to new indi-
viduals. Modelling and recognizing people’s emotion from their
faces, achieved by recognizing action units (AUs) is a challeng-
ing computer vision problem. Emotions are usually described in
terms of individual action units (AU), the atomic components
of the facial expression of emotions. In real-world applications,
machines that interact with people need strong facial expres-
sion recognition. This recognition is seen to hold advantages for
varied applications in affective computing, advanced human–
computer interaction, security, stress and depression analysis,
robotic systems, and machine learning.

Our aim is to address three main complementary aspects:
the problem of modelling AU target activation detection, and
then, to discover the underlying temporal variation phases in
a sequence using supervised and unsupervised methods which
highlight and compare the exciting feature extraction repre-
sentations on both static and dynamic data, which confer the
importance of fusing more than one deep architecture. The
proposed methods were evaluated by the third aspect: com-

paring the continuous scoring predictions by acquiring a best
match between the predictions and the ground truths. We
demonstrated that both methods (static and dynamic) can com-
pete with the state-of-the-art available methods and the results
were promising when tested on the available enhanced Cohn–
Kanade dataset and the achieved results illustrate the effective-
ness of the proposed methods.

This paper is organized as follows: after this introduction in
Section 1, Section 2 briefly gives an up to date review along the
topic challenges and summarizes recent work and developments
in this domain. The methodology of the feature extraction
methods proposed in both categories, static and dynamic, are
presented together with the proposed hybrid recognition archi-
tecture, detailed in Section 3, which also discusses the experi-
mental settings and gives the results in Section 4, respectively.
The conclusions are provided with possible future directions in
Section 5.

2 BACKGROUND

Recognizing AUs automatically from videos is undoubtedly
a complex and challenging task. There are several obstacles
associated with facial expression recognition which can be
traced to many confounding factors which can significantly
affect the system performance, and the accuracy of the level
of classification [4]. This includes the following: illumination is
one of the biggest difficulties for automated facial expression
recognition systems. Illumination varies owing to different
levels of skin reflection, lustre from eyes, teeth, and camera [13].
Non-frontal pose variation (in a plane, or out of plane rotation)
and face misalignment in invariant head movement is a signifi-
cant research problem found in unconstrained face recognition
systems because of the 3D dynamic nature of a facial action
[13]. This includes various identities across subjects such as
babies, children, youngsters, adults, and elders. Subtle or large
individual attribute differences between people’s faces occur in
key facial features such as intensity, appearance, shape, and con-
formation to the same facial expression. Imbalanced data with a
scarce and limited AU image coded data annotation, according
to the lack of adequately FACs coded dataset, represents a
major issue impeding progress in the field. Another challenge
is that facial AU events can occur in very different time scales
[11]. In real time, in most cases, certain positive examples of
AUs are minimal, owing to the rarity of becoming activated due
to natural facial expression (such as AU9 or AU20). This has to
be taken into consideration to avoid ‘overfitting on the training
data’ [12]. Finally, other factors are adversely susceptible such
as registration errors, low intensity of facial expressions, noise
and occlusions, time delay, age progression, face size, mood and
behaviour, scale and orientation, motion blur, gender, ethnicity,
facial hair, recording environment, permanent furrows, deco-
rations, accessories and skin marks, make-up, glasses, piercings,
tattoos, beards and scars which can either occlude or obscure
the face [13, 14, 17] [18, 19]. Facial AU recognition holds a
vast number of potential applications from computer vision,
surveillance, facial animation, tiered detection, health care,
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psychological inquiry, social robotics, pain assessment, driver
safety system, behaviour interpretation science, the orientation
of the degree of attention of characters in videos, interactive
video games, intelligent transportation, online avatars mimick-
ing humans, feelings detection, early detection of numerous
diseases, and human–computer interaction along with virtual
reality [20, 21]. In general, facial AU recognition methods can
be divided into three categories. Frame level-based approaches
detect and evaluate AU occurrences (facial texture changes
such as bulges and wrinkles) in each frame independently
using appearance or geometric feature extraction methods,
combined with binary classifiers such as SVM or Adaboost [22].
While all the methods try to find landmarks, features location
information, or the geometry of the facial shape components
signifies geometric features. Segment-level approaches use
temporal dynamics in video sequences to detect AU from a set
of temporally contiguous frames. Temporal phase modelling
algorithms (transition detection) seek to discover constituent
temporal segments: neutral, onset, apex, and offset in the event
episode [1, 11, 23–25]. In the past, to date, many approaches
adopted various conventional hand crafted feature representa-
tions for facial AU recognition, that can be broadly divided into
appearance, geometric, dynamic, and fusion such as local binary
patterns (LBP) and the family of descriptors of engineered
representations: LBP histograms from three orthogonal planes
(LBP-TOP), local Gabor binary patterns from three orthogonal
planes (LGBPTOP), Gabor motion energy, histograms of local
phase quantization (LPQ), and their spatial/temporal exten-
sions merits: local phase quantization from three orthogonal
planes (LPQTOP) [26], edge orientation histogram (EOH)
[27], facial landmarks, histogram of optical flow [11, 20], speed
up robust features (SURF), Principle Component Analysis,
Gabor wavelets, sparse learning, discrete cosine transform
(DCT), histogram of oriented gradients (HOG), 3D HOG
[28], pyramid histogram of oriented gradients (PHOG) [29],
DAISY/scale invariant feature transform (SIFT) descriptors
[30, 31], 3D SIFT [32], Non-negative matrix factorization, and
motion history images (MHI) [33]. However, the aforemen-
tioned methods rely on specific problems under certain uses.
Intuitively, while facial actions express themselves over a time
span, a dynamic pattern information captures the trajectory
changes of current state, and past state in a time space volume
[34]. On the other hand, frame-based methods are faster and
easier to implement. However, static methods are very restricted
in detecting affective expressive actions in real time, conveying
less important information and neglecting to handle the latent
temporal variations among consecutive frames of the sequence
[20]. On the other hand, some AUs can be recognized using
static features only, and also the remain dynamic features are
important; for example, the only lone difference between AU43
and AU45 lies in the area of temporal duration of eye closure.
Nevertheless, a static image can often still provide enough
beneficial information for AUs recognition [1]. The question is
whether the detection of the occurrence of target AUs needs the
modelling of the entire sequences, or whether a single frame is
sufficient.

