20,663 research outputs found

    On the Minimization of Convex Functionals of Probability Distributions Under Band Constraints

    Full text link
    The problem of minimizing convex functionals of probability distributions is solved under the assumption that the density of every distribution is bounded from above and below. A system of sufficient and necessary first-order optimality conditions as well as a bound on the optimality gap of feasible candidate solutions are derived. Based on these results, two numerical algorithms are proposed that iteratively solve the system of optimality conditions on a grid of discrete points. Both algorithms use a block coordinate descent strategy and terminate once the optimality gap falls below the desired tolerance. While the first algorithm is conceptually simpler and more efficient, it is not guaranteed to converge for objective functions that are not strictly convex. This shortcoming is overcome in the second algorithm, which uses an additional outer proximal iteration, and, which is proven to converge under mild assumptions. Two examples are given to demonstrate the theoretical usefulness of the optimality conditions as well as the high efficiency and accuracy of the proposed numerical algorithms.Comment: 13 pages, 5 figures, 2 tables, published in the IEEE Transactions on Signal Processing. In previous versions, the example in Section VI.B contained some mistakes and inaccuracies, which have been fixed in this versio

    Solving Factored MDPs with Hybrid State and Action Variables

    Full text link
    Efficient representations and solutions for large decision problems with continuous and discrete variables are among the most important challenges faced by the designers of automated decision support systems. In this paper, we describe a novel hybrid factored Markov decision process (MDP) model that allows for a compact representation of these problems, and a new hybrid approximate linear programming (HALP) framework that permits their efficient solutions. The central idea of HALP is to approximate the optimal value function by a linear combination of basis functions and optimize its weights by linear programming. We analyze both theoretical and computational aspects of this approach, and demonstrate its scale-up potential on several hybrid optimization problems

    Fast Gibbs sampling for high-dimensional Bayesian inversion

    Get PDF
    Solving ill-posed inverse problems by Bayesian inference has recently attracted considerable attention. Compared to deterministic approaches, the probabilistic representation of the solution by the posterior distribution can be exploited to explore and quantify its uncertainties. In applications where the inverse solution is subject to further analysis procedures, this can be a significant advantage. Alongside theoretical progress, various new computational techniques allow to sample very high dimensional posterior distributions: In [Lucka2012], a Markov chain Monte Carlo (MCMC) posterior sampler was developed for linear inverse problems with â„“1\ell_1-type priors. In this article, we extend this single component Gibbs-type sampler to a wide range of priors used in Bayesian inversion, such as general â„“pq\ell_p^q priors with additional hard constraints. Besides a fast computation of the conditional, single component densities in an explicit, parameterized form, a fast, robust and exact sampling from these one-dimensional densities is key to obtain an efficient algorithm. We demonstrate that a generalization of slice sampling can utilize their specific structure for this task and illustrate the performance of the resulting slice-within-Gibbs samplers by different computed examples. These new samplers allow us to perform sample-based Bayesian inference in high-dimensional scenarios with certain priors for the first time, including the inversion of computed tomography (CT) data with the popular isotropic total variation (TV) prior.Comment: submitted to "Inverse Problems

    A Bayesian approach to constrained single- and multi-objective optimization

    Get PDF
    This article addresses the problem of derivative-free (single- or multi-objective) optimization subject to multiple inequality constraints. Both the objective and constraint functions are assumed to be smooth, non-linear and expensive to evaluate. As a consequence, the number of evaluations that can be used to carry out the optimization is very limited, as in complex industrial design optimization problems. The method we propose to overcome this difficulty has its roots in both the Bayesian and the multi-objective optimization literatures. More specifically, an extended domination rule is used to handle objectives and constraints in a unified way, and a corresponding expected hyper-volume improvement sampling criterion is proposed. This new criterion is naturally adapted to the search of a feasible point when none is available, and reduces to existing Bayesian sampling criteria---the classical Expected Improvement (EI) criterion and some of its constrained/multi-objective extensions---as soon as at least one feasible point is available. The calculation and optimization of the criterion are performed using Sequential Monte Carlo techniques. In particular, an algorithm similar to the subset simulation method, which is well known in the field of structural reliability, is used to estimate the criterion. The method, which we call BMOO (for Bayesian Multi-Objective Optimization), is compared to state-of-the-art algorithms for single- and multi-objective constrained optimization
    • …
    corecore