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Abstract

Though deep learning models require a large amount of labelled training data for

yielding high performance, they are applied to accomplish many computer vision tasks

such as image classification. Current models also do not perform well across different

domain settings such as illumination, camera angle and real-to-synthetic. Thus the

models are more likely to misclassify unknown classes as known classes. These issues

challenge the supervised learning paradigm of the models and encourage the study

of transfer learning approaches. Transfer learning allows us to utilise the knowledge

acquired from related domains to improve performance on a target domain. Existing

transfer learning approaches lack proper high-level source domain feature analyses

and are prone to negative transfers for not exploring proper discriminative information

across domains. Current approaches also lack at discovering necessary visual-semantic

linkage and has a bias towards the source domain. In this thesis, to address these issues

and improve image classification performance, we make several contributions to three

different deep transfer learning scenarios, i.e., the target domain has i) labelled data; ii)

no labelled data; and iii) no visual data.

Firstly, for improving inductive transfer learning for the first scenario, we analyse

the importance of high-level deep features and propose utilising them in sequential

transfer learning approaches and investigating the suitable conditions for optimal per-

formance. Secondly, to improve image classification across different domains in an

open set setting by reducing negative transfers (second scenario), we propose two novel

architectures. The first model has an adaptive weighting module based on underlying

domain distinctive information, and the second model has an information-theoretic

weighting module to reduce negative transfers. Thirdly, to learn visual classifiers when

no visual data is available (third scenario) and reduce source domain bias, we propose

two novel models. One model has a new two-step dense attention mechanism to dis-
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cover semantic attribute-guided local visual features and mutual learning loss. The

other model utilises bidirectional mapping and adversarial supervision to learn the joint

distribution of source-target domains simultaneously. We propose a new pointwise

mutual information dependant loss in the first model and a distance-based loss in the

second one for handling source domain bias. We perform extensive evaluations on

benchmark datasets and demonstrate the proposed models outperform contemporary

works.
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Chapter 1

Introduction

Understanding the contents from images is referred to as vision. It provides the most

powerful perception of the world around us. Our eyes and brain collectively process

a massive amount of information within a short period to learn a remarkably rich

representation of the environment in a very complicated way. Thus, one of the main

challenges in the pursuit of achieving artificial intelligence is developing systems that

can see and understand our environment through images. This objective has encouraged

research in computer vision and strives to integrate the sense of vision into machines.

Computer vision is a challenging field because it has to model the vast complex-

ity and variation in the representation of the visual world. Statistical approaches are

channelled into creating features that guide a model of what relationships and repre-

sentations in the data are to be considered to perform computer vision tasks. However,

hand-engineered approaches to represent or model visual world complexities lack a

satisfactory level of understanding.

Deep learning approaches can design systems that understand of representations of

complex visual data. In particular, convolutional neural networks (CNN) have become

the ultimate choice for learning representations from visual data. CNNs [1–4] do not

require manual feature engineering; they automatically learn a multi-layered hierarchy

of low to high-level features. Consequently, the focus is on determining the suitable

network architecture and training hyper-parameters (e.g., learning rate and number of

layers).

CNNs require a huge amount of labelled training data and are trained in a super-

vised learning paradigm to yield optimal performance [1, 4, 5]. The supervised setting

1
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binds the networks to recognise only the data, domains, and tasks similar to what they

have observed during training. In addition, these networks have high computational

complexity when trained from very beginning. These limitations have driven deep

learning research towards transfer learning.

Transfer learning provides the ability to transfer knowledge from related (source)

domains to the target domain with different underlying distributions. Transfer learning

approaches do not require a massive number of data and are not computationally

expensive.

Transfer learning settings vary depending on the scenarios. This thesis focuses on

several transfer learning scenarios related to the availability of labelled training data in

the target domain and label space (classes) across domains. In particular, we work on

three scenarios: i) target domain has labelled but limited data and has different source-

target labels; ii) target domain is unlabelled, and source labels are a subset of target labels;

and iii) target domain has no visual data but has semantic descriptions and different

source-target labels. Current deep transfer learning models neglect category-specific

CNN features for handling the first scenario. Existing works for the second scenario

cannot correctly handle known–unknown misclassification properly for not discovering

essential domain distinctive characteristics. The research on the third scenario lacks

proper exploration of local and global visual–semantic relations and has source domain

bias in the learned features. This thesis proposes new transfer learning models to address

the issues in the above-mentioned three transfer learning scenarios. These proposed

models outperform contemporary works and supervised non-transfer learning models.

1.1 Research Background and Objectives

This section briefly describes the problem settings and limitations of the existing ap-

proaches and highlights the research objectives of the thesis. The details of existing

approaches are reviewed in Chapter 2.

With the aim of improving image classification performance, this thesis studies the

problem of automatically learning visual feature representations using deep neural



§1.1 Research Background and Objectives 3

networks that are transferable across domains in inductive and transductive transfer

learning settings (see Figure 1.1). The inductive setting has limited labelled training data

in the target domain, while the transductive setting has no labelled training data in the

target domain.

Figure 1.1: Contributions of this thesis.

First, this thesis aims to work on an inductive setting (i.e., sequential transfer learning),

where the source task is learned before learning the target tasks. More specifically, a

network is first trained on a dataset with a huge amount of labelled data. Then, to

learn another dataset with scarce labelled samples, the knowledge is transferred by

transferring the learned weights-biases or features of the network layers. Transferring

learned weights and biases for tunning them on target dataset is known as parameter

fine-tuning while transferring features is referred to as feature representation transfer [5, 6].

In sequential transfer learning, it is expected that only generic information holding

network layers are vital for transferring knowledge. It is widely believed that the final

layer of CNNs hold category-specific information [5]. Therefore, the effects of this layer
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in sequential transfer learning have not been explored in the literature.

Second, this thesis aims to work on a transductive setting known as open set domain

adaptation (OSDA), which originates from the domain adaptation (DA) setting (see Fig-

ure 1.1). The DA setting assumes a similar label set across the source and target domains.

The network learns to align the target samples towards similar source classes and then

learns to recognise the classes.

OSDA is a step towards a realistic and challenging setting. There are several types of

OSDA settings. This thesis focuses on the type of OSDA where the source domain label

set is a subset of the target domain label set. The task is to learn a classification network

that aligns similar source-target samples and separate other target samples as ‘unknown’.

Although OSDA extends the supervised learning paradigm and allows classifying

unknown target classes besides the known classes, existing works do not perform well

because of known-unknown misclassification. If the DA model’s performance lags

behind the supervised classification model for the same task, it is referred to as negative

transfer [7]. In OSDA, negative transfers occur because of faulty known and unknown

target sample separation [8]. Consequently, the adaptation of known target samples to

the source domain is harmed.

Finally, this thesis concentrates on zero-shot learning (ZSL), which has a disjoint source-

target label set, and no available visual training data in the target domain. The task is to

learn the target domain using visual data of the source domain and semantic descriptors

of the source-target domains. Generalised zero-shot learning (GZSL) extends this setting

where the source and target domains are simultaneously learned for classification.

Existing GZSL approaches ignore essential links between visual features and semantic

descriptors [9] and strong coupling between visual and semantic representations [10].

They also do not properly handle bias towards the source domain in the learned features.

Consequently, they harm classification performances.

This thesis addresses the limitations and issues identified above by investigating the

influence of specificity, encouraging positive transfers, exploring crucial visual-semantic

relations, and reducing bias towards the source domain to improve transfer learning
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performances for image classification. To fulfil the ultimate objectives, we lay out the

following sub-objectives to be achieved in this thesis:

1. Improve the parameter fine-tuning approach using category-specific features of

CNNs We aim to analyse the importance of the classification layer of pre-trained

CNNs (which holds category-specific features in a parameter fine-tuning transfer

learning approach), propose models to utilise the layer for developmental transfer

learning (another form of parameter fine-tuning) and develop optimal network

architecture and training setups for proposed models.

2. Comprehensively analyse suitable conditions for a feature representation trans-

fer approach using the category-specific features The goal is to find an optimal

classifier and correlation between the source and the target dataset for the feature

representation transfer approach using the category-specific CNN features. In

particular, we aim to observe the influence of i) the similarity between source-

target datasets; ii) the fine-grained target datasets; iii) the coarse target datasets;

and iv) the number of target samples and classes. Moreover, we aim to employ a

mutual information-based feature selection algorithm to verify the importance of

category-specific features in transfer learning.

3. Reduce negative transfer in OSDA For improving OSDA’s performance, we aim

to reduce negative transfers by designing robust known-unknown separation mod-

ules, which will assist better adaptation. Our goal is to develop known-unknown

target samples separation modules based on domain-distinctive characteristics,

domain confidence, mutual information (I), and pointwise mutual information

(pmi) to reduce negative transfers.

4. Improve GZSL We aim to improve GZSL performance by developing novel archi-

tectures, which will explore proper global features, local visual features related to

semantic descriptors and strong bidirectional coupling between visual features

and semantic descriptors.
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5. Reduce source domain bias for GZSL For reducing bias towards the source do-

main in GZSL, we aim to design loss optimisations by exploring the shared infor-

mation between source and target classes to transfer-learn the target classes and

learning to hold domain-discriminative information.

1.2 Contributions

This thesis focuses on the setting of transfer learning that transfers across domains

and requires a source and target domain in the setting. Given this basic setting, we

work on three specific transfer learning settings as discussed earlier: i) sequential

transfer learning; ii) open set domain adaptation; and iii) generalised zero-shot learning.

Figure 1.1 demonstrated which contributions of this thesis relate to the three settings.

We will discuss the settings shown in Figure 1.1 in detail in Chapter 2.

To summarise, the main contributions of this thesis are as follows:

• We propose new parameter fine-tuning approaches using the classification layer

of pre-trained CNNs that hold category-specific (high-level) features. This study

proves that the category-specific classification layer can transfer knowledge. We

investigate the optimal architecture and hyper-parameter setting and perform an

extensive evaluation to show the superior performance of the proposed transfer

learning approaches on benchmark datasets (see Chapter 3).

• We propose to using the classification layer features of pre-trained CNNs in the

feature representation transfer approach. We present comprehensive analyses to

investigate the optimal network and datasets setting for this approach using the

classification layer features. We perform a thorough evaluation on benchmark

datasets to demonstrate the influence of classification layer features on this type of

transfer learning and compare them with contemporary works (Chapter 4). This

detailed analysis proves the positive impact of CNNs’ feature specificity in the

feature representation transfer approach and improves classification performance.
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• We extend a threshold-dependent adversarial OSDA model to an adaptive weight-

ing model. The proposed adaptive weighting model explores underlying domain-

discriminative information to improve adversarial DA performance by reducing

negative transfers. This contribution opens a new avenue to automatically learn

to separate known samples from unknown samples rather than depending on

a fixed threshold. We present an extensive evaluation on benchmark datasets

and a detailed analysis and comparison to show the superior performance of the

proposed model (see Chapter 5).

• We propose a novel generative adversarial model to mitigate negative transfers

and improve OSDA. In a coarse-to-fine separation module, the proposed model

discovers mutual dependence between domains to initiate positive transfers by

optimising a new loss based on probabilistic I. This model reduces negative trans-

fers by not relying only on the domain confidence of a source trained classifier. We

provide a detailed analysis of evaluation on benchmark datasets and demonstrate

that the proposed model outperforms all contemporary works (see Chapter 6).

• We propose a new integrated GZSL model with a novel two-step dense attention

mechanism. The proposed model explores local information to learn essential

visual-semantic relations and global information to hold a generic visual feature

presentation structure. We propose novel mutual learning to benefit the integrated

network. We design a new loss optimisation to reduce bias towards the source

domain depending on the probabilistic I. Unlike existing works, this contribution

explores the local and global features necessary for improving performance and

avails two testing styles. We evaluate the proposed model on the benchmark

datasets to demonstrate its superior performance (see Chapter 7).

• We propose a novel bidirectional model for GZSL. We extend a coupled generative

adversarial network to a bidirectional coupled generative adversarial network to

learn the joint distribution of the domains through strong visual–semantic coupling.

We also design an adversarial optimisation loss to supervise the learning of features.

We design a distance-based loss to hold domain discrimination in the learned
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features to reduce bias towards the source domain. Unlike contemporary works,

the proposed model simultaneously learn the joint distribution and preserve

the essential discriminative properties of the domains for improving GZSL. Our

thorough evaluation shows that the proposed model outperforms other works (see

Chapter 8).

The first and second contributions will address the first and second objectives,

respectively. The third and fourth contributions will address the third objective. The

fifth and sixth contributions will address the fourth and fifth objectives.

1.3 Publications

The work in this thesis relates to the following peer-reviewed articles and pre-prints:

Chapter 3 is adapted from:

• T. Shermin, S. W. Teng, M. Murshed, G. Lu, F. Sohel, and M. Paul, “Enhanced

Transfer Learning with ImageNet Trained Classification Layer,” in Proceedings of

the Pacific-Rim Symposium on Image and Video Technology (PSIVT), 2019. [Best

Student Paper]

Chapter 4 is adapted from:

• T. Shermin, S. W. Teng, M. Murshed, G. Lu, and F. Sohel, “Suitable Conditions for

Transfer Learning with the ImageNet Trained Classification Layer Features,” (to

be submitted as a journal article).

Chapter 5 is adapted from:

• T. Shermin, G. Lu, S. W. Teng, M. Murshed, and F. Sohel, “Adversarial network

with multiple classifiers for open set domain adaptation,” IEEE Transactions on

Multimedia, 2020.
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Chapter 6 is adapted from:

• T. Shermin, S. W. Teng, F. Sohel, M. Murshed, and G. Lu, “Adversarial Open Set

Domain Adaptation based on Mutual Information,” Revision submitted to IEEE

Transactions on Image Processing, 2021. [arXiv: 2007.00384v1]

Chapter 7 is adapted from:

• T. Shermin, S. W. Teng, F. Sohel, M. Murshed, and G. Lu, “Integrated Generalised

Zero-Shot Learning for Fine-Grained Classification,” Pattern Recognition, 2021.