FIGURE 3 The rules used to represent an uncontrollable rage expression
by the activation of AU1, AU2, AU5, AU6, AU9, AU10, AU25, AU26, and AU27

A plethora of published work on dynamic facial expression
analysis has concentrated on incorporating the temporal rela-
tions of the frame order continuity in a sequence to improve
the performance of video prediction. Previous studies which
used a group of heuristic rules-based per AU with facial land-
mark positions [1], such as Figure 3, represented an uncontrol-
lable rage expression from the GEMEP-FERA dataset using
some rules for mapping AUs to emotions by the activation
of AU1, AU2, AU5, AU6, AU9, AU10, AU25, AU26, and
AU27. Discriminative graph-based methods such as variants
of dynamic Bayesian network (DBN) are probabilistic graph-
ical models that can learn the full conditional joint probabil-
ity of temporal cues for facial actions [22], such as Condi-
tional Random Fields, Latent Dynamic Conditional Random
Fields [24], the Kernel Conditional Ordinal Random Field,
and Hidden Conditional Random Fields for action unit esti-
mation. Hidden Markov chain transition models are used to
encode temporal persistence and the likelihood of label transi-
tions throughout the sequence [17]. Weakly supervised learn-
ing such as Multiple Instance Learning are proposed to deal
with incomplete labels. A semi-supervised learning approach
can be effective in recognizing all the positive samples of anno-
tated data with potentially advantageous unlabelled data [35].
Segment-based classifiers use a bag of temporal words to rep-
resent the segments. For unsupervised approaches; Sequence-
based clustering algorithms are used to group events of similar
characteristics. Slow Feature Analysis describes a latent space
time variation that correlates with the AU temporal segments
[36]. An unsupervised Branch-and-Bound framework is used
to force synchrony correlated facial actions in an unannotated
sequence [8].

On top of that, more recent work using Deep Convolu-
tion Neural Networks, involving robust accurate learning for
more discriminative feature extraction from raw pixel image
data, has triumphed over traditional methods. This is due to
their exceptional ability of reporting improved results stemming
from desired characteristic representations which result in high
performance to expedite the process of training and testing at
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very low power consumption in many computer vision tasks, for
example, object detection, facial expression recognition, image
classification, and scene understanding [2]. One of the major
limitations of conventional CNN is that impartially extracted
spatial relations of the facial components cannot consider the
temporal variation relations [11, 37]. An alternative is to utilize
deep neural networks, particularly CNN as a feature extraction
way, and then implement an extra classifier, for example, SVM
or RF to get the optimal image representations. A recent break-
through of deep hybrid approaches fusing a CNN and Long
Short-Term Memory was developed for combining high-level
spatial features while preserving temporal dependencies simul-
taneously [37, 38].

