2,619 research outputs found

    Guest editorial foreword to the special issue on intelligent computation for bioinformatics

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it

    S.cerevisiae complex function prediction with modular multi-relational framework

    Get PDF
    Proceeding of: 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2010, CĂłrdoba, Spain, June 1-4, 2010Determining the functions of genes is essential for understanding how the metabolisms work, and for trying to solve their malfunctions. Genes usually work in groups rather than isolated, so functions should be assigned to gene groups and not to individual genes. Moreover, the genetic knowledge has many relations and is very frequently changeable. Thus, a propositional ad-hoc approach is not appropriate to deal with the gene group function prediction domain. We propose the Modular Multi-Relational Framework (MMRF), which faces the problem from a relational and flexible point of view. The MMRF consists of several modules covering all involved domain tasks (grouping, representing and learning using computational prediction techniques). A specific application is described, including a relational representation language, where each module of MMRF is individually instantiated and refined for obtaining a prediction under specific given conditions.This research work has been supported by CICYT, TRA 2007-67374-C02-02 project and by the expert biological knowledge of the Structural Computational Biology Group in Spanish National Cancer Research Centre (CNIO). The authors would like to thank members of Tilde tool developer group in K.U.Leuven for providing their help and many useful suggestions.Publicad

    S.cerevisiae Complex Function Prediction with Modular Multi-Relational Framework

    Full text link
    Proceeding of: 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2010, CĂłrdoba, Spain, June 1-4, 2010Determining the functions of genes is essential for understanding how the metabolisms work, and for trying to solve their malfunctions. Genes usually work in groups rather than isolated, so functions should be assigned to gene groups and not to individual genes. Moreover, the genetic knowledge has many relations and is very frequently changeable. Thus, a propositional ad-hoc approach is not appropriate to deal with the gene group function prediction domain. We propose the Modular Multi-Relational Framework (MMRF), which faces the problem from a relational and flexible point of view. The MMRF consists of several modules covering all involved domain tasks (grouping, representing and learning using computational prediction techniques). A specific application is described, including a relational representation language, where each module of MMRF is individually instantiated and refined for obtaining a prediction under specific given conditions.This research work has been supported by CICYT, TRA 2007-67374-C02-02 project and by the expert biological knowledge of the Structural Computational Biology Group in Spanish National Cancer Research Centre (CNIO). The authors would like to thank members of Tilde tool developer group in K.U.Leuven for providing their help and many useful suggestions.Publicad

    Analyses and web interfaces for protein subcellular localization and gene expression data

    Get PDF
    Cataloged from PDF version of article.In order to benefit maximally from large scale molecular biology data generated by recent developments, it is important to proceed in an organized manner by developing databases, interfaces, data visualization and data interpretation tools. Protein subcellular localization and microarray gene expression are two of such fields that require immense computational effort before being used as a roadmap for the experimental biologist. Protein subcellular localization is important for elucidating protein function. We developed an automatically updated searchable and downloadable system called model organisms proteome subcellular localization database (MEP2SL) that hosts predicted localizations and known experimental localizations for nine eukaryotes. MEP2SL localizations highly correlated with high throughput localization experiments in yeast and were shown to have superior accuracies when compared with four other localization prediction tools based on two different datasets. Hence, MEP2SL system may serve as a reference source for protein subcellular localization information with its interface that provides various search and download options together with links and utilities for further annotations. Microarray gene expression technology enables monitoring of whole genome simultaneously. We developed an online installable searchable open source system called differentially expressed genes (DEG) that includes analysis and retrieval interfaces for Affymetrix HG-U133 Plus 2.0 arrays. DEG provides permanent data storage capabilities with its integration into a database and being an installable online tool and is valuable for groups who are not willing to submit their data on public servers.Bilen, BiterM.S

    Mayday - integrative analytics for expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA Microarrays have become the standard method for large scale analyses of gene expression and epigenomics. The increasing complexity and inherent noisiness of the generated data makes visual data exploration ever more important. Fast deployment of new methods as well as a combination of predefined, easy to apply methods with programmer's access to the data are important requirements for any analysis framework. Mayday is an open source platform with emphasis on visual data exploration and analysis. Many built-in methods for clustering, machine learning and classification are provided for dissecting complex datasets. Plugins can easily be written to extend Mayday's functionality in a large number of ways. As Java program, Mayday is platform-independent and can be used as Java WebStart application without any installation. Mayday can import data from several file formats, database connectivity is included for efficient data organization. Numerous interactive visualization tools, including box plots, profile plots, principal component plots and a heatmap are available, can be enhanced with metadata and exported as publication quality vector files.</p> <p>Results</p> <p>We have rewritten large parts of Mayday's core to make it more efficient and ready for future developments. Among the large number of new plugins are an automated processing framework, dynamic filtering, new and efficient clustering methods, a machine learning module and database connectivity. Extensive manual data analysis can be done using an inbuilt R terminal and an integrated SQL querying interface. Our visualization framework has become more powerful, new plot types have been added and existing plots improved.</p> <p>Conclusions</p> <p>We present a major extension of Mayday, a very versatile open-source framework for efficient micro array data analysis designed for biologists and bioinformaticians. Most everyday tasks are already covered. The large number of available plugins as well as the extension possibilities using compiled plugins and ad-hoc scripting allow for the rapid adaption of Mayday also to very specialized data exploration. Mayday is available at <url>http://microarray-analysis.org</url>.</p

    Genes and (Common) Pathways Underlying Drug Addiction

    Get PDF
    Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn), the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction
    • 

    corecore