Chapter 8 is adapted from:

• T. Shermin, S. W. Teng, F. Sohel, M. Murshed, and G. Lu, “Bidirectional Mapping

Coupled GAN for Generalised Zero-Shot Learning,” Revision submitted to IEEE

Transactions on Image Processing, 2021. [arXiv: 2012.15054]

1.4 Thesis Outline

Chapter 2 outlines the background studies relevant to this thesis’s content. We briefly

review the fundamentals of probability and information theory, machine learning, and

deep learning for computer vision. Further, we review the transfer learning scenarios

and approaches related to this thesis in detail.

Chapters 3, 4, 5, 6, 7, and 8 detail our proposed works and their performance

evaluations. Chapters 3 and 4 present our works on utilising category-specific CNNs

features to improve sequential transfer learning approaches and investigates the factors

for optimal performance. These two chapters comprise our first two contributions (see

Section 1.2).

In Chapter 5 details our third contribution. It discusses how we extend a prior

threshold dependant work and propose an adaptive weighting module-based generative

adversarial model for initiating positive transfers and improving OSDA.
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Chapter 6 thoroughly discusses our fourth contribution. It formalises and presents

our proposed adversarial DA model, which has a coarse-to-fine separation weighting

module based on mutual information for mitigating negative transfers and improving

OSDA.

Chapter 7 presents the proposed model for GZSL with a novel attention mechanism

and mutual learning loss, which is the fifth contribution of this thesis. It also discusses

the proposed loss for reducing bias towards the source domain in detail.

In Chapter 8, we present the details of our final contribution. Chapter 8 introduces

our proposed bidirectional GZSL, which explores joint distribution using strong visual-

semantic bidirectional coupling and optimises new distance-based loss for learning

domain discrimination to handle bias.

Chapter 9 provides the conclusion summarising our contributions, findings and

discussing future research directions.



Chapter 2

Literature Review

In this chapter, we provide the background information, which forms the building blocks

of the approaches introduced throughout this thesis. First, we review the fundamentals

of probability and information theory. Then we discuss in brief elementary machine

learning approaches and subsequently, delve into deep learning models or deep neural

networks for computer vision. Finally, we provide an overview of the literature of

transfer learning in computer vision and for image classification in particular.

2.1 Probability and information theory

All the approaches introduced in this thesis are probabilistic in nature and can be

formulated using the contents of probability theory. In the proposed approaches we

aim to computationally model the likelihoods of occurrence of events. The encoded

information in the events, overlap or difference among information of events can be

formulated using information theory.

2.1.1 Probability theory fundamentals

Random variable A random variable is a function that outputs specific values within

a range that depends on an underlying probability distribution. For example, a random

variable X can output the values x1 and x2. The occurrence of x1 and x2 is specified by

a probability distribution. A random variable can be discrete or continuous. In this thesis,

11
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we aim to design architectures that model the probability distribution of such random

variables.

PMF and PDF For discrete random variables, the probability distribution is defined

with a probability mass function (PMF), generally denoted as P . The probability of a

random variable taking on a value is defined by its PMF. Thus, P (X = x1) indicates the

probability of X taking on the value x1. In case, we do not know to which a random

variable an event belongs, we will denote as P (x1). Every event xi ∈ X has a probability

value between 0 to 1 and all probabilities must sum to 1. For continuous random variable,

we use probability density function (PDF), PDF does not denote the probability of a specific

event but rather, measures the probability of a infinitesimally small region with volume

δx with P (x)δx.

Joint and marginal probability distribution A probability distribution that calcu-

lates the likelihood of multiple events belonging to multiple random variables occurring

at the same point in time is denoted as joint probability distribution. For events, x ∈ X

and y ∈ Y , P (X = x, Y = y) or P (x, y) denotes their joint probability.

Given a joint probability, the probability distribution over a subset of the variables

is the marginal probability distribution. For discrete variables, the marginal probability

distribution is:

P (x) =
∑
y

P (x, y). (2.1)

For continuous variables,

P (x) =

∫
y
P (x, y)dy. (2.2)

Independence If the joint probability distribution of two random variables can be

computed as a product of their individual probability distributions, the two random

variables are independent. That is, for all x ∈ X and y ∈ Y :

P (x, y) = P (x)P (y). (2.3)
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i.i.d Two random variables are independent and identically distributed (i.i.d) if and

only if the following two conditions are satisfied: the terms of the random variables are

mutually independent; they both have the same underlying probability distribution.

Expectation Machine learning concerns with functions over random variables. The

value of a function f(x) takes on with regard to P (X) when x is drawn from P. The

average value from this phenomenon is known as expectation or expected value. For

discrete variables it is formulated as:

Ex∼p[f(x)] =
∑
x

P (x)f(x). (2.4)

For continuous variables:

Ex∼p[f(x)] =

∫
P (x)f(x)dx. (2.5)

Note that, we will often write Ex[f(x)] when it is evident from which distribution x is

drawn and E[f(x)] if the random variable is also clear from the context.

Variance and covariance Variance is measuring how much the values of a function

f(x) differ from the expectation as we sample or draw different values of x from P . When

it comes to considering more than one random variables, we measure the covariance to

determine the linear relation between the random variables. Two independent variables

have zero covariance and two dependent variables have non-zero covariance. For

instance, covariance between X and Y is:

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]. (2.6)

2.1.2 Probability distributions

Machine learning often concerns with some common probability distributions. Through-

out this thesis, we mainly utilise the principle of Bernoulli distribution for binary classifi-

cations, multinoulli distribution for categorical or multi-class classifications. Details on

the procedures are provided in the respective sections.
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2.1.3 Information theory

Information theory [11] is the core of machine learning. In this thesis, we will utilise

measure from information theory to formulate the discrepancy between the encoded

information of two probability distributions. This will assist us to guide the model to

learn the correct probability distribution rather than the empirical distribution of the

data. In this process of learning, we will also exploit shared information between two

probability distributions.

Self-information and entropy The information content of an event can be measured

through self-information as,

I(x) = − logP (x). (2.7)

Here, log is the natural logarithm.

Another measure of information theory is Shannon entropy, which determines the

expected amount of information when an event x is sampled from P :

H(x) = Ex∼P [I(x)] = −Ex∼P [logP (x)]. (2.8)

The amount of uncertainty contained in a probability distribution is measured by the

entropy. The notion of entropy can be extended to two distributions and measure

the relative entropy of P (x) with respect to Q(x). This is also known as Kullback-Leibler

divergence (KL divergence).

DKL(P ||Q) = Ex∼P [log
P (x)

Q(x)
] = Ex∼P [logP (x)− logQ(X)]. (2.9)

Kullback-Leibler divergence is asymmetric in nature, i.e., DKL(P ||Q) 6= DKL(Q||P ).

Jensen-Shannon divergence is a symmetric alternative, which is often used for adversarial

optimisation. We will define the adversarial optimisation later in the thesis.

Another measure closely related to KL divergence, which will be used several times
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in this thesis is cross-entropy, as defined below:

H(P,Q) = −Ex∼P [logQ(X)]. (2.10)

In this thesis, we will use the cross-entropy concept for computing multi-class

classification error. For measuring binary classification error, information theory has

another measure known as binary cross-entropy:

HP (Q) = −Ex∼P [logP (X)] + Ex∼P [log 1− P (X)]. (2.11)

Mutual information and pointwise mutual information Mutual information is a

measure to associate the outcomes of two discrete or continuous random variables X

and Y . It measures the mutual dependence between the two random variables.

For discrete variables,

I(X;Y ) =
∑
y∈Y

∑
x∈X

P (x, y) log

(
P (x, y)

P (x)P (y)

)
. (2.12)

For continuous variables,

I(X;Y ) =

∫
Y

∫
X
P (x, y) log

(
P (x, y)

P (x)P (y)

)
dxdy. (2.13)

Pointwise mutual information (pmi) is a measure of co-occurrence between two events

of two discrete random variables X and Y . The pmi is measured by computing the dis-

crepancy between the joint probability and the product of their individual probabilities:

pmi(x; y) = log

(
P (x, y)

P (x)P (y)

)
. (2.14)

We will use mutual information and pointwise mutual information to learn associa-

tion and divergence between the samples of two domains.
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2.2 Machine learning

In this section, we review the basic concepts of machine learning which will reappear

throughout the thesis or form the building blocks of the advanced neural network

architectures introduced in the later chapters.

In machine learning, each input sample is represented as a vector x ∈ RX of X

features, where each sample is drawn from a distribution pdata. We focus on the supervised

and unsupervised categories of machine learning in this dissertation. In supervised

learning, every input xi has a label yi, however, unsupervised learning has no associated

label with the samples. This thesis focuses on the task of classification in the field of

machine learning. Classification refers to the task of classifying samples into predefined

classes or categories. Classification can be in the form of binary classification, multi-class

classification, and multi-label classification. Our ultimate goal is to improve multi-class

classification. We often utilise binary classification to fulfill our ultimate goals throughout

the thesis.

2.2.1 Maximum likelihood estimation

A maximum likelihood estimation (MLE) model is formulated as a function pmodel(x; θ)

which maps an input x to a probability distribution using a set of parameters θ. The

true probability of the inputs is unknown so we approximate it with the empirical

distribution. The objective of MLE is to decrease divergence between the probability

distribution of the model parameters and the empirical distribution. In particular, MLE

tries to maximise the likelihood of the samples under the model configuration as,

θdataMLE
= argmax

θ
Pmodel(X; θ) = argmax

θ

n∑
i=1

logPmodel(xi; θ). (2.15)

It can be derived that this objective is similar to minimising the cross-entropy

(Eq. 2.10) between the empirical and model distributions as:

θdataMLE
= argmin

θ
H(Pdata, Pmodel). (2.16)
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We will frequently use this loss term in this thesis.

Conditional maximum likelihood For supervised learning, we need to extend the

MLE to estimate the conditional probability P (y|x; θ) to predict the label y for x. The

conditional maximum likelihood estimator is:

θdataMLE
== argmax

θ

n∑
i=1

logP (y|xi; θ). (2.17)

The conditional maximum likelihood estimator provides the single best prediction y′

for the true label y.

2.2.2 Linear regression

Linear regression is a point estimator that models conditional probability distribution

p(y|x), i.e., it takes a vector x ∈ RX and predicts the value of a scalar y ∈ R using the

vector θ ∈ RX of weights and a bias b ∈ R:

ŷ(x; θ) = θ>x+ b. (2.18)

Linear Regression is used for solving regression tasks.

2.2.3 Logistic regression

Logistic regression is another form of linear regression, which is used to solve classification

tasks. For binary classification with class 0 and 1, the output of linear regression model

is transformed to probability value in the interval (0, 1) using a sigmoid or logistic function

σ as, σ(x) = 1/1 + exp−x. The classification probability is then computed as:

p̂(y = 1|x; θ) = ŷ = σ(θ>x). (2.19)

Since, the output random variable follows a Bernoulli distribution, computing the

probability of one class is sufficient to determine the probability of other class.
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In the case of multi-class classification, a separate set of weights θi ∈ θ is learned for

the label yi of the ith class. Then, softmax function is often used to obtain a categorical

distribution from the outputs:

p̂(yi|x; θ) =
expθ

>
i x∑C

j=1 expθ
>
j x
. (2.20)

Then, cross-entropy loss between empirical conditional probability p(y|x) and model

proability p̂(y|x; θ) is computed for each sample as:

H(p, p̂;x) = −
C∑
i=1

p(yi|x) log p̂(y|x; θ). (2.21)

This simplifies to binary cross-entropy as:

H(p, p̂;x) = −(1− y) log(1− ŷ)− y log ŷ. (2.22)

For optimising the cost function, the average cross-entropy over all samples are

minimised:

L(θ) =
1

n

n∑
i=1

H(p, p̂;x). (2.23)

Note that we denote the cost function with E and L alternatively throughout this

thesis.

2.2.4 Gradient descent

For machine learning models with logistic regression, we do not have any closed-form

solution rather we follow an algorithm known as gradient descent to iteratively minimise

the cost function of the model. It updates the models parameters in the opposite direction

of the gradients, i.e., the vector containing the partial derivatives to reach the minima.
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2.2.5 Neural networks

In recent years, neural networks have become a popular tool to solve computer vision

tasks. Neural networks have the same principle as the basic machine learning models,

linear and logistic regression. Logistic regression is a combination of an affine function

(Eq. 2.18) and an activation function (Eq. 2.20). Neural networks are models with

multiple such affine functions interleaved with non-linear activation functions (Eq. 2.19

or 2.20). The input layer is an affine function layer and the output layer is an activation

function layer to obtain classification output distribution. Layers in between are known

as hidden layers. A model with one or more hidden layers are referred to as multi-layer

perceptron (MLP). For instance a neural network with one hidden layer can be formulated

as:

h = σ1(W1x+ b1), y = softmax(W2h+ b2). (2.24)

Here, h is the output of the first hidden layer and σ1 is the activation of the first

hidden layer. Each layers has its own weight matrix W and bias vector b. Neurons in

each layer have no connections, but every layer is connected to the next and previous

layers. Computing the output by feeding an input to h and proceeding h to subsequent

layers and eventually producing y is known as forward propagation.

Activation functions Other than sigmoid and softmax functions, rectified linear unit

(ReLU) is a common non-linear activation function used for the hidden layers, which is

defined as:

σ(x) = max(0, x). (2.25)

Another activation function is also used for attention models known as hyperbolic

tangent or tanh function, as:

σ(x) =
expx− exp−x

expx + exp−x
. (2.26)
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Back-propagation The gradient descent in neural networks to minimise the cost or

error is computed using an algorithm known as back-propagation. Back-propagation

depends on the chain rule of calculus to propagate the error derivative backwards

starting from the output layer. All the layer parameters are updated following the

computed gradients of the layers.