3 METHODOLOGY

3.1 Local Binary Patterns

LBP and its extensions were originally proposed for grey scale
invariant image texture analysis. Since then, it has proved to
be a very efficient feature descriptor used in many applications
because of its computational simplicity and discriminating
power for texture classification in real world complex settings.
It also remains robust to monotonic greyscale changes, in addi-
tion to its sensitivity to local structure tolerance to variations in
face alignment [39], though it is not robust to rotations and is
prone to noise. In practice, an 8-bits binary pattern (LBP code)
response of a pixel is computed, in other words, the image
labels are made by comparing and thresholding the value of a
central pixel intensity with the intensity of all the local pixels in
the neighbourhood. If the intensity of the central pixel is larger
or equal to its neighbour’s, it is encoded by one, or otherwise
zero [40]. Later on, in the aforementioned process each bin
will correspond to one of the different possible binary patterns
and produce a flow of binary numbers with eight surrounding
pixels which will end up with 256 possible combinations of
LBP dimensional descriptor. A review of LBP descriptor can
be found in [1].

3.2 Local Phase Quantization

The local phase quantization (LPQ) operator is a static local
appearance, texture descriptor using the 2D Short-Term Fourier
Transform Phase (STFT) on local image windows neighbour-
hoods [15], was first suggested as a texture descriptor by Ojan-
sivu and Heikkila [16]. Both LBP and LPQ have been applied
successfully for AU recognition and are resistant to image blur.
LPQ depends on the blur invariance possession of the Fourier
phase spectrum. In LPQ we used only four complex coeffi-
cients related to 2D frequencies. The phase information, the
real and the imaginary part for each pixel position in the Fourier
coefficient is calculated through a rectangular M-by-M neigh-
bourhood and is recorded by keeping the signs of the real and
imaginary parts of each component [17]. As a result, we get a

256-dimensional feature vector from 8-bit binary coding coeffi-
cients, represented as integers.

3.3 LPQTOP

The LPQTOP descriptor [26] is an extension of the basic
LPQ operator to the time domain where the LPQ features are
extracted autonomously from three orthogonal slices, denoted
by x-y, x-t, and y-t, respectively [9]. The main advantages of
the LPQTOP descriptor are robustness against image trans-
formations such as rotation, insensitivity to illumination vari-
ations, computational simplicity, and multi-resolution analysis.
The LPQTOP dynamic texture descriptor was originally intro-
duced to extract the latent temporal information clues (learn
feature representation from video volume), demonstrating facial
appearance changes occurring in facial AUs, in terms of express-
ing temporal segments of facial AUs [1]. On the other hand,
LPQTOP encompasses texture analysis and combines static
local appearance with shape attribute features (x-y plane pro-
vides texture spatial domain) and motion change features (x-t,
and y-t planes provide the temporal information domain), in
three directions (x-y, x-t, y-t) to encode the phase transition
information per image position for each space and time volume,
exhibited in facial expressions [9], Figure 4. For more details see
ref.[1].

The consequence resulting from binary patterns is stacked
for the three orthogonal planes and is concatenated in a single
histogram [9]. In the end, we got 768 bins = (256× 3) LPQ-
TOP features extracted per spatial–temporal volume containing
3, 5, or 7 s window frames. In our experiment, all the images of
Cohn–Kanade are in frontal view and therefore it is not neces-
sary to consider in plane head movement. We split the cropped
face region of the input frame of size 256 × 256 pixels in to 10 ×
10, 5× 5 ,7× 7 blocks separately with a different frame rate each
sequence. The optimal size of temporal windows was investi-
gated in dynamic descriptors as Figure 5 explains: the area under
the ROC curves (AUC) for AUs activation detection using LPQ-
TOP descriptor with two classifiers (SVM and RF) based on dif-
ferent parameters. Lastly, SVM and random forests were used as
binary classifiers for predicting the occurrence of AUs.

