13 research outputs found

    DeeSIL: Deep-Shallow Incremental Learning

    Full text link
    Incremental Learning (IL) is an interesting AI problem when the algorithm is assumed to work on a budget. This is especially true when IL is modeled using a deep learning approach, where two com- plex challenges arise due to limited memory, which induces catastrophic forgetting and delays related to the retraining needed in order to incorpo- rate new classes. Here we introduce DeeSIL, an adaptation of a known transfer learning scheme that combines a fixed deep representation used as feature extractor and learning independent shallow classifiers to in- crease recognition capacity. This scheme tackles the two aforementioned challenges since it works well with a limited memory budget and each new concept can be added within a minute. Moreover, since no deep re- training is needed when the model is incremented, DeeSIL can integrate larger amounts of initial data that provide more transferable features. Performance is evaluated on ImageNet LSVRC 2012 against three state of the art algorithms. Results show that, at scale, DeeSIL performance is 23 and 33 points higher than the best baseline when using the same and more initial data respectively

    Learning Finer-class Networks for Universal Representations

    Full text link
    Many real-world visual recognition use-cases can not directly benefit from state-of-the-art CNN-based approaches because of the lack of many annotated data. The usual approach to deal with this is to transfer a representation pre-learned on a large annotated source-task onto a target-task of interest. This raises the question of how well the original representation is "universal", that is to say directly adapted to many different target-tasks. To improve such universality, the state-of-the-art consists in training networks on a diversified source problem, that is modified either by adding generic or specific categories to the initial set of categories. In this vein, we proposed a method that exploits finer-classes than the most specific ones existing, for which no annotation is available. We rely on unsupervised learning and a bottom-up split and merge strategy. We show that our method learns more universal representations than state-of-the-art, leading to significantly better results on 10 target-tasks from multiple domains, using several network architectures, either alone or combined with networks learned at a coarser semantic level.Comment: British Machine Vision Conference (BMVC) 201

    Semantic and Visual Similarities for Efficient Knowledge Transfer in CNN Training

    Get PDF
    International audienceIn recent years, representation learning approaches have disrupted many multimedia computing tasks. Among those approaches, deep convolutional neural networks (CNNs) have notably reached human level expertise on some constrained image classification tasks. Nonetheless, training CNNs from scratch for new task or simply new data turns out to be complex and time-consuming. Recently, transfer learning has emerged as an effective methodology for adapting pre-trained CNNs to new data and classes, by only retraining the last classification layer. This paper focuses on improving this process, in order to better transfer knowledge between CNN architectures for faster trainings in the case of fine tuning for image classification. This is achieved by combining and transfering supplementary weights, based on similarity considerations between source and target classes. The study includes a comparison between semantic and content-based similarities, and highlights increased initial performances and training speed, along with superior long term performances when limited training samples are available

    Detection of Thermal Events by Semi-Supervised Learning for Tokamak First Wall Safety

    Full text link
    This paper explores a semi-supervised object detection approach to detect hot spots on the internal wall of Tokamaks. A huge amount of data is produced during an experimental campaign by the infrared (IR) viewing systems used to monitor the inner thermal shields during machine operation. The amount of data to be processed and analysed is such that protecting the first wall is an overwhelming job. Automatizing this job with artificial intelligence (AI) is an attractive solution, but AI requires large labelled databases which are not readily available for Tokamak walls. Semi-supervised learning (SSL) is a possible solution to being able to train deep learning models with a small amount of labelled data and a large amount of unlabelled data. SSL is explored as a possible tool to rapidly adapt a model trained on an experimental campaign A of Tokamak WEST to a new experimental campaign B by using labelled data from campaign A, a little labelled data from campaign B and a lot of unlabelled data from campaign B. Model performances are evaluated on two labelled datasets and two methods including semi-supervised learning. Semi-supervised learning increased the mAP metric by over six percentage points on the first smaller scale database and over four percentage points on the second larger scale dataset depending on the employed method

    Enhancing deep transfer learning for image classification

    Get PDF
    Though deep learning models require a large amount of labelled training data for yielding high performance, they are applied to accomplish many computer vision tasks such as image classification. Current models also do not perform well across different domain settings such as illumination, camera angle and real-to-synthetic. Thus the models are more likely to misclassify unknown classes as known classes. These issues challenge the supervised learning paradigm of the models and encourage the study of transfer learning approaches. Transfer learning allows us to utilise the knowledge acquired from related domains to improve performance on a target domain. Existing transfer learning approaches lack proper high-level source domain feature analyses and are prone to negative transfers for not exploring proper discriminative information across domains. Current approaches also lack at discovering necessary visual-semantic linkage and has a bias towards the source domain. In this thesis, to address these issues and improve image classification performance, we make several contributions to three different deep transfer learning scenarios, i.e., the target domain has i) labelled data; no labelled data; and no visual data. Firstly, for improving inductive transfer learning for the first scenario, we analyse the importance of high-level deep features and propose utilising them in sequential transfer learning approaches and investigating the suitable conditions for optimal performance. Secondly, to improve image classification across different domains in an open set setting by reducing negative transfers (second scenario), we propose two novel architectures. The first model has an adaptive weighting module based on underlying domain distinctive information, and the second model has an information-theoretic weighting module to reduce negative transfers. Thirdly, to learn visual classifiers when no visual data is available (third scenario) and reduce source domain bias, we propose two novel models. One model has a new two-step dense attention mechanism to discover semantic attribute-guided local visual features and mutual learning loss. The other model utilises bidirectional mapping and adversarial supervision to learn the joint distribution of source-target domains simultaneously. We propose a new pointwise mutual information dependant loss in the first model and a distance-based loss in the second one for handling source domain bias. We perform extensive evaluations on benchmark datasets and demonstrate the proposed models outperform contemporary works.Doctor of Philosoph
    corecore