2.2.6 Convolutional neural network

Convolutional neural network (CNN) is a type of neural network specially designed to

handle image data efficiently. As this thesis is concerned with image classification,

throughout the thesis, among different types of neural networks, we will repeatedly

use CNN. CNNs are modified version of neural networks. In theory, they have similar

principle as the neural networks, but they have architectural differences. We briefly

discuss the basic architecture of the CNN.

For handling image data, unlike neural networks, CNNs have neurons arranged in

three dimensions: width, height, and depth. CNN are built with four main types of layers:

convolutional layer (conv), pooling layer, fully-connected layer, and classification layer.

Convolution layer A convolutional layer consists of a set of learnable filters. Every

filter in a layer has same dimensions, they are spatially (width and height) small and

extends to the full depth of the layer’s input volume. During the forward propagation,

each filter convolves across the input volume and performs convolution operation.

The convolution outputs (feature maps) of every filters in a conv. layer are fed into an

activation layer to achieve non-linearity. The activation outputs are stacked along the

depth dimension and referred to as output of the layer or activation maps.

Pooling layer The activation maps are passed through pooling layer. The function

of this layer is to reduce the spatial size of the activation maps to reduce the number of

parameters and computation in the network. The pooling layer operates on every depth

slice of activation map separately to reduce it spatially, using the max operation.

Fully-connected layer The fully-connected layers are similar to the regular neural

network layers. A fully-connected layer has a full connectivity to all the neurons in the
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previous layer. Due to downsampling of the activation maps in pooling layer, such full

connectivity does not overburden the architecture with massive computations.

Classification layer The classification layer is a fully-connected layer with the ability

to convert the output of the network to categorical distribution similar to the neural

networks. In particular, unlike other fully-connected layers, this layer has a softmax

function to convert the fully-connected output of this layer to categorical distribution.

A CNN may have multiple numbers of conv. layers with or without subsequent pool-

ing layers and multiple numbers of fully-connected layers in the architecture depending

on design choices. We will discuss different architectures in the following section. The

CNNs are also denoted as deep neural networks or deep learning models. We will use these

term as well in this thesis to refer to CNN.

2.3 Deep learning models

In this section, we provide a brief review on several benchmark deep learning models

which falls within the scope of this thesis. Deep learning models discussed in this section

are designed to classify the ImageNet [12] dataset, which has 1000 categories of millions

of natural object images.

2.3.1 AlexNet

The journey of CNNs in the field of computer vision was pioneered by AlexNet [1].

AlexNet has eight layers in total; the first five are conv. layers and the last three are

fully-connected layers as shown in Figure 2.1. This network uses ReLU activation

function for introducing non-linearity in the network. Among the five conv. layers,

the first two and the final one each has a pooling layer associated with them. The final

fully-connected layer is the classification layer, which has a 1000-way softmax heads

to produce categorical distribution. The five conv. layers have 11× 11× 3, 5× 5× 48,

3 × 3 × 256, 3 × 3 × 192, and 3 × 3 × 192 filters with 96, 256, 384, 384, and 256 kernels
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Figure 2.1: Block diagram of AlexNet.

respectively in the architecture. The first two fully-connected layers have 4096 neurons

each and the final fully-connected layer has 1000 neurons.

AlexNet uses zero-mean Gaussian distribution with standard deviation 0.01 for

weight initialisation and trains the network with stochastic gradient descent (SGD)

optimiser with a momentum of 0.9. The network reduces error when brightness normal-

isation in the form of local response normalisation is applied. This network outperforms

all the contemporary non-CNN image classifiers for the large-scale ImageNet dataset.

2.3.2 VGGNet

Compared to AlexNet, VGGNet [2] is an advancement in the field of CNNs. VGGNet

was proposed to investigate the effect of convolutional network depth. More specifically,

the impact of an architecture with very small (3× 3) convolution filters on its accuracy

for performing large-scale image classification. VGGNet has several networks configura-

tions with 11, 13, 15, and 19 layers. Every configuration has three fully-connected layers

and the remaining are conv. layers.

The main advancement in VGGNet compared to AlexNet is its stacked convolution

layers with 3 × 3 filters. A stack of two 3 × 3 conv. layers (without spatial pooling in

between) has an effective receptive field of 5 × 5; three such layers have an effective

receptive field of 7× 7.
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Figure 2.2: Receptive field for stack of conv. filters.

In Figure 2.2, let us assume the top layer is a block from a 3× 3 filter, the second layer

is another 3× 3 filter. Together they have an effective receptive field of 5× 5 shown in

the third layer. The advantages of placing a stack of two 3× 3 conv. layers instead of a

single 5× 5 layer are: i) instead of a single non-linear rectification layer it has two, which

makes the decision function more discriminative and ii) the number of parameters are

decreased: assuming that a two-layer 3× 3 convolution stack has C input and output

channels, the stack is parameterised by 2(32C2) = 18C2 weights, whereas, a single 5× 5

conv. layer would have 52C2 = 25C2 parameters. Similarly, placing a stack of three 3× 3

filters instead of a single of 7 × 7 filter would have 3(32C2) = 27C2 weights instead of

72C2 = 49C2 parameters, i.e. 81% less.

Despite the larger number of parameters and the greater depth compared to Alexnet,

the VGGNets require less epochs to converge due to implicit regularisation imposed by

greater depth and smaller conv. filter sizes.

2.3.3 ResNet

Deeper CNNs are exposed to an issue of degradation during their convergence. To be

specific, the accuracy saturates with the increasing depth of the network and degrades

rapidly at some point. This problem shows that increasing the depth of networks make

them hard to optimise. Residual learning deep network (ResNet) [4] addresses this

problem by having a shallow and a deeper counterpart in the architecture. The deeper

part is composed by adding several shallow networks through identity mapping. This
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solution leads to a situation where the deeper part produces similar training error to the

shallower counterpart. The residual mapping is implemented as shown in Figure 2.3.

The residual/identity mapping is performed by a skip/shortcut connection, which

Figure 2.3: (a) Shallow network (b) Residual network [4].

performs parameter free identity mapping to address the degradation issue.

ResNets have several configurations with different number of layers starting from 18

to 152. The conv. layers have 3× 3 filters and follow two design rules: the layers with

same output feature map size have same number of filters and the number of filters is

doubled if the feature map size if halved to preserve similar time complexity per layer.

ResNets are more powerful than above-mentioned CNNs (AlexNet and VGGNet) and

outperforms them substantially in large-scale image classification.

2.4 Transfer Learning

In this section, we provide an overview of transfer learning in general in computer vision.

The section presents a discussion on how machine learning model transfers knowledge
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across domains and solve tasks for data outside the training data distribution. We first

define transfer learning in the context of this thesis. Based on the definition, we will

present a taxonomy and finally, review three popular transfer learning settings related

to this thesis.

In the supervised learning paradigm, a deep learning model requires a massive

number of labelled training data of domain A to perform the task. If we intend to learn

another domain B with the model, we will require huge amount of labelled data from B

to train the model again. The supervised learning setting falls apart when we do not

have sufficient labelled data in a domain to perform the desired task. Transfer learning

allows us to use the data from related domains, i.e., source domains, to gather knowledge

and apply it to solve a task in another domain with scarce labelled data, i.e., target

domain.

There are different transfer learning settings comprising multiple source and target

domains. This thesis focuses on the type with one source and one target domain in the

setting. The transferable knowledge can be of different forms depending on the setting.

This thesis concerns with the type of knowledge relating to the feature representations

learned by the deep neural networks.

2.4.1 Definition

In this section, we partially follow Pan et al [7] to define transfer learning setting formally.

The concept of transfer learning involves a domain and a task. A domain D comprises

an input data space X with a marginal distribution P (X), where X = x1 . . . xn ∈ X .

Note that X denotes the space of all the inputs in D, the inputs may be images or image

features depending on the task scenario and xi represents the ith instance. A task T has

a label space Y , a prior P (Y ), and a conditional distribution P (Y |X). The conditional

distribution is learned from the training data comprising xi ∈ X and yi ∈ Y . Y is the set

of all image labels and yi is the label of ith instance.

The transfer learning setting has a source domain Ds, a source task Ts, a target

domain Dt, and a target task Tt in general. The objective is to learn the target task
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Pt(Y
t|Xt) in Dt using the information learned from Ds and Ts, where Ds 6= Dt or Ts 6= Tt.

In this thesis, we concentrate on the transfer learning settings with the condition Ds 6= Dt
for image classification. Under the general setting, this thesis works on three different

transfer learning scenarios discussed in the next section.

2.4.2 Scenarios and Taxonomy

Given the general transfer learning setting discussed above, this thesis focuses on the

scenarios below based on varying source and target conditions (Figure 2.4):

1. The target domain and task have limited labelled data. The label space, prior and

the conditional distributions of the source and the target tasks may be in near

proximity but are not equal. This scenario falls under the category of inductive

setting and can be solved by sequential transfer learning approach.

2. The target domain and task have no labelled data. The prior, marginal, and

conditional distributions for the source and the target tasks are different. The label

space of the source task is a subspace of the target task Ys ⊆ Yt. This falls under

the category of open set domain adaptation.

3. The target domain and task have no visual data. The prior, marginal, and condi-

tional distributions for the source and the target tasks are different. The label space

of the source and target tasks are disjoint Ys 6= Yt (zero-shot learning) or the label

space of the target task is a union of the source and target task Ys ∪ Yt (generalised

zero-shot learning).

For brevity, in the rest of the thesis, we drop the concept of task T and follow the

definition of a domain as, D = (xi, yi)
n
i=1, where x denotes an input instance and y

denotes the label.

We follow the transfer learning taxonomy of Pan et al. [13], to formulate a taxonomy

for this thesis based on the discussed scenarios (Figure 2.4). This thesis contributes

to improve three different settings of transfer learning that relates to the discussed
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Figure 2.4: Transfer learning taxonomy for this thesis. Green coloured blocks show the contribu-
tion areas of this thesis.

scenarios. The scenarios relate to sequential transfer learning, open set domain adaptation,

and zero-shot learning, respectively. In the following sections, we will review the existing

approaches for these three settings.

2.5 Sequential transfer learning

1 In this section, we introduce sequential transfer learning and provide a brief description

of the contemporary sequential approaches that relate to this thesis.

In practice, inductive sequential transfer learning for deep learning assumes a source

domain with sufficient labelled data and a target domain with limited labelled data. The

sequence is to train a deep learning model on source domain first and then transfer the

1This section is partially adapted from: T. Shermin, S. W. Teng, M. Murshed, G. Lu, F. Sohel, and M.
Paul, “Enhanced Transfer Learning with ImageNet Trained Classification Layer,” in Proceedings of the
Pacific-Rim Symposium on Image and Video Technology (PSIVT), 2019.
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knowledge to train on target domain. This thesis is concerned on two types of sequential

transfer learning: parameter fine-tuning and feature representation transfer as shown in

Figure 2.4. We will extend our discussion to developmental transfer learning as well,

which is an extension of parameter fine-tuning approach.

2.5.1 Parameter fine-tuning approach

Parameter fine-tuning is defined as, first, a deep neural network is trained on a large-

scale source domain, which has A categories, and then replace the classification layer

of the network and train it again on the target domain to classify B categories. First,

we review fine-tuning approaches for different network architectures and then, discuss

works that investigate learning rates.

2.5.1.1 Network architecture

A significant number of works have studied parameter fine-tuning in CNNs, which

includes various factors affecting fine-tuning, pre-training and freesing layers. Most of

the works use ImageNet as the source domain as the dataset has huge amount of diverse

data and classes to train the parameters in a CNN. Apparently, it has become a trend

to treat CNNs [1–4, 14] trained on ImageNet as learners of features that can be reused

in handling almost all categories of visualisation tasks. ImageNet pre-trained CNN

features yielded impressive results in image classification [6, 15], action recognition [16],

object detection [17, 18], image captioning [19, 20], human pose estimation [21], image

segmentation [22], optical flow [23], and others [24].

Yosinski et al. [5] trains a network on partial ImageNet and then replaces every

layer from backwards sequentially with a new classification layer. And, finally, trained

on target domain to find out which layer generalises better to the target domain and

performs optimally. The authors report that the networks holds general to specific

features in low to high layers and consequently, the final layer has less generalisation

capability. In this thesis, we argue that this claim does not hold when a network is

trained on large-scale diverse dataset, i.e., full ImageNet.
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Oquab et al. [25] designs an approach to reuse ImageNet trained network layers

to compute mid-level features for other datasets. In particular, supporting the claim

of [5], the authors sets the trend to replace the classification layer of a CNN trained on

ImageNet-1000 with a new ones and fine-tunes the CNN on the target dataset. They

report that the fine-tuning of the pre-trained parameters on the new datasets led to

significant performance improvement. Yang et al. [26] extends previous parameter

fine-tuning another step further by connecting the early layers to the classification layers.

As reported, this structure assists the tuning and classification decision even better.

Besides natural object category space, parameter fine-tuning using pre-trained CNNs

are applied in other domains. To extend the implementation of parameter fine-tuning in

the field of medical research, Tajbakhsh et al. [27] exploit CNNs pre-trained on ImageNet

to transfer knowledge to medical domain through fine-tuning. The research reports

that parameter fine-tuning in a layer-wise manner outperforms training from scratch in

medical image domain. Li et al. [28] improve the parameter fine-tuning approach by

introducing an attention mechanism between the source and the target network. They

connect the outer layers of the ImageNet trained source network with the target network

through an attention block and then fine-tunes both network in a supervised manner.