3.4 Non-linear-slow feature analysis

Facial AUs temporal dynamics analysis can be modelled using
the non-linear Slow Feature Analysis method. The SFA was first
investigated as an unsupervised learning approach for describ-
ing the most slowly time-varying visual facial sequences latent
space features of rapidly temporal varying signals that grasp
time dependencies, ranked by their continuous temporal con-
sistency. More precisely, it aims to minimize the temporal vari-
ance of the approximated first order time derivative of the input
signal which seeks uncorrelated projections [41, 42]. However,
‘Despite its interesting theoretical aspects, the practical appli-
cability of purely unsupervised learning is not clear’ [17, 36].
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FIGURE 4 LPQTOP descriptor: Block features extracted from all the three planes are histogram concatenated to create a feature vector which represents the
whole sequence

FIGURE 5 AU activation detection using LPQTOP descriptor with two classifiers (SVM& RF) based on different parameters
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As of our knowledge, until today, there is limited interesting
work focusing on revealing the dynamics of AUs using non-
linear SFA in an unsupervised way regarding its ability to dis-
cover the temporal phases of AUs and their constituent tem-
poral segments (onset, apex, offset) [42]. To do so, we applied
the method presented by [41], and this can be accomplished by
using an expansion function to extend the input signal data non-
linearly, reducing the dimensionality and track by linear SFA.

3.5 Long short-term memory

The Long Short-Term Memory (LSTM) is a special type of tem-
poral fusion densely connected recurrent neural network mod-
ules proposed by Hochreiter and Schmidhuber [43] to solve
the problem of vanishing/exploding gradients encountered by
a recurrent neural network. It is embedded to learn long-short
dependencies [43]. Notably, LSTM has proven to memorize
information for a long time and store context temporal actions,
including the previous feature’s time step and current states with
a time lag [34], in contrast with other classifiers such as HMMs.
Wei et al [2], assert that having the former state of a facial
action expression can absolutely improve the detection of AUs.
Recently, LSTMs were used for sequence processing problems
with clear contexts, for example, audio analysis, speech recogni-
tion, image caption generation, video captioning, forex forecast-
ing, video action recognition [2], and signature verification [34,
44]. It likewise possesses two advantages: LSTM is fine-tuned
end to end with other models and it supports both fixed and
arbitrary length inputs or outputs. A common LSTM architec-
ture is a chain-like figure of a repeated design of four units: cell,
input gate, output gate, and a forget gate [37, 45].

3.6 The AlexNet CNN model

Used as a pre-trained feature extraction network, this was
designed by the Super Vision group of Alex Krichevsky [46],
which mainly consists of 13 convolution layers followed by 5
max-pooling layers and Rectified Linear Units (ReLU) for the
non-linearity functions to reduce training time, with 3 fully con-
nected layers at the top of the layer stack which ended up with
1000 ways of softmax. ReLU is used after each convolutional
and fully connected layer. It is interesting to notice that AlexNet
was the first for introducing dropout layers suggested by [47]
to combat the overfitting risks problem, and training time in
the fully connected layers, to promote the evolution of huge
neural networks. The benefit of data augmentation techniques
is employed during training to increase more synthetic addi-
tional samples to the network by image transformations and
reflections such as rotation, scaling, and flips. Dropout is imple-
mented before the first and the second fully connected layers.
This network was competing solely on ImageNet to classify up
to 1000 various object classes. The input image size to this net-
work should be 227 × 227 × 3. The CNN model has been
pre-trained on the Labelled Faces in the Wild and the YouTube

FIGURE 6 Comparison between (a) AlexNet and (b) VGG16

Faces dataset for face recognition [7]; therefore; it will be more
suitable for facial expression recognition [2, 11 33, 48].

3.7 The VGG16 CNN model

Proposed by the VGG team in the ILSVRC 2014 competition,
it differs from AlexNet in that it consists of 16 layers which
use rich and complex fixed kernel sized filter banks of 3 × 3
(11 × 11 filters in the first layer in AlexNet) for all conventional
layers. Using a max pooling of 2 × 2, the number of filters is
doubled after each max pooling. After the convolutional layers,
it is followed by 3 fully connected layers with 1 × 1 kernel and
the output of 512 feature maps. VGG16 is trained on 1.2 million
images of size 224× 224× 3 belonging to classify 1000 class cat-
egories. The two fully connected layers FC6 and FC7 have been
used as a feature extraction layer of depth 4096 dimensions to
learn the deep rich representations of the given targets. A loss
layer softmax is added to the end of the network to adjust the
back-propagation error and probabilistic predictions [48]. Fig-
ure 6 summarizes the comparisons between the two Convolu-
tional Neural Networks proposed architecture chart.