Ge et al. [29] introduce a selective joint fine-tuning scheme, which identifies and uses

a subset of training images from the source domain whose low-level characteristics are

similar to those of the target domain, and jointly fine-tune shared convolutional layers

for source and target tasks. Moreover, to integrate active learning to fine-tuning, Zhou

et al. [30] introduce AIFT (active, incremental fine-tuning). The approach starts with

a pre-trained CNN to find from an unlabelled pool to label and fine-tunes the CNN

continuously on labelled data to improve performance. The continuous fine-tuning may

inject noisy labelled data, to address that entropy and diversity based on current CNN

is computed to select only a portion from the labelled data. These approaches perform

well in biomedical imaging applications.

Huang et al. [31] propose a fine-tuning approach for SAR data, which has a classi-

fication and reconstruction pathway. The reconstruction pathway is first pre-trained

on unlabelled SAR images and then the classification pathway is trained on limited
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labelled SAR images using the feedback. The network may not perform well as the

reconstruction is done in an unsupervised manner. George et al. [32] exploit parameter

fine-tuning for glitch classification using the gravity Spy dataset that contains hand-

labelled, multi-duration spectrograms obtained from real LIGO data. Holder et al. [33]

retrain a pre-trained CNN on urban-road scenes to classify off-road scenes. Transfer

learning approach to fine-tune for new tasks without forgetting the old ones is proposed

by [34]. To limit the need for annotated data for supervised pre-training required for

transfer learning, [35] has proposed an approach of more universal representations.

All the above-mentioned works have neglected the classification layer of the pre-

trained CNN while performing fine-tuning for target tasks. However, we argue that the

presence of the classification layer will enhance fine-tuning when the source domain is

diverse enough. Thus, in this thesis we consider publicly available ImageNet dataset as

the source to prove our claim.

Developmental transfer learning Developmental transfer learning extends the tradi-

tional parameter fine-tuning by increasing the network capacity for performing the target

task. Several works have exploited developmental and lifelong learning [36–38], which

is in line with developmental transfer learning. A recent transfer learning work [39] in-

creases the width and depth (append new layers) of conv. layers of a pre-trained network

to investigate the optimal setup for transferability and report that increasing width of a

layer performs better than increasing depth. To further investigate the developmental

fine-tuning, Wang et al. [40] grow the pre-trained network beyond the pre-trained fully-

connected layers and increases the width of the fully-connected layers. The research

reports that increasing the model capacity allows the model to adapt better through

fine-tuning and outperforms fine-tuning approaches. However, both the works [40, 41]

neglect the pre-trained classification layer of the ImageNet trained source network. In

contrary, we argure to grow network depth beyond the pre-trained classification layer

and investigate its impact in developmental transfer learning (Chapter 3).
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2.5.1.2 Learning rate

So far, we have discussed about different network architectures for fine-tuning. Now,

our focus is on reviewing how existing works have investigated learning rate for the

fine-tuning layers. Girshik et al. [17] report that reducing the learning rate compared

to the pre-training rate during fine-tuning improves the performance. On the other

hand, Nicholas et al. [42] report global learning rate for transferred layers is optimal. For

growing networks, Wang et al. [40] train their newly augmented layers with ten times

more learning rate than the existing layers. We aim to investigate the optimal learning

rate for the proposed parameter fine-tuning approach in Chapter 3.

2.5.2 Feature representation transfer

Feature representation transfer approach refers to the approach where a CNN is trained

on a domain A and the learned features from different layers are extracted and reused to

learn another domain B using a different network.

Donahue et al. [43] introduce feature representation approach and presents one of

the first studies on the behaviour of conv. filters. They extract features from the last conv.

and the first two fully-connected layers of an ImageNet trained AlexNet [1]. They report

that the first fully-connected layer features outperform other layers when trained to

perform target task using a support vector machine (SVM). The contribution of Razavian

et al. [6] go in a similar direction, they use the ImageNet trained OverFeat [18] to extract

features from the first fully-connected layer. Then the extracted features are boosted

through data augmentation and component-wise power transformation. The boosted

features are fed into SVM to perform target tasks. For image classification, they evaluate

other layers features and report that the first fully-connected layer outperforms others.

Another study of suitable factors for this type of transfer learning has been reported

by [39, 41]. Among the parameters they considered some are related with the network

architecture (network depth and width, optimisation parameters, etc), and others are

related with the transfer learning process (fine-tuning, network layer to be extracted,
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spatial pooling, etc). The authors find that the first and second fully-connected layer

features trained using SVM performs best. To exploit more advanced CNN features for

transfer learning, Mahmood et al. [44] extract features from the inner layers of ImageNet

trained ResNets. They report improved performance in under water coral classification.

Similarly, Mormont et al. [45] have used pre-trained CNNs to detect digital pathological

objects. They have explored more networks besides SVM, such as randomised tree based

algorithms, multi-layer and single-layer perceptron. This works reports using inner

layers for feature extractions performs optimally.

Contributions to feature representation transfer have been purely empirical so far.

They were done by extracting all CNN features from a single layer and testing their

performance by feeding them to a classifier. However, Dario et al. [46] statistically

measure the distinctive power of every single feature within a CNN, when used for

classifying every class of different datasets. This work provides new insights into the

behaviour of CNN conv. features for their application to knowledge representation and

reasoning. They report that low and mid-level features may behave differently to high

level features, but only under certain conditions.

Gasulla et al. [32] introduce a new feature extraction called full-network embedding

for transfer learning, where they extract features from different layers of a CNN to con-

struct an embedding and then utilise that embedding along with a SVM to solve target

tasks. This approach is capable of providing extra information to better characterise

the data and assist transfer learning. Besides SVM and logistic regression, Bayesian

least square SVM [47] and smoothed K-NN classifier [48] for transfer learning are also

reported in the literature.

All the above-mentioned works, follow the footsteps of [5, 43] and neglects the

classification layer features of the ImageNet trained CNNs. We aim to show the impact

of classification layer features in this type of transfer learning in Chapter 4.
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2.6 Domain adaptation

2 3 Domain adaptation (DA) is a setting of transfer learning where knowledge is trans-

ferred across domains with different distributions. Traditionally domain adaptation

approaches assume to have similar class label across domains, which is also known

as closed set domain adaptation. Open set domain adaptation is more relaxed towards

realistic setting as it allows to have dissimilar labels with partial overlap across domains.

In this section, first we will provide a brief review of the closed set approaches and then

present detail review of recent open set domain adaptation approaches.

2.6.1 Closed set domain adaptation

Closed set DA approaches concentrate on reducing the divergence between the source

and the target domains. Recent works have shown that because of its setting, closed set

DA approaches can exploit domain invariant features by explicitly reducing the domain

divergence upon the supervised deep neural network structures. The development of

deep learning based closed set DA approaches [8,49–56] is originated from prior shallow

DA approaches [57–62].

Closed set DA approaches fall into three main categories. The first category of ap-

proaches is based on static moment matching, such as Maximum Mean Discrepancy

(MMD) [50, 51, 53, 63], Central Moment Discrepancy (CMD) [64], and second-order

statistics matching [65]. The second category of approaches adapts the adversarial loss

concept of GAN [66] and initiates the generation of images that are non-discriminative

to the shared label space of source and target domain [52, 56, 67]. Furthermore, domain

adversarial approaches align pixels and features from both domains and synthesise

labelled target images for data augmentation [68–73]. Saito et al. [8] utilise the prob-

abilistic outputs of two classifiers’ to measure domain discrepancy loss and update
2This section is partially adapted from: T. Shermin, S. W. Teng, M. Murshed, G. Lu, and F. Sohel,

“Adversarial network with multiple classifiers for open set domain adaptation,” IEEE Transactions on
Multimedia, 2020

3This section is partially adapted from: T. Shermin, G. Lu, S. W. Teng, M. Murshed, and F. Sohel,
“Adversarial Open Set Domain Adaptation based on Mutual Information,” Revision Submitted to IEEE
Transactions on Image Processing, 2021.[preprint: arXiv: 2007.00384v1]
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both the classifiers based on this loss adversarially. However, we use two different

types of classifiers and a discriminator for measuring underlying domain similarity and

utilise this similarity to compute final domain discrepancy loss by updating only the

main classifier. Recent research has explored Cycle-Consistent GAN [74] for developing

CycleGAN-based [75–77] DA approaches. The final category of approaches leverages

Batch Normalisation statistics for adapting domains to a canonical cone [78, 79].

2.6.2 Open Set Domain Adaptation

Open set DA models have to correctly recognise images from the shared label space and

reject images from the domain-private (unknown) classes [80–82]. The main challenge in

open set DA is to separate known and unknown samples. Multi-class open set SVM [83]

is designed to reject images from unknown classes. In this approach, the SVMs are

trained to assign probabilistic decision scores to samples and reject unknown samples by

a threshold. Bendale et al. [80] integrates an OpenMax layer upon deep neural networks

for exploiting them in open set recognition. The OpenMax layer assists the network

in estimating the probability of an image coming from an unknown class. To generate

unknown samples for open set recognition, Ge et al. [82] combines a generative model

with the OpenMax layer, and to reject unknown samples during testing, this approach

defines a threshold.

Assign-and-Transform-Iteratively (ATI) [81] follows the open set domain adaptation

setting which has unknown classes in both the domains. ATI evaluates the distance of

each target sample from the core of every source class, aligns target samples residing

in near vicinity to known classes and rejects unknown target samples by aligning them

towards the unknowns of the source domain. Saito et al. [84] modify the open set DA

setting for addressing more practical DA cases. Their modified setting (Open set DA by

back-propagation (OSBP DA)) does not require unknown classes in the source domain.

The OSBP approach implements a generative adversarial domain adaptation model.

Both ATI and OSBP approaches require some threshold hyper-parameters to distinguish

between known and unknown classes. Since this threshold hyper-parameters are not
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learnable or adaptive, they encourage negative transfer by aligning known samples to

the ‘unknown’ class.

Recent works follows the OSBP open set DA setting to improve open set DA such as

Separate to adapt (STA) [85], Mutual to Separate (MTS) [86], and Towards Inheritable

Models (TIM) [87]. STA and MTS have weighting modules, which rely on a domain

confidence based similarity score to separate known-unknown target samples. STA

utilises underlying domain similarity of target samples for progressive separation of

known-unknown target samples before domain adaptation. MTS employs a multi-

binary classifier with a domain adversarial network to separate unknown samples

and simultaneously adapt shared classes across both domains. MTS proposed mutual

learning between the separation network and the adaptation network based on the

distance between the features of both networks. STA and MTS are exposed to negative

transfers for relying only on a multi-binary classifier for known-unknown separation.

TIM trains a model jointly on the source domain and self-generated out-of-source-

distribution samples. This trained source model is then used for adapting known classes

and rejects unknown classes by aligning the unknown classes to the generated out-of-

source-distribution samples. This approach focuses on easing the overconfidence issue

[88] of the source classifier for separating known-unknown target samples. However,

TIM may initiate negative transfers by confining the ‘unknown’ domain similar to [81].

We aim to partially avoid the out-of-source-distribution sample prediction issue of the

separating module by employing roughly determined known-unknown target samples

besides the source samples to train the separating module.

Progressive Graph Learning (PGL) [89] approach depends on a shared classifier

to assign pseudo labels to the target samples for known-unknown separation. PGL is

prone to negative transfer due to its dependence only on the decision of a classifier.

Joint Partial Optimal Transport (JPOT) optimises a transport loss for separating known-

unknown samples, which depends on a distance-based optimisation. This optimisation

is not strong enough to preserve high-level semantic information [10] and may degrade

performance. Factorised Representations for Open-Set Domain Adaptation (FRODA)

[90] factorises low-dimensional representations of the data into shared and private parts
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for known-unknown separation. The low-dimensional representation may not capture

high-level semantic characteristics of images and eventually lead to misclassification.

This thesis focuses on the OSBP DA setting. We aim to reduce negative transfer in the

OSBP approach by integrating an adaptive weighting module instead of using a fixed

threshold hyper-parameter. The weighting module will generate instance-level weights

by assessing domain confidence. To further mitigate negative transfers and improve

open set DA, we aim not to blindly depend on source trained classifiers and exploit both

domain confidence and shared information between domains for generating instance-

level weights. To explore shared information, we will utilise mutual information and

pointwise mutual information score in the known-unknown separation module.

Mutual Information and Domain Adaptation Several information bottleneck prin-

ciples [91–93] are used for leveraging information as a basis to learn representations

using paired data in domain adaptation [94–96]. DA approaches using mutual informa-

tion I can be grouped into three main categories. The first category of approaches tends

to minimise I for DA tasks. Such as, for closed set DA, [95] minimises I between the

source and target samples. To perform self-supervised DA, [97] minimises I between the

features and domain labels to capture semantically shared information across different

domains, and [98] minimises I between the representations and the domain-belonging

indicators to measure the dependency. The second category of approaches maximises

I for DA tasks. For example, Shi and Sha [96] maximises I between the data and the

estimated label for closed set DA. For open set DA, [99] maximises I between the input

feature and the two output distributions. Apart from these groups, for closed set multi-

target DA, [100] maximises and minimises I between the domain labels and features.

The final category of approaches use I and/or pmi as a heuristic to accomplish DA tasks

in NLP, such as, [101] utilises I and pmi as a heuristic for part-of-speech tagging, [102]

uses pmi for sentiment classification, pmi is also utilised by [103, 104] for pivot selection

for sentiment classification and other NLP DA tasks.

Other types of open set DA settings include partial DA and universal DA.

Partial Domain Adaptation The setting of partial DA assumes a target domain that

has a fewer number of classes than the source domain. Cao et al. [105] use multiple
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domain discriminators along with class-level and instance-level weighting mechanism

to obtain class-wise adversarial distribution matching for solving partial DA. Cao et

al. [106] refine Selective Adversarial Network (SAN) [105] by using only one adversarial

network and integrating the class-level weight to the source classifier.

Universal Domain Adaptation Recent research introduces a universal DA setting

that imposes no previous knowledge on the source, and target domain label sets [107].

This is another valuable step towards addressing a practical adaptation scenario. The

authors proposed a Universal Adaptation Network (UAN), which combines domain

similarity and prediction uncertainty while generating sample weights for finding shared

label sets.

2.7 Zero-shot learning

4 5 Zero-shot learning (ZSL) setting assumes no available visual data in the target domain

and the label space of the target domain is disjoint with the source domain. However,

it allows to utilise available semantic attributes to learn visual classifier for the target

domain. Generalised zero-shot learning (GZSL) extends the setting and requires to learn

visual classifier for both source and target domain. ZSL approaches have two main

settings: inductive (no images of target classes are used during training) [108–110] and

transductive (unlabelled images of target classes are used during training) [111–113].

In this thesis, we follow the inductive GZSL setting i.e, we do not utilise images from

target classes during training. Inductive zero-shot learning approaches can broadly be

divided into two categories: embedding learning and generative approaches (Figure 2.4). In

this section, we provide a brief overview of existing embedding learning and generative

approaches.

4This section is partially adapted from: T. Shermin, S. W. Teng, F. Sohel, M. Murshed, and G. Lu,
“Integrated Generalised Zero-Shot Learning for Fine-Grained Classification,” Pattern Recognition, 2021.

5This section is partially adapted from: T. Shermin, S. W. Teng, F. Sohel, M. Murshed, and G. Lu,
“Bidirectional Mapping Coupled GAN for Generalised Zero-Shot Learning,” Revision submitted to IEEE
Transactions on Image Processing, 2021. [preprint: arXiv: 2012.15054]
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2.7.1 Embedding learning approaches

The embedding learning approaches learn to project either visual features to the se-

mantic space [108, 110, 114, 115] or semantics to the visual space [116–119] based on

seen/source classes for the ZSL task. A line of embedding learning approaches integrate

the concept of attention to better relate semantics with visual features and perform

improved classification [9, 120–126].

Visual to semantic embedding These approaches learn to transform the visual space

to semantic space and perform classification in the semantic space. To transfer informa-

tion from source to target domain, early approaches learn semantic attribute classifiers

independently [108, 110]. To improve these works, a few approaches consider all at-

tributes at a time and learn label embedding functions to increase the compatibilities

between visual and corresponding class semantics [114, 127]. Towards learning more ro-

bust transformations, [128] introduces network that combines attribute classifier learning

and semantic label embedding.

Semantic to visual embedding These approaches learn to transform the semantic

space to the visual feature space and perform classification in the visual space. Conse-

quently, they can handle hubness problem in ZSL [116, 117]. Changpinyo et al. [129] rely

on the idea that the semantic representations must have information of their correspond-

ing visual exemplars locations and convert the semantic space to visual features. To

compensate for the structural difference between the semantic and visual space, Long et

al. [130] propose a latent embedding space and hold the local structure simultaneously.

To learn the embedding during conversion, [131] utilises knowledge graphs and [119]

uses regularisers. Zhang et al. [118] introduce fusion between multiple semantic modali-

ties to assist the conversion of visual embedding from semantic embedding.

Mapping high dimensional visual features to low dimensional semantic space may

reduce the variance of features and create hubness problem [116–118]. Similarly, semantic

to visual mapping is not optimal as one class may have several corresponding visual

features [132].
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Attention based approaches Majority of the existing embedding learning approaches

use global visual features for ZSL and/or GZSL task [114,118,119,133–139]. On contrary,

to explore local fine-grained details, a few works have applied attention mechanisms.

Most of these approaches aim to improve fine-grained ZSL or GZSL tasks by discov-

ering relation between local visual details and semantics. However, some of them do

not explore proper guidance from attributes [9, 120–122] and others ignore local visual

details [123–125]. In this thesis, one of our sub-objective is to improve fine-grained GZSL

or ZSL.

A recent attention-based work [126] for fine-grained GZSL limits the feature explo-

ration space to the number of attributes to construct attribute embedding and requires

expensive attribute selection. As the ultimate goal is to learn a visual classifier, un-

like [126], we aim to construct a visual feature embedding, which retains necessary

global visual features and the feature regions linked to the attributes are assigned more

attention than other regions in Chapter 7.

A non-fine-grained attention-based GZSL approach, APN [140], integrates the ex-

ploration of both global and local details for GZSL tasks. The global module in APN is

separated from the local module and the global module extracts channel-wise global

information. This may create incompatibility in the network. The local module in

APN aims to construct attributes from the local visual regions for GZSL. In this thesis

(Chapter 7), we aim to preserve local region-wise global information. Consequently, for

building the feature embedding, we will be able to maintain better synchronisation of

global features with the attribute-weighted local region features, which we will discuss

in Chapter 7. In contrary to recent attention-based approaches [126, 140], we argue to

place two-level of dense attention mechanism to capture and highlight finer details for

fine-grained tasks.

2.7.2 Generative approach

Feature synthesising or generative approaches adversarially learn to synthesise visual

features from class semantics and reduce the ZSL to a standard supervised classification
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task [132, 141–146]. Generative approaches can be grouped into two more groups:

unidirectional mapping and bidirectional mapping approaches.

2.7.2.1 Unidirectional Mapping approaches

These approaches adversarially learns to synthesise visual features from class semantics

and reduce the GZSL to a standard supervised classification task [10, 132, 141–143, 143–

145, 147–149].

For generation of target class features, f-clsWGAN [141], CVAE [145, 150], SE-

GZSL [143] used conditional Generative Adversarial Networks (GANs) or Variational

Autoencoders (VAE). The feature synthesising approaches learn to generate global

visual features conditioned on the attribute descriptions and ignore local distinctive

details [141,142,144,145,151,152]. One of our sub-objective is to explore local information

related to the attributes for synthesising features for improved fine-grained zero-shot

recognition (discussed in Chapter 7).

The above-mentioned approaches rely on only one-directional semantic to visual fea-

tures mapping, which does not guarantee strong visual-semantic interactions. Therefore,

bidirectional mapping approaches are studied.

2.7.2.2 Bidirectional Mapping approaches

Bidirectional mapping approaches perform semantic-to-visual and visual-to-semantic

mapping to ensure strong interaction between the visual and semantic spaces. This bond

is vital for GZSL tasks.

The first effort in this field is DASCN [10], which simply employes two generative

adversarial networks to construct visual features from semantics and reconstruct back se-

mantics from the visual space for dual learning. GDAN [132] utilises a regressor instead

of another GAN to map generated features back to the semantic space. For bidirec-

tional optimisation, GDAN minimises the distance between the real and reconstructed

semantics. This optimisation is not strong enough to preserve high-level semantic in-

formation [10]. Unlike GDAN, in the proposed BMCoGAN (Chapter 8), in addition to
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distance-based optimisation, we show that adversarial supervision to reconstruct the

semantics using a coupled discriminators facilitate the network.

GZSL-AVSI [153] proposes to implement dual learning between an inference module

and a generative module. GZSL-AVSI uses a Wasserstein semantic alignment loss to

optimise the semantic space. On the other hand, our proposed BMCoGAN optimises

Wasserstein distance-based adversarial loss for adversarially supervising the source

domain’s visual feature space.

In addition to dual learning, RBGN [154] incorporates adversarial attack strategies

to train a more attentive discriminator. VAEs rely only on the lower bound of the log-

likelihood of observed data. To address this issue, cFLOW-ZSL [155] utilises generative

flow to estimate accurate likelihood during the bidirectional mapping using VAEs.

2.7.3 Reducing Bias Towards Source Domain

Since the target domain has no visual data, training only on the source data may induce

bias towards the source domain samples. To overcome bias towards source domain, ZSL

approaches have explored novelty detection and prediction calibration [126, 139]. For

transfer learning target classes, [113] relies on the reconstruction of source class semantic

vectors from target classes. In this thesis (Chapter 7), for loosely smoothing out target

class probabilities, we aim to measure class similarity by exploring shared information

between the class semantic vectors. This is more reliable as the class semantic vectors

only hold the confidence of attributes in a class.

IBZSL [156] uses the information bottleneck constraint and data uncertainty esti-

mation technique to design a bias passing mechanism to alleviate the noises and gap

between visual features and human-annotated semantics and hope to reduce source

domain bias. ISE-GAN [157] proposes an integrated-classifier to be trained with the

bidirectional learning scheme. The integrated-classifier is trained to reduce bias towards

source classes, and without the integrated-classifier, the SE-GAN [157] is inclined to-

wards the source classes. On the contrary, we will infuse the knowledge of smoothing

out bias towards source classes in the generator and the discriminator by designing a
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loss optimisation function in Chapter 8. And, unlike SE-GAN [157], our generator can

preserve source-target domain discrimination in the visual features.

2.8 Summary

In this chapter, we have reviewed the background of probability and information theory,

machine learning, deep learning, and transfer learning settings and approaches relevant

to this thesis. In the following six chapters, we will discuss our proposed models in

addressing limitations of existing works and their performance evaluation in detail.

In the next chapter, we will discuss our first contribution, i.e, to improve parameter

fine-tuning using the category-specific CNN features.



Chapter 3

Improving Parameter Fine-tuning
Using the Classification Layer of
CNN

1In the previous chapter, we provided an overview of the related works to this thesis.

In this chapter, we present our first contribution. As discussed in Section 2.5.1, it is

widely believed that the classification layer of a CNN trained on a diverse dataset, which

holds category-specific features may not contribute to transfer learning. However, in

this chapter, we present our systematic study to show that the pre-trained classification

layer features has transferablity and can assist in improving parameter fine-tuning.

CNNs [1–4] need a huge amount of labelled training data to perform optimally.

Luckily, training CNNs on a large and diverse dataset (e.g., ImageNet) has been shown

to enable the knowledge transfer across a wide range of tasks [6]. Parameter fine tuning

is a transfer learning approach whereby learned parameters from pre-trained source

network are transferred to the target network followed by fine-tuning. Prior research

has shown that this approach is capable of improving task performance. However,

the impact of the ImageNet pre-trained classification layer in parameter fine-tuning is

mostly unexplored in the literature. In this chapter, we present our proposed fine-tuning

approach with the pre-trained classification layer. We employ layer-wise fine-tuning

to determine which layers should be frozen for optimal performance. Our empirical

1Chapter 3 is adapted from: T. Shermin, S. W. Teng, M. Murshed, G. Lu, F. Sohel, and M. Paul,
“Enhanced Transfer Learning with ImageNet Trained Classification Layer,” in Proceedings of the Pacific-
Rim Symposium on Image and Video Technology (PSIVT), 2019.
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analysis demonstrates that proposed fine-tuning with the pre-trained classification

layer performs better than traditional fine-tuning. This finding indicates that the pre-

trained classification layer holds more global information than believed earlier. Thus,

we hypothesise that the presence of this layer is crucial for growing network depth

to adapt better to a new task. Our study manifests that careful normalisation and

scaling are essential for creating harmony between the pre-trained and new layers for

target domain adaptation. We evaluate the proposed depth augmented networks for

fine-tuning on several challenging benchmark datasets and show that they can achieve

higher classification accuracy than contemporary transfer learning approaches.

The main contributions of this chapter are as follows.

• We propose to include the pre-trained classification layer in fine-tuning and find

that the transfer learning performance with the pre-trained classification layer is

higher than traditional fine-tuning approach.

• We investigate which layers should be frozen during fine-tuning for optimal

performance.

• For developmental transfer learning, we propose to augment new layers beyond

the pre-trained classification layer to adapt better to target task. We also investigate

the best fit normalisation scheme for our proposed depth augmented networks.

3.1 Problem Setting

The inductive transfer learning setting constitutes a source domain Ds = (xsi , y
s
i )
ns
i=1 of

ns labelled instances associated with |Cs| classes, which are drawn from distribution ps

and a target domain Dt = (xtj , y
t
j)
nt
j=1

of nt labelled instances drawn from distribution pt.

The task is to learn a classifier for Ds first and then transfer the knowledge to learn Dt.

Note that this setting is also applicable for the contribution discussed in Chapter 4.
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3.2 Background and Motivations

Parameter fine-tuning is one of the best performing transfer learning approaches used

by the deep learning community. Parameter fine-tuning assists transferring learned

knowledge to accomplish the target task with limited labelled data and increase the

performance of the target model over random initialisation [5]. The sequence of tradi-

tional parameter fine-tuning is to replace the pre-trained classification layer of a CNN

trained using a large and diverse dataset (e.g., ImageNet) with a randomly initialised

new classification layer as per the target task. Then the new model undergoes forward-

backward propagation to tune gradient descent on the target set. This transfer learning

approach is exploited with success by a number of contemporary transfer learning

research [18, 25, 26, 158].

Transfer learning works well when the learned features are generic, which refers

to having features suitable to both base and target datasets. Deep neural networks

incline to learn generic features in the first layer that resemble Gabor filters and colour

blobs irrespective of datasets and training objectives [1, 159, 160]. Several works in

various computer vision tasks have reported significant results by transferring inner

layer features of deep networks [15,18, 161]. As the deep network architecture moves

toward Fully-connected (FC) layers, the specificity increases while the generic nature

of features decreases [5], i.e., the intuition is that they are highly specific to pre-trained

classes and might not generalise well in transferring knowledge.

Therefore, the classification layer is not included in parameter fine-tuning. However,

our research manifests that even the classification layer of CNNs trained on ImageNet

has plenty of overlapping or neighbouring high-level features with the target sets

containing images of natural and artificial objects, since ImageNet consists of a massive

amount of labelled images of natural and human-made objects. Figure 3.1 shows the

visualisation of the relative distribution of extracted features from the classification

layer of pre-trained AlexNet for widely used eight transfer learning target datasets

(Section 4.1) and ImageNet (source dataset). The high intermingling or neighbouring

between source and target feature distribution manifests that the classification layer of
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ImageNet pre-trained CNN may well assist the target network to adapt to the target

domain via parameter fine-tuning. Also, by jointly adapting pre-trained classification

and other representation layers for the target task, we could essentially bridge the

domain shift underlying both the marginal distribution and the conditional distribution,

which is pivotal for enhancing transfer learning [61]. Thus, we believe the pre-trained

classification layer may be important for transfer learning and propose to include this

layer in the fine-tuning procedure. In this work, we evaluate the fine-tuning approaches

with our layer-wise optimal fine-tuning scheme to observe fine-tuning from which layer

produces optimal performance.