The authors in [17] point out that for more than 10 years,
the academic researchers have held an all-inclusive range of AU
labelling databases but in fact only CK and MMI databases are
available. For the MMI dataset, the whole sequence is annotated
as an active state if the target action unit happens in any frame
of the sequence and is classified as a positive of the equivalent
video. For instance, AU45 (blink) occurred very quickly in some
frames of the video and fundamentally, the entire sequence
was labelled as AU45 active, yet the video level annotations
for weakly supervised settings (not individual frame level
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FIGURE 7 Receiver operating curves (ROC) for 14 action units (AU) and 5 dissimilar methods. Each ROC depicts five methods, black: LBP with SVM, red:
LPQ with SVM, blue: LPQTOP with SVM, green: AlexNet with SVM, purple: VGG16

annotations), would not have the same truly frame-by-frame
basis for AU annotated ground truth. Also, the information
on temporal segment detection annotations is concealed for
competition, as mentioned in ref. [49]. For these reasons, in
our experiments in this paper, we depend on the ISL Enhanced
Cohn–Kanade AU-coded Facial Expression Database, in which
the Intelligent System lab by Rensselear Polytechnic Institute
produced a new AU manual relabelling which counted by the
frame-by-frame annotations, which are mostly used for facial
action unit recognition [50].

4 EXPERIMENTAL SETTINGS
AND EVALUATION

Three experiments were conducted in this paper on the avail-
able enhanced CK dataset comparing features extracted by LBP,
LPQ, LPQTOP, AlexNet, and VGG16 for each static image
of a video for action unit activation detection, getting hidden
insights of underlying temporal variation detection to be inves-
tigated by hybrid non-linear SFA(NSFA) + LPQTOP, LPQ-
TOP + LSTM, AlexNet + LSTM, from dynamic sequences.
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TABLE 1 AUC values for the first experiment shown in Figure 7

AU LBP LPQ LPQTOP AlexNet VGG16

AU1 0.98793 0.92 0.98841 0.99 0.99157

AU2 0.99297 0.8277 0.9638 0.99022 0.98671

AU4 0.98925 0.84576 0.82542 0.99605 0.98685

AU5 0.98431 0.75515 0.95292 0.99781 0.99642

AU6 0.78884 0.7279 0.90291 0.99605 0.9911

AU7 1 0.92124 1 0.99913 0.99909

AU9 0.99283 0.8717 0.98857 0.99436 0.99181

AU12 0.99525 0.89404 0.97069 0.99478 0.98468

AU15 0.96626 0.88785 0.96493 0.98466 0.99089

AU17 0.86467 0.75653 0.73945 0.99206 0.99286

AU23 0.95694 0.91858 0.86218 0.99117 0.99003

AU24 0.9471 0.70181 0.95272 0.99508 0.98716

AU25 0.96899 0.8732 0.9772 0.99824 0.9949

AU27 0.76856 0.83406 0.68884 0.97135 0.97286

Average 0.943136 0.838251 0.912717 0.992211 0.989781

Additionally, comparing scoring prediction detection between
the features was extracted by LPQTOP + SVM, LPQTOP +

LSTM, and AlexNet on the enhanced CK dataset. For the
three experiments the system is contrived to extract two types
of features from supervised methods, which are extracted by
LBP, LPQ, LPQTOP, AlexNet, Vgg16, LSTM, and unsuper-
vised methods (linear and non-linear SFA, PCA) including hand
crafted features represented by LBP, LPQ, LPQTOP, and the
learned deep visual features extracted by CNN and LSTM on
both static and dynamic data. We limited our evaluation to the
problem of AU activation detection because there is no similar
database with corresponding ground truths tuned to AU tar-
get occurrence detection. The experiments were carried out on
the workstation using the Ubuntu Linux system and all the pro-
cesses of training and testing were accelerated by the NVIDIA
GeForce GTX 980 Ti GPUs.

4.1 First experiment

The aim of the first experiment was to predict the presence or
absence of AU occurrence at frame level and to test the per-
formance on the supervised proposed model. On this basis, we
extracted the appearance features from both static and dynamic
information from the same dataset with respect to frame-by-
frame base. Our experiment is conducted by splitting the dataset
into 83% of data for training and 17% of data for testing in
which we used 7000 frames for the training stage and 1420
frames for testing and the information of test subjects, which
was excluded from training and the images of one subject were
used in training or testing at the same time. We first located
and cropped the face from all the input frame sequences of
size 490 × 640 and utilized an adapted Viola–Jones detector.
Subsequently, all input frames were resized to be 250 × 250

TABLE 2 Accuracy values for the first experiment shown in Figure 7

AU LBP LPQ LPQTOP AlexNet VGG16

AU1 0.9835 0.9381 0.9683 0.9553 0.9620

AU2 0.9611 0.8917 0.9525 0.9434 0.9220

AU4 0.9647 0.9389 0.9492 0.9735 0.9711

AU5 0.9282 0.8972 0.9775 0.9727 0.9600

AU6 0.9666 0.9514 0.9292 0.9644 0.9612

AU7 0.9993 0.9976 0.9943 0.9873 0.9802

AU9 0.9692 0.8278 0.9677 0.9232 0.9505

AU12 0.9753 0.9654 0.97061 0.9719 0.9663

AU15 0.9036 0.8984 0.9434 0.9327 0.9382

AU17 0.9487 0.9128 0.9621 0.9778 0.9767

AU23 0.9569 0.9340 0.9653 0.9782 0.9715

AU24 0.8972 0.5321 0.8879 0.9343 0.9133

AU25 0.9575 0.8950 0.9620 0.9873 0.9838

AU27 0.9957 0.9957 0.6986 0.9240 0.9244

Average 0.957679 0.898293 0.93815 0.959 0.9558

pixels (this was also done for experiments two and three). In
our experiment, all the images of Cohn–Kanade were in front
and this eliminated the problem of head pose non-rigid face
registration. Next, to encode shape information for LBP, and
similarly for LPQ, and LPQTOP, the images were divided into
regions to extract LBP, LPQ, and LPQTOP histograms, respec-
tively. The LBP, LPQ, LPQTOP features extracted from each
block are stacked into a single feature histogram. Then, the
resulting final histogram is used as a feature vector to repre-
sent facial image. For LBP a region size of 32 × 32 is used. That
is, the face image is divided into 10 × 10 blocks. Normalisa-
tion was done for the obtained histograms in the range between
[-1 : 1], and then we get a feature vector of 256 dimensions.
For LPQ a local window of size equal to 7 and 4×4 blocks is
the optimal choice. For the LPQTOP spatial/temporal descrip-
tor the important parameters are temporal window length (vol-
ume size) and spatial block grid size. The average performance
is evaluated in a subject independent manner using different
parameters. So, the experiment is carried out to find the opti-
mal length and width of the histogram block: ((grid 10 × 10
Vol 3-3-3), (grid 10 × 10 vol3-3-5), (grid 10 × 10 Vol 3-3-7),
(grid 5 × 5 Vol 3-3-3), (grid 5 × 5 Vol 5-5-3), (grid 7 × 7 Vol
3-3-3)). Next, the typical linear kernel SVM and RF classifiers
are trained separately to detect the occurrence of 14 AUs (AU1,
AU2, AU4, AU5, AU6, AU7, AU9, AU12, AU15, AU17, AU23,
AU24, AU25, AU27) irrespective of the absences or the pres-
ence of other AUs. In our case, AUC is our performance metric
on a frame-by-frame base and is a better ranking-based measure
than other metrics, especially in a balanced class binary classi-
fication context [8]. In Figure 7, the prominent LBP is clearly
superior to LPQ for most action units; similarly, we present the
increased relative performance gained by comparing the perfor-
mance of LBP and LPQ with dynamic features of LPQTOP
respectively.
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FIGURE 8 Receiver operating curves (ROC) for 14 action units (AU) and 3 dissimilar methods. Each ROC depicts three methods, red: LPQTOP with LSTM ,
blue: Non-linear SFA with LPQTOP, green: AlexNet with LSTM

It was reported by [1] and [51] that the LPQTOP dynamic
appearance descriptor has been presented as superior for the
AU activation detection problem and AUs temporal segments
recognition. In addition to that, in [51], it was shown that LPQ
achieves higher performance than LBP while [52] concluded
that the fixed length window is not appropriate for changing
facial actions speed. Our experiment showed that LBP clearly
overcomes LPQ, and LPQTOP. We also selected two popular

pre-trained CNN architecture models: the AlexNet and VGG16
to extract the probability predictions of the cropped faces, in
the same way for spatial facial feature representation. Using
a pre-trained network model can attain very good foremost
parameters to expedite the operation of training and testing.
We observed that the heavy computation burden and the time
elapsed of extracting the features using the activations from the
fc6 and fc7 layers as spatial facial learned features is being less
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TABLE 3 AUC values for the second experiment shown in Figure 8