Figure 3.1: The t-SNE visualisation of extracted features from the pre-trained classification layer.
Dark pink colour represents ImageNet features, and other colours represent features from eight
different target sets.

A significant number of works have exploited incremental and lifelong learning

[36–38]. For developmental transfer learning, in consistent with the traditional fine-

tuning sequence, Wang et al. [40] and Oquab et al. [25] have discarded the pre-trained

classification layer and appended new layers after the penultimate FC (FC) layer of

AlexNet. However, inspired by our empirical analysis of the transferability of the pre-

trained classification layer, we argue that the presence of the pre-trained classification

layer is vital to increasing the network depth for transfer learning. Thus, we propose

to consider this layer as the last FC layer and to append new layers beyond it for

developmental transfer learning. During fine-tuning, our proposed depth augmented
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networks might struggle from internal covariate shift of activations across pre-trained

and new layers. Thus, to establish harmony between the learning of new and pre-trained

layers, and to reduce sensitivity to random initialisation, we introduce a normalisation

scheme to the network. We experiment with L2-norm normalisation [40] and batch

normalisation [162] to search for the best performing normalisation scheme for proposed

depth augmented networks.

3.3 Proposed Fine-tuning

We introduce the architectural and notational details of the proposed and traditional

fine-tuning, the proposed depth augmented networks, and the optimal fine-tuning

scheme in this section.

Let us assume χN be a CNN pre-trained by using a large dataset (e.g., ImageNet)

with N layers including the classification layer, L1, ..., LN .

3.3.1 Traditional and proposed fine-tuning

Let χκN denote the sub-network comprising the first κ layers of χN , 1 ≤ κ < N . Let

[χκN +ψ]ν ≡ [χκN ]ψν denote a transfer learning network (TLN) from the first κ, 1 ≤ κ < N ,

layers of the pre-trained CNN χN , with parameter fine-tuning from layer Lν onwards,

1 ≤ ν ≤ κ, where ψ is a classification module for new classes, which is a FC classification

layer C followed by a Softmax layer. Figure. 3.2a illustrates the block diagram of a

TLN ([χN−1
N ]ψν ) which follows traditional fine-tuning sequence where the pre-trained

classification layer LN is discarded before fine-tuning. On the contrary, we include the

pre-trained classification layer LN in the proposed fine-tuning approach, as shown in

Figure 3.2b. Our proposed fine-tuning TLN which comprises of all the layers of χN , is

denoted as [χN ]ψν , with parameter fine-tuning from layer Lν onwards.

3.3.2 Proposed Depth Augmented Networks for Fine-tuning

We increase the depth capacity of the network by constructing new FC layers consisting

of S ∈ {512, 1024, 2048, 4096} neurons on top of the classification layer LN as shown



§3.3 Proposed Fine-tuning 48

Figure 3.2: Block diagram of the traditional fine-tuning, proposed fine-tuning and depth aug-
mentation.

in Figure 3.2c single-layer depth augmented TLN [χN ]1+ψ
ν , and Figure 3.2d two-layer

depth augmented TLN [χN ]2+ψ
ν . Let [χN + LN+1 + ...+ LN+τ + ψ]ν ≡ [χN ]τ+ψ

ν denote

a depth augmented TLN from the pre-trained CNN χN augmented with τ , τ ≥ 0,

additional FC layers LN+1, ..., LN+τ , with parameter fine-tuning from layer Lν onwards,

1 ≤ ν ≤ N + τ , where ψ is the new classification module, which has a FC classification

layer C with a Softmax layer. Appended layers are treated as adaptation layers to

compensate for the different image statistics of the source and target sets. Moreover,

they allow for suitable compositions of pre-existing parameters and avoid unwanted

modifications to the parameters of pre-trained layers for their adaptation to the new

task. To maintain learning pace, we propose to include a normalisation scheme in

proposed depth augmented networks. We explore both L2-norm normalisation and
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batch normalisation. For the first normalisation approach, consistent with [40], we

apply L2-norm normalisation to the input activations of new layers. In case of batch

normalisation, we standardise the mean and variance of the input activations of new

layers for stabilising the learning process. Finally, we employ the learnable scaling

parameter to scale the normalised activations.

3.3.3 Optimal Fine-tuning Scheme

We evaluate all the approaches discussed above using a two-step layer-wise optimal

fine-tuning scheme. In the first step, we initialise the transferred layers with pre-trained

parameters and new layers randomly. In the second step, we start fine-tuning from the

last transferred layer and freeze other layers. These two steps are repeated K times

with different setups (K is the number of transferred layers), i.e., each time we unfreeze

one more penultimate layer. For instance, in the second setup, we start fine-tuning

from the penultimate transferred layer onwards. It is worth mentioning that the fine-

tuning setups are mutually exclusive and parameters of all the different setups are

initialised according to Step 1. We record transfer learning performance for each of these

fine-tuning setups to determine which setup yields optimal performance.

3.4 Performance Study and Analysis

This section describes the datasets used in our experiments, the implementation details,

and our evaluation outcomes for proposed approaches. In particular, we investigate the

optimal fine-tuning setup for the proposed fine-tuning and depth augmented networks,

best fit normalisation scheme, average performance gain of the proposed approaches,

visualise learned features, and optimal learning rate for the proposed approaches.

3.4.1 Datasets and Implementation Details

We assembled eight different fine-grained and coarse target datasets, as stated in Table 3.1.

Fine-grained datasets used in this work are 102 Flowers [163] with 102 categories, CUB
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Table 3.1: Selected target datasets.

Type Source Images Categories

Fine grained

102 Flowers 8189 102
CUB 200-2011 11788 200
Stanford Dogs 20580 120

Oxford Pets 7400 37

Coarse

Caltech-256 30607 256
Pascal VOC-07 9963 20
MIT-67 scenes 15620 67

SUN-397 scenes 108754 397

200-2011 [164] with 200 types of birds, Stanford Dogs [165] with 120 classes and Oxford

Pets [166] with 37 classes. The Coarse or mixed semantic datasets are Caltech-256 [167]

with 256 categories, Pascal VOC-07 [168] having 20 different classes, MIT-67 scenes [169]

with 67 classes of indoor scenes and SUN-397 scenes [170] with 397 categories. Note

that we have used only ImageNet as the source dataset for its diversity. We have used

AlexNet [1] and VGG16 [2] pre-trained on ImageNet as source networks. Networks with

two different depths, i.e., AlexNet, and VGG16 are used to observe whether proposed

parameter fine-tuning has consistent performance across different architectures. For pre-

processing the training dataset, input images are first randomly cropped, horizontally

flipped, and then normalised. A split of 75% of target dataset is used for training, and

the remaining 25% for testing. We execute 2000 iterations with a batch size of 100 and

momentum 0.9 for optimal fine-tuning. A global learning rate of 0.005 is used with a

piece-wise scheduler which lowers down the learning rate by 10 times less than the

previous one at every 10 epochs. We have used 10 times higher learning rate in the

newly appended layers of proposed depth augmented networks.

3.4.2 Evaluation and Analysis of Proposed Fine-tuning

To investigate the impact of pre-trained classification layer in parameter fine-tuning and

to compare the performance of proposed fine-tuning with traditional fine-tuning, we

utilise our optimal fine-tuning scheme (Section 3.3.3). Figure 3.3 presents the results
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Figure 3.3: Performance comparison between proposed and traditional fine-tuning.

of two coarse (Caltech-256 and Pascal VOC-07) and two fine-grained datasets (CUB

200-2011, 102 Flowers). The x-axis in Figure 3.3a represents 8 layers of the AlexNet as

1, 2, ..., N − 2, N − 1, N and shows the layer from which fine-tuning proceeds while

earlier layers are frozen (e.g., N − 2 denotes fine-tuning of layer LN−2 to LN and other

layers are frozen). The x-axis in Figure 3.3b shows 16 layers (5 convolution blocks and

3 FC layers) of the VGG16 as 1, 2, ..., N − 2, N − 1, N . For both networks, proposed

fine-tuning (dashed lines) significantly outperforms traditional fine-tuning (dotted lines)

for all datasets. This finding substantiates that fine-tuning pre-trained classification

layer along with other transferred layers assist better transfer learning. Note that other

datasets also perform similarly.

3.4.3 Layers to be Frozen for Optimal Performance

As shown in Figures 3.3a and 3.3b, the proposed and traditional fine-tuning performance

increases when we continue to unfreeze and fine-tune more pre-trained layers according

to different fine-tuning setups (Section 3.3.3). However, we observe a significant drop

in performance when we tune initial conv. layers, more specifically, conv. layer 1 and 2

for AlexNet, and convolution block 1 and 2 for VGG16. The intuition is that fine-tuning

these generic layers might introduce noisy or unwanted modifications of parameters.
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That is, updating parameters would force the network to learn highly generic features of

target set which are already learned from source set. The fine-tuning procedure has far

fewer data and iterations than training from scratch, which might not let a vast number

of pre-trained parameters of initial conv. layers find another such equilibrium to interact

with next conv. layer in the same pace. Figure 3.3a portrays that optimal fine-tuning from

the third convolution layer onwards of AlexNet yields the highest accuracy. Figure 3.3b

manifests that VGG16 holds a similar trend for the third convolution block, which gives

another perception that the first two convolution blocks of VGG16 may contain highly

generic or low-level features.

3.4.4 Performance Analysis of Proposed Depth Augmented Networks

We append a new FC layer on top of the pre-trained classification layer, employ nor-

malisation scheme to the augmented network, and perform layer-wise optimal fine-

tuning. We discuss details about our normalisation scheme later in this section. The

Figure 3.4: Performance comparison between fine-tuning with classification layer and single-
layer augmentation.

accuracy graphs in Figure 3.4 present the performance of proposed fine-tuning with

the pre-trained classification layer (dashed lines), and proposed single-layer depth
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augmented network (solid lines) for CUB 200-2011, 102 Flowers, Caltech-256 and Pas-

cal VOC-07 datasets. The x-axis in Figure 3.4a represents 8 layers of the AlexNet as

1, 2, ..., N − 2, N − 1, N and shows the layer from which fine-tuning proceeds while

earlier layers are frozen (e.g., N − 2 denotes fine-tuning of layer LN−2 to LN and other

layers are frozen). The x-axis in Figure 3.4b shows 16 layers (5 convolution blocks and

3 FC layers) of the VGG16 as 1, 2, ..., N − 2, N − 1, N . The results shown in solid lines

of Figures 3.4a and 3.4b present our best performing augmented networks with 2048

neurons and signify that parameter fine-tuning with increased network capacity paves

the way to learn better. Our proposed single-layer depth augmented network performes

better than fine-tuning with the pre-trained classification layer. This observation verifies

the effectiveness of increasing model capacity beyond the pre-trained classification layer

when adapting it to both fine-grained and coarse classification task. Considering the

best fine-tuning performance, CUB and 102 Flowers seem to achieve more gain than the

other two.

Table 3.2: Performance analysis of proposed depth augmented networks.

Network Dataset S [χN ]
(1+ψ)
N [χN ]

(1+ψ)
N−1 [χN ]

(1+ψ)
N−2 [χN ]

(1+ψ)
N−5 All

AlexNet CUB 200-2011

512 65.2 66.5 66.9 67.8 67.2
1024 66.2 67.5 68.9 69.9 68.4
2048 66.3 68.7 69.0 70.9 69.2
4096 66.7 68.1 67.1 68.1 66.8

Caltech-256

512 75.5 78.2 78.6 79.5 79.1
1024 75.9 78.3 78.9 80.9 80.3
2048 75.2 77.9 78.5 81.9 81.1
4096 75.0 78.1 78.3 81.0 80.9

VGG16 CUB 200-2011

512 76.4 76.8 77.1 77.9 77.6
1024 76.8 77.1 77.5 77.6 77.9
2048 76.7 77.6 77.9 78.1 77.1
4096 75.9 77.7 77.0 77.5 77.4

Caltech-256

512 85.5 86.1 87.7 87.9 87.1
1024 85.9 86.3 86.9 87.8 87.5
2048 85.5 87.8 88.0 88.4 88.1
4096 85.3 88.1 89.5 88.5 88.1

A detailed analysis of our investigation with single-layer depth augmented networks

having different combinations of neurons, such as 512, 1024, 2048, and 4096, is shown in

Table 3.2 where, S denotes the number of neurons in newly appended FC layer LN+1.
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Our empirical results indicate that the increase in performance is proportional to the

increase in the magnitude of the new layer; however, for 4096 neurons, it diminishes

marginally. In the proposed depth augmentation approach, the bridge between new

and pre-trained layers is the layer consisting only 1000 neurons; it might suffer from

an overabundance of parameters while propagating information through to four times

larger neural layer. Single-layer depth augmentation with 2048 neurons and fine-tuning

from layer N − 5 (i.e., third convolution layer/ block) yields best performance for almost

all combinations. It is worth mentioning that our augmented networks also perform

similarly for other datasets.

Table 3.3: Performance comparison of proposed single-layer augmentation with contemporary
approaches (AlexNet).