AU

NSFA,

LPQTOP

LSTM,

LPQTOP

AlexNet,

LSTM

AU1 0.90607 0.98616 0.57259

AU2 0.85748 0.96482 0.42819

AU4 0.70504 0.97462 0.48538

AU5 0.91509 0.97646 0.57634

AU6 0.69804 0.87946 0.40306

AU7 0.72461 0.94159 0.40704

AU9 0.88865 0.99087 0.53262

AU12 0.84715 0.99183 0.49982

AU15 0.85302 0.95114 0.54175

AU17 0.71731 0.94882 0.52354

AU23 0.7245 0.96361 0.56597

AU24 0.83395 0.9655 0.47486

AU25 0.85649 0.99641 0.62957

AU27 0.68757 0.75688 0.58425

Average 0.801069 0.949155 0.51607

and reduced significantly. As illustrated in Figure 7, Tables 1
and 2, the best performing features for this task is the AlexNet
which vastly outperforms all others in both training and test-
ing evaluation with an average score of 0.992211 for all the
AUs, while the second best score was 0.989781 achieved by the
VGG16 without any need to increase auxiliary GPU units. Our
results demonstrate that our models were adept at learning the
supervised task; we were therefore able to avoid any risk of over-
fitting.

4.2 Second experiment

For the second experiment, to provide a better inspection of
the performance of the tested methods for modelling the tem-
poral facial behaviours and to test the hypothesis of dynamic
advantages, as depicted in Figure 8, and Table 3, we employed a
new integration feature strategy to preserve the temporal order
dependency relations, present in the different frames of the
sequences, by feeding the feature vector extracted by LPQ-
TOP and jointly trained them using the LSTM model to clas-
sify and yield a prediction of per-frame for 14 AUs. This could
also show the overall AU activation detection which could ben-
efit best capture from the deep dynamic appearance features
construction. The proposed LSTM architecture was trained
for 150 epoch iterations on mini-batches of 25 samples. Next,
the output scores of CNNs, especially AlexNet and LSTMs,
were further aggregated into an averaging fusion network in
which both are spatially and temporally deep to train CNN and
LSTM simultaneously in an end to end framework, accelerat-
ing improved future predictions throughout the two networks.
To this end, the main reason we did not endeavour to establish a
relative comparative evaluation baseline of this experiment, with

FIGURE 9 Continuous scoring predictions between the three methods for
AU1 and AU25

the state-of-the-art deep facial action unit recognition methods,
was because there was no existing research paper that could
help as the baseline ground truth for all the AUC results (most
of the paper use only some of the action units and not all of
them), and the majority of them use an F1 measure for metric
evaluation. Between them, the non-linear Slow Feature Analysis
method was applied as unsupervised learning on also the LPQ-
TOP feature vector, after alleviating the dimensionality of the
feature vector using Principle Component Analysis which pre-
served 85% of explained variability leading to a reduced basis of
1,391 dimensions followed by linear Slow Feature Analysis. The
first identified latent feature which we obtained corresponded
with the most slowly varying one, since non-linear SFA orders
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FIGURE 10 Bars of continuous scoring predictions detection using a threshold for best matching between the three methods

TABLE 4 Comparison of the AUC values with the state-of-the-art methods

AUs A B C D E F G

AU1 0.94 0.95 0.889 0.98793 0.99 0.99157 0.98616

AU2 0.97 0.97 0.875 0.99297 0.99022 0.98671 0.96482

AU4 0.86 0.89 0.811 0.98925 0.99605 0.98685 0.97462

AU5 0.95 0.97 — 0.98431 0.99781 0.99642 0.97646

AU6 0.92 0.94 0.94 0.78884 0.99605 0.9911 0.87946

AU7 0.78 0.81 0.916 1 0.99913 0.99909 0.94159

AU9 0.98 0.98 — 0.99283 0.99436 0.99181 0.99087

AU12 0.91 0.93 0.928 0.99525 0.99478 0.98468 0.99183

AU15 0.80 0.83 0.982 0.96626 0.98466 0.99089 0.95114

AU17 0.84 0.86 0.96 0.86467 0.99206 0.99286 0.94882

AU23 0.91 0.92 — 0.95694 0.99117 0.99003 0.96361

AU24 — — — 0.9471 0.99508 0.98716 0.9655

AU25 0.97 0.97 — 0.96899 0.99824 0.9949 0.99641

AU27 1.00 1.00 — 0.76856 0.97135 0.97286 0.75688

Average 0.899 0.915 0.913 0.943136 0.992211 0.989781 0.949155

the derived latent variables by their temporal slowness. The per-
formance analysis of this model performs well for detecting the
temporal information of AUs. As we pointed out earlier, the
feasible application of unsupervised learning in a pure manner is
ambiguous; therefore, learning a high-level representation from
dynamic textures directly by SFA is not practical because of the
curse of dimensionality. We demonstrated that it is possible to
use non-linear SFA for accurately discovering the dynamic of
facial action units.

4.3 Third experiment

To assess the ability for maximum expression of the desired tar-
get AUs and the classification quality of the described meth-
ods, for the third experiment, we compared three types of val-
idation matching the predicted scores which represented the
probability of activation for three methods, and the AUC was
calculated for AU1 (LPQTOP + SVM AUC = 0.9790, LPQ-
TOP+ LSTM AUC= 0.9733, AlexNet+ SVM AUC= 0.9646)
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TABLE 5 Comparison of the accuracy with the state-of-the-art
approaches

Methods Accuracy%

Baseline [57] 0.833

3DCNN-DAP [64] 0.88

3D Shape [54] 0.868

ExpNet [59] 0.612

ITBN [60] 0.863

DTAN + DTGN [61] 0.95

H-CRF [65] 0.88

NMF + 𝓁1 norm [67] 0.924

Spatio-temporal CNN [55] 0.737

DLBP + LL + TFP [62] 0.929

HOG-TOP, geometric features SVM [63] 0.957

Extreme sparse learning (ESL) [68] 0.927

Gabor [66] 0.938

MSDF + BoW [53] 0.959

Ours (AlexNet) 0.959

and for AU25 (LPQTOP + SVM AUC = 0.9790, LPQTOP +

LSTM AUC = 0.9579, for AlexNet + SVM AUC = 0.9985).
Within every frame in the CK dataset, the AUs were anno-
tated as 0 (not present),1 (active), and -1(not sure). For plot-
ting, in order to make the units standardized for comparison,
we made every frame with -1 ground truth equal to 0.5, then
we had three classes (0, 0.5, 1) for the three methods. As can
be observed from Figure 9, the time series plot of AU1 (inner
eyebrow), AU25 (lips parted) the detection for each algorithm
provides almost different predictions and AU1 and AU25 is a
unique feature that can be compared across all the three algo-
rithms making them have the potential to confidently measure
AU1 and AU25 accurately. We used 317 of the videos for train-
ing and 150 videos for testing. Therefore, in total we used 5891
frames during the training phase and 2529 frames for testing.
The representation learned by the proposed methods in Fig-
ure 9, was capable of exact prediction of the dynamics of the
AU1 and AU25, since it provides more accurate features which
in turn matched better with the true label GroundTruth (red
line). It seems that the LSTM method is less continuous than
the other algorithms. Overall, the performance showed that all
the three methods provide better results and are intersected in
approximately all the time points that are indicative for detecting
and predicting the presence of both AU1 and AU25. To facil-
itate this analysis further, and to see more accurate matching
of the scoring predictions for the three methods, we applied a
threshold and drew a bar for each method score in Figure 10.
Table 4 shows comparison of the AUC values of the proposed
methods (D, LBP; E, AlexNet; F, VGG16; G, LSTM and LPQ-
TOP) with the state-of-the-art approaches (A, SPTS [57]; B, rel-
ative AU [19]; C, STM [58]) for AU detection on the extended
CK dataset. A comparison of the obtained accuracy was also
presented in Table 5, with different state-of-the-art techniques

on the extended CK dataset including sparse coding, manifold
learning, deep and unsupervised learning.

5 CONCLUSION AND FUTURE WORK

In this paper, our model was focused on three main essential
problems: AU activation detection by confirming the superior-
ity ability of a pre-trained AlexNet that boosts reliably overall
average recognition rate and accuracy, which comes up with sig-
nificant AU prediction scoring improvements and strengthens
the requirements of using deep learning, contrary to the tradi-
tional hand crafted and engineered features. The second is tem-
poral modelling by testifying that fusing both temporal and tem-
poral features will gain more long-term temporal pattern infor-
mation. Third, achieving a successful comparison of continu-
ous scoring predictions of AUs activation detection was accom-
plished which was shown to be efficacious. Our future work will
be modelling multiple action unit activation detection as they
seemingly appear to build a single display to encode them as an
entire facial event for automatic occurrence recognition of an
affective state.
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