Approach CUB 200-2011 102 Flowers Stanford Dogs Oxford Pets Caltech-256 VOC07 MIT-67 SUN-397
Normal_FT_CNN 62.3 88.9 63.8 80.0 72.1 77.9 61.2 53.9

CNN-SVM [6] 53.3 74.7 66.8 79.6 72.3 75.3 58.4 55.9
CNNAug-SVM [6] 61.8 86.8 66.6 79.9 74.8 76.8 69.0 56.2

LSVM [48] 61.4 87.1 65.0 77.6 69.7 75.2 66.7 55.8
MsML+ [48] 66.6 89.4 69.5 81.1 68.4 74.8 59.8 52.1

CombinedAlexNet [171] 63.3 83.3 64.5 76.9 69.2 77.1 58.8 54.2
WA-CNN [40] 69.0 92.8 66.9 82.4 79.5 83.4 66.3 58.3

Grow-conv [41] 66.1 91.4 67.2 82.1 78.3 77.0 70.1 50.2
Proposed network 70.9 95.9 68.7 84.5 81.9 87.9 69.9 62.6

Table 3.4: Performance comparison of proposed single-layer augmentation with contemporary
approaches (VGG16).

Approach CUB 200-2011 102 Flowers Stanford Dogs Oxford Pets Caltech-256 VOC07 MIT-67 SUN-397
Normal_FT_CNN 70.5 85.6 68.2 85.2 83.9 86.5 66.5 61.8

CNN-SVM [6] 66.5 81.5 66.7 86.4 79.9 82.4 60.4 56.6
Muldip-Net [35] 71.5 81.9 65.0 86.1 80.9 87.5 68.9 63.5
Grow-conv [41] 72.5 88.7 75.1 89.1 86.1 89.1 72.1 67.5
DA-CNN [40] 76.1 93.3 72.8 88.4 84.9 91.4 73.1 67.2

Proposed network 78.1 97.1 76.1 90.6 88.5 94.4 76.8 69.8

Comparison with Contemporary Transfer Learning Works To further prove the

robustness of proposed single-layer depth augmented networks, we summarise the

performance comparison with different existing transfer learning approaches from

literature in Tables 3.3 and 3.4. The best outcomes among various combinations of

our single-layer depth augmented AlexNet and VGG16 evaluated by our optimal fine-
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tuning scheme are shown. For other approaches, the performance gap between our

implementation and that reported by [6], [48], [171], [41], [40], [35] is due to different

target sets, train-test splits, network architectures, and iterations. Note that we have

used similar hyper-parameters, iterations, and train-test splits for all approaches in

Tables 3.3 and 3.4 to maintain a fair comparison. Consistent superior outcomes validate

that the presence of the pre-trained classification layer in increasing model capacity for

parameter fine-tuning is effective for adjusting the network to a wide range of target

tasks.

Table 3.5: Performance comparison between single-layer and multiple-layer augmentation.

Network Dataset Configuration Accuracy (%) Network Dataset Configuration Accuracy (%)

AlexNet CUB 200-2011
[χN ]2+ψ

N−5 72.1
VGG16 CUB 200-2011

[χN ]2+ψ
N−5 78.9

[χN ]1+ψ
N−5 70.9 [χN ]1+ψ

N−5 78.1

102 Flowers
[χN ]2+ψ

N−5 97.2
102 Flowers

[χN ]2+ψ
N−5 98.2

[χN ]1+ψ
N−5 95.9 [χN ]1+ψ

N−5 97.1

Caltech-256
[χN ]2+ψ

N−5 82.8
Caltech-256

[χN ]2+ψ
N−5 89.4

[χN ]1+ψ
N−5 81.9 [χN ]1+ψ

N−5 88.5

VOC-07
[χN ]2+ψ

N−5 88.8
VOC-07

[χN ]2+ψ
N−5 95.9

[χN ]1+ψ
N−5 87.9 [χN ]1+ψ

N−5 94.4

Comparison of Single and Multiple-layer Depth Augmentation Augmenting two

new layers beyond pre-trained classification layer is observed to be the cut-off point as

performance starts to diminish after that. Table 3.5 shows the results of the best combina-

tion (i.e., LN+1=2048 and LN+2=1024) of two-layer and single-layer depth augmentation.

Appending two new layers after the pre-trained classification layer facilitate network

marginally over single-layer augmentation by increasing representational capacity. It is

proven once again that the pre-trained classification layer holds prominent high-level

features which are capable of propagating learned knowledge to multiple newly ap-

pended layers. This also manifests increasing network incrementally by augmenting

depth is a stable parameterisation for improving performance.
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Table 3.6: Performance comparison between different normalisation scheme.

Network Dataset Norm
Accuracy (%)

[χN ]
(1+ψ)
N [χN ]

(1+ψ)
N−1 [χN ]

(1+ψ)
N−2 [χN ]

(1+ψ)
N−5 All

AlexNet CUB 200-2011
Standardisation 66.2 67.5 68.9 69.9 68.4

L2 62.1 64.2 64.3 64.5 63.5

VGG16 CUB 200-2011
Standardisation 76.7 77.6 77.9 78.1 78.5

L2 71.5 72.1 73.1 73.2 72.7

3.4.5 Best Fit Normalisation Scheme

After exploring two types of normalisation, we observe that standardisation [162] as-

sisted better learning for proposed single and multiple-layer depth augmented networks.

We represent the results of diagnostic experiments with S = 1024 and standardisation in

Table 3.6. Results of the single-layer depth augmented AlexNet trained on CUB 200-2011

dataset show that without normalisation followed by scaling scheme, the improvement

of our depth augmented network is around 2% compared to traditional fine-tuning

for L2-norm normalisation, and more than 6% otherwise. A similar significant boost

in performance is also noticed in other datasets, which are not stated in this paper

for limited space. Increase in task performance states that standardisation reduces the

chances of the pre-trained activations to dominate the randomly initialised ones.

3.4.6 Average Performance Gain

Tables 3.7 and 3.8 show the performance gain of proposed fine-tuning [χN ]ψN−5 from

traditional fine-tuning [χN−1
N ]ψN−5, single-layer depth augmented networks [χN ]1+ψ

N−5 from

proposed fine-tuning, and double-layer [χN ]2+ψ
N−5 from single-layer depth augmented

networks for fine-grained and coarse datasets, respectively, where parameter fine-tuning

proceeds from layer LN−5. On average both coarse and fine-grained target datasets

leverage the presence of the pre-trained classification layer in proposed fine-tuning

and depth augmentation. However, coarse datasets manifest slightly more significant

performance gain than fine-grained ones. This suggests that this layer possesses general

information to transfer to a wide range of datasets. Results show that both the networks
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Table 3.7: Performance gain for fine-grained datasets.

CUB 200-2011 102 Flowers Stan. Dogs Oxf. Pets Avg.
AlexNet VGG16 AlexNet VGG16 AlexNet VGG16 AlexNet VGG16 AlexNet VGG16

[χN ]ψN−5 3.3 2.8 3.1 1.6 1.4 1.6 4.2 2.0 3.0 2.0
[χN ]1+ψ

N−5 4.7 2.5 2.0 2.9 1.8 3.7 2.1 3.7 2.7 3.2
[χN ]2+ψ

N−5 1.2 0.8 1.3 1.1 0.4 1.2 1.0 0.9 1.0 1.0

Table 3.8: Performance gain for coarse datasets.

Caltech-256 VOC-07 MIT-67 SUN-397 Avg.
AlexNet VGG16 AlexNet VGG16 AlexNet VGG16 AlexNet VGG16 AlexNet VGG16

[χN ]ψN−5 4.0 2.7 3.4 4.6 5.1 6.5 6.7 4.5 4.8 4.6
[χN ]1+ψ

N−5 2.8 2.7 3.4 2.3 3.6 3.8 2.0 3.5 3.0 3.1
[χN ]2+ψ

N−5 0.9 0.9 0.9 1.5 1.4 1.1 1.7 1.3 1.2 1.2

gain significant improvement for single-layer augmentation while for two-layer, the

increase is marginal. Moreover, less deep backbone network seems to be more benefited

from depth augmentation.

3.4.7 Feature Visualisation

We plot t-SNE [172] based on the semantic categories of CUB 200-2011 dataset, to view

the interrelation of the learned features. Figure 3.5 refers to the feature spaces of the

new classification layer of different optimally fine-tuned networks. Figure 3.5a shows

traditional fine-tuning improves a little bit of semantic separation of the pre-trained

network while Figure 3.5b demonstrates significantly comprehensible semantic clusters

because of the presence of pre-trained classification layer. The feature spaces of our depth

augmented networks shown in Figures 3.5c and 3.5d exhibit even better semantic clusters

which indicate that the proposed modules catch prominent features for classification as

a result of increasing the network capacity beyond the pre-trained classification layer

and that is compatible with their improved target task performance.
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Figure 3.5: t-SNE visualisations of learned features.
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Figure 3.6: Performance of proposed depth augmented networks for various learning rates.

3.4.8 Analysing Optimal Learning Rate

Wang et al. [40] reported that they increased the learning rate of the new layer by 10

times more the than global rate. They provide no further reasoning behind choosing

this value. To investigate their finding in a broader range, we applied a learning rate

multiplier to the new layers, such as, NewLR = TLR ×GlobalLR, here GlobalLR = 0.005,

and TLR ∈ {5, 10, 15, ..., 40}. By varying the learning rate multiplier for new layers in the

range of TLR, we can measure the effect of increasing learning rate in task performance.

Our experiments tend to relate the increment of learning rate to the size of the appended

layer, as shown in Figure 3.6. More precisely, appending 512, 1024, 2048 and 4096
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neurons tend to perform better when their learning rates are increased in the range

of (5-10), (10-20), (15-25) and (25-40) times the global rate respectively. That can be

attributed to the fact that the more we introduce new neurons to the network, the greater

learn rate it requires to keep pace with the pre-existing ones. We also observe that

fine-tuning of the target sets which have more similar categories with the source set

desire for comparatively less increment of learning rate in new layers than distant target

sets. Therefore, we claim there is no optimal setup for increasing the learning rate for

new layers; rather, it depends on the target set and magnitude of the appended layer.

3.5 Summary

In this chapter, we have demonstrated that the pre-trained classification layer, which

captures high-level features would assist parameter fine-tuning approach and propose

a novel fine-tuning approach with it. We have empirically established that proposed

fine-tuning approach outperforms traditional fine-tuning for all selected target datasets.

Also, we have noticed on an average, the coarse target datasets with ImageNet achieve

more performance gain than fine-grained ones. For evaluating traditional and proposed

fine-tuning approaches, we have introduced a fine-tuning scheme. Our fine-tuning

scheme manifests that freezing initial convolutional layers yield optimal fine-tuning

performance for all target datasets. Being inspired by developmental transfer learning

and impact of the pre-trained classification layer in fine-tuning, we have augmented new

layers beyond the pre-trained classification layer for a better adaptation of the target

task. Assessment of the proposed depth augmented networks on eight different datasets

have shown that they outperform existing transfer learning approaches.

This chapter has presented our first contribution. It has also provided practitioners

strong justification to utilise the ImageNet pre-trained classification layer for fine-tuning

and depth augmentation beyond it for adapting the network to target tasks.

In the following chapter, we will investigate for suitable factors that encourage

optimal performance in transfer learning using the classification layer features i.e, feature

representation transfer.



Chapter 4

Analysing Suitable Factors for
Feature Representation Transfer
Approach

1 In previous chapter, we show that parameter fine-tuning that utilises the ImageNet

trained classification layer features can boost the performance of deep networks to learn

to classify new datasets. However, the area of studying the impact of this layer in feature

representation transfer and the impact of different factors such as optimal classifier,

correlation between the source and the target datasets in this type of transfer learning

is largely unexplored. Therefore, as our second contribution, this chapter presents an

in-depth study of the influence of various target datasets (fine-grained and coarse) based

on their similarity to the source dataset. We also explore the optimal machine learning

classifier for this type of transfer learning. The results show that multi-layer perceptron

performs better than SVMs. We observe that for coarse target datasets the source-target

similarity has beneficial influence. For fine-grained datasets, the influence of inter-class

similarity surpasses the source-target similarity. Finally, we utilise a feature selection

algorithm based on conditional mutual information to verify our findings and prove the

importance of the ImageNet trained classification layer features in transfer learning.

1Chapter 4 is adapted from: T. Shermin, S. W. Teng, M. Murshed, G. Lu, and F. Sohel, “Suitable
Conditions for Transfer Learning with the ImageNet Trained Classification Layer Features,” 2021 (to be
submitted as a journal article).

60



§4.1 Overview 61

4.1 Overview

In this chapter, we study the feature representation transfer approach with the classifica-

tion layer features and the suitable factors to achieve optimal performance in transfer

learning using the classification layer features. First, we explore the best performing

machine learning classifier for feature representation transfer approach using the classifi-

cation layer features. Second, we investigate the effect of correlation between the source

(ImageNet), and the different types of target datasets (fine-grained and coarse). Finally,

to verify our findings, we study the significance of the pre-trained classification layer

features in transfer learning using a feature selection algorithm based on conditional

mutual information.

To systematically accomplish our tasks of interest, we use the extracted features from

the classification layer of ImageNet pre-trained deep networks and learn target datasets

by training different machine learning algorithms. We also correlate the source and

the target datasets based on the similarity between the source and target datasets by

utilising a distance measure. We analyse the influence of relation between source and

target datasets in transfer learning with the pre-trained classification layer features. In

summary, we systematically investigate the following research questions (RQs).

RQ1: What is the optimal machine learning classifier for classification layer feature

representation transfer approach?

RQ2: Does the similarity (based on distance) of target classes with the source classes

influence performance?

RQ3: Does fine-grained (similar species) target classes influence the performance?

RQ4: How much the performance is influenced when the target dataset has coarse

(mixed species) categories?

RQ5: Is the classification performance influenced by the number of training samples

and the number of target classes?

For comparison, we explore traditional transfer learning approach that utilises the

features from the layer before the pre-trained classification layer. The summary of the

findings of this chapter are as follows:
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We observe that non-linear machine learning classifiers perform better than linear

ones. Among different classifiers, neural networks yield optimal performance. The

proposed approach outperforms the traditional approach (using SVMs) for all cases.

However, for neural networks, the proposed approach outperforms the traditional

approach for the target datasets that possess greater source-target similarity to the source

dataset, i.e., similarity between the target dataset and the source dataset (ImageNet).

For coarse-grained target datasets, transfer learning with the ImageNet trained

classification layer features is influenced more by the source-target dataset similarity

than the inter-target-class similarity. On the other hand, for fine-grained datasets, the

inter-target-class similarity (among the classes of the target dataset) tend to have more

impact than source-target similarity on the performance of this type of transfer learning.

We observe that the classification performance of the transfer learning with the pre-

trained classification layer is positively influenced by the increasing number of samples

per class regardless of similarity/dissimilarity.

4.2 Methodology

In this section, we formally discuss the transfer learning approaches, the procedure of

determining similarity based on distance between datasets and our adopted feature

selection algorithm for verifying the contribution of the classification layer features in

transfer learning.

4.2.1 Transfer Learning Approaches

Figure 4.1a presents the block diagram of a pre-trained AlexNet, which has three FC

layers and a softmax layer. Feature representation transfer approach extracts features

from the pre-trained layers of AlexNet and uses them to learn new classifier. More

specifically, the layer after the expected layer is deducted from the CNN and then

the features are extracted from the expected layer. For example, in traditional way

of feature representation transfer, the last FC (classification) and the softmax layers
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are deducted and the features are extracted from the second FC layer as shown in

Figure 4.1b. However, we propose to deduct only the softmax layer and extract features

from the third FC layer for transfer learning. We formally describe the traditional and

our proposed approach below.

Figure 4.1: Block diagram of feature representation transfer approach.

Traditional Transfer Learning Features from the penultimate FC layer (4096 dimen-

sions) of the ImageNet trained network is extracted, and then the extracted features are

utilised for separately training new machine learning classifiers such as SVMs, neural

networks, etc (Figure 4.1b) [6, 25].

Transfer Learning with the Pre-trained Classification Layer In this approach, first,

we extract the features from the classification layer (1000 dimension) of ImageNet trained

deep networks. Then, the extracted features are used for training machine learning

classifiers (e.g., neural networks and SVMs) for classifying target datasets separately

(Figure 4.1c).

We will study the optimal classifier for our proposed approach and the impact of co-

relation between source and target datasets on the proposed approach. For comparison,

we will utilise the traditional approach. We will also use both the approaches to show

that the features from the classification layers are selected more for classification by

using a feature selection algorithm (Section 4.2.3). This will verify the robustness of our

approach.
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4.2.2 Dataset Similarity based on Nearest Neighbours

First, we construct a feature representation (embedding) for representing each sample.

The constructed feature representation for a sample is expected to hold low to high-

level characteristics of the CNN features. This will ensure the comparison of similarity

between datasets in all level of feature attributes. Then, we determine the similarity

between the feature embedding of the target datasets to the feature embedding of source

(ImageNet) dataset based on the nearest neighbours algorithm.

Deep CNN kernels are spatial filters which extract low, middle, and high-level

features at different layers [5]. For example, a subset of the first convolutional layer’s

filter of ImageNet trained AlexNet exhibit oriented stripes resembling Gabor filters [1].

Therefore, such filters trained on the large-scale and diverse dataset, i.e. ImageNet, can

be used for representing generic low, mid, and high-level image characteristics [29].

To construct the feature embedding, for each image of the source and target datasets,

an average spatial pooling is performed over the output of each convolutional filter of

pre-trained AlexNet for obtaining a single value per filter [173]. Each of the extracted

features per convolutional filter will determine the availability of a visual pattern in

the image on an average, irrespective of its location and help to reduce dimension.

For the three FC layers in AlexNet, we take into account the outputs without pooling.

As we wish to represent low, mid, and high-level features of an image in the feature

embedding. We concatenate all spatially pooled convolutional and FC output features

for constructing the final feature embedding [173]. For each feature embedding of the

target dataset, we search for its K nearest neighbours in the source domain feature

embedding and calculate the average Euclidean distance, where, K is equal to 100. Note

that the value of K is determined empirically. We determine the similarity of the target

datasets based-on the majority (above 80%) of samples located to the nearest distance

with the source dataset.



§4.2 Methodology 65

4.2.3 Analysing Contribution of Classification Layer Features in Target Dataset

Classification

To verify the effectiveness of the features from the pre-trained classification layer in fea-

ture representation approach, we show that the features are selected in good proportion

for classification the target datasets. We adopt a feature selection algorithm [174] to

perform this analysis. The algorithm depends on conditional mutual information. This

approach is capable of addressing the problem of selecting the important features for the

classification task based on a conditional mutual information score. The score searches

for the feature, that adds the newest information to the already selected features and

avoids redundancy.

First, we construct a feature embedding concatenating the features of pre-trained

penultimate FC layer and classification layer. The embedding has 5096 concatenated

features, sequentially representing the penultimate and classification layers of a deep

network, i.e., 4096 + 1000. Since the embedding has sequential indexing, the features

belonging to a layer can be tracked down easily. Then, we apply the feature selection

algorithm on the constructed feature embedding. The objective function of the feature

selection approach is as follows,

lim
N→∞

−l = Exy{log
p(y|xθ)
q(y|xθ, t)

}+ I(X
θ̂
;Y |Xθ) +H(Y |X). (4.1)

Here, l is the conditional log-likelihood, x is a d-dimensional feature vector (i.e., 5096-

dimension) and y is the target class label, drawn from the underlying distribution of

random variables X and Y respectively. The first term represents a likelihood ratio be-

tween the true and the predicted class distributions given the selected features, averaged

over the input space. The magnitude of this term is dependent on how well the model

q can approximate p, given the selected features. The second term denotes the condi-

tional mutual information between the class label and the unselected features, given

the selected features. The value of this term will decrease as the selected feature set Xθ

explains more about Y . And the term will become zero when the remaining/unselected

features X
θ̂

contain no additional information about Y in the context of the selected
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features. Due to chain rule, the mutual information between Xθ and Y can be formalised

as,

I(X;Y ) = I(Xθ;Y ) + I(X
θ̂
;Y |Xθ). (4.2)

This indicates that minimising I(X
θ̂
;Y |Xθ) is similar to maximising I(Xθ;Y ). We,

therefore, trace the importance of features of different layers by leveraging the Xθ of

the second term of (4.1) to study how much knowledge the classification layer features

possess to contribute to the target classification task. In particular, we keep track of

the total number of times the Xθ are picked from both layers. If the classification layer

features have a significant number of selection count, it will verify the effectiveness of

the classification layer features in classifying target datasets. To compare, we will also

show the selection counts for the penultimate layer features.

4.2.4 Study Method

First, we determine the similarity between the source and target datasets. Then, we use

transfer learning with the pre-trained classification layer and traditional transfer learning

to investigate the optimal classifier and address the RQs stated in Section 4.1. Finally,

we utilise the feature selection algorithm to verify the importance of the classification

layer features in transfer learning.

4.3 Experimental Studies

In this section, we describe our implementation details, compare the performance of

the transfer learning with pre-trained classification layer with the traditional transfer

learning approach, determine the best performing classifier, analyse the influence of

datasets on the former type of transfer learning based on our research questions stated

in Section 4.1.



§4.3 Experimental Studies 67

4.3.1 Datasets

We used eight different fine-grained (same species) and coarse datasets (mixed species),

as stated in Table.3.1. ImageNet is used as the source dataset. We determine the
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Figure 4.2: Distance between the source and target datasets-based on nearest neighbours.

similarity between the source and target datasets following our similarity measure

described in Section 4.2.2. Figure 4.2 shows the similarity between source and target

datasets according to our similarity measure. VOC 07, and Caltech-256 among coarse

datasets manifest high similarity with the Imagenet. On the other hand, ImageNet has

low similarity with MIT 67 indoor scenes as it has object categories which collectively

form different category in the scenes of MIT 67. SUN-397 manifests the highest distant

semantic attributes to ImageNet, among others as its scenes comprise objects that have

negligible semantic similarity with ImageNet categories. Among fine-grained datasets,

CUB 200-2011, and 102 Flowers demonstrate high dissimilarity with ImageNet while

the other two Stanford Dogs and Oxford Pets show a great deal of similarity with the

ImageNet. The ranking of the target datasets in descending order of similarity to the

source dataset is as VOC > CAL > MIT > DOG > PET > SUN > FLO > CUB.



§4.3 Experimental Studies 68

4.3.2 Implementation details

For feature extraction, AlexNet and VGG16 pre-trained in ImageNet [175] are utilised.

We implement three different types of machine learning algorithms (Multi-Layer Percep-

tron (MLP), Linear SVM, RBF-kernel SVM) for classifying the target datasets. To train the

MLP classifier, stochastic gradient descent (SGD) optimisation was used with a learning

rate of 0.001. For the purpose of calculating loss function, categorical cross-entropy loss

was used. To train the two variants of multi-class SVMs, to follow the default setup of

Scikit-learn. The retrieval of pre-trained weights and all the experiments are done in

PyTorch. To evaluate the experimental results of two transfer learning approaches, we

consider the test accuracy obtained on the test sets as the performance metric.

4.3.3 Best Fit Classifier (RQ1)

Table 4.1: Performance comparison of various classifiers (accuracy in %).

Dataset
AlexNet VGG16

TLSN TLSO TLRN TLRO TLMN TLMO TLSN TLSO TLRN TLRO TLMN TLMO
VOC 71.5 71.6 73.2 71.0 79.3 77.8 80.3 80.3 82.1 80.1 86.2 84.4
CAL 64.3 65.7 66.5 63.6 75.9 74.3 68.5 68.1 70.9 70.5 83.3 82.3
MIT 54.6 56.2 57.5 57.1 62.4 61.6 61.1 61.8 62.7 61.8 63.9 62.4
DOG 64.6 65.4 65.8 65.1 67.2 65.9 70.6 71.9 70.8 70.1 67.3 66.4
PET 78.2 77.3 78.8 77.1 80.5 78.7 78.2 78.6 84.9 82.1 86.4 85.9
SUN 50.2 51.6 52.1 50.8 56.9 57.9 54.1 54.6 55.8 55.0 60.0 60.9
FLO 79.1 81.3 82.8 79.9 84.2 85.3 72.1 79.2 78.5 78.1 86.2 86.5
CUB 46.9 50.2 49.6 46.7 64.3 64.2 57.2 57.9 58.1 57.2 67.9 68.2

Table 4.2: Performance comparison of proposed transfer learning with contemporary ap-
proaches.

Network Approach CUB 200-2011 102 Flowers Stanford Dogs Oxford Pets Caltech-256 VOC07 MIT-67 SUN-397

AlexNet

CNN-SVM [6] 53.3 74.7 66.8 79.6 72.3 75.3 58.4 55.9
CNNAug-SVM [6] 61.8 86.8 66.6 79.9 74.8 76.8 69.0 56.2

LSVM [48] 61.4 87.1 65.0 77.6 69.7 75.2 66.7 55.8
CombinedAlexNet [171] 63.3 83.3 64.5 76.9 69.2 77.1 58.8 54.2

TLMN (our) 64.3 84.2 67.2 80.5 75.9 79.3 62.4 56.9

VGGNet
CNN-SVM [6] 66.5 81.5 66.7 86.4 79.9 82.4 60.4 56.6
TLMN (our) 67.9 86.2 67.3 86.4 83.3 86.2 63.9 60.0
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Table 4.1 shows the classification accuracy (%) of transfer learning using the pre-

trained classification layer’s features (TLN ) and traditional transfer learning (TLO) with

two variants of SVM (i.e., Linear and with RBF-kernel) and MLP where, Linear SVM

is denoted as S, RBF-kernel SVM as R and MLP as M . The transfer learning using

the classification layer features outperform the traditional approach for majority of the

cases when RBF-SVM and MLP is used (highlighted in blue). To be more specific, the

MLP (TLMN ) classifier performs the best among three classifiers and the RBF-kernel

SVM (TLRN ) outperforms linear SVM (TLSN ). This proves that the classification layer

features facilitate to boost performance when non-linearity is introduced in the target

classifier (i.e., activation function of MLP and RBF-kernel of SVM introduce non-linear

characteristics in the classifiers). However, for the best performing classifier (MLP), we

observe that proposed approach outperforms the traditional approach when the target

dataset has more similarity to the source dataset. Otherwise, the accuracy is similar to the

traditional approach. For example, the least similar target datasets SUN, FLO, and CUB

show similar performances in both approaches. Thus, for MLP, the proposed approach

performs better than traditional approach when the target datasets has more global

similarity to the source datasets. For RBF-SVM, the proposed approach outperforms the

traditional approach for all cases.

Following our analysis, we compare the performance of the proposed approach

using the highest performing classifier, MLP, with contemporary feature representation

transfer approaches in Table 4.2. We observe that our approach outperforms all compared

approaches for majority of the datasets for both AlexNet and VGGNet features. This

proves that the classification layers features have potential transferable information to

generalise to target datasets.

4.3.4 Analysis of Impact of Datasets

In this section, we discuss in detail about the findings from our experiments as research

answers and derive the role of several target datasets in transfer learning with the

ImageNet pre-trained classification layer. We perform fine-grained and coarse class

classification for both the transfer learning approaches using MLP.
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(a)

(b)

Figure 4.3: Performance comparison with respect to source-target similarity. (a) Pre-trained
AlexNet and (b) pre-trained VGG16 is used.

RQ2: Our second RQ concerns the effect of similarity between the source and

target classes on the performance of transfer learning with the ImageNet pre-trained

classification layer. Figure 4.3 shows performance of transfer learning with the ImageNet

trained classification layer (green bars) and traditional transfer learning (blue bars) with

respect to distance between the source and target datasets. It is evident that for all coarse-

grained datasets (VOC, CAL, MIT, and SUN) with the gradual diminution of similarity

with the source dataset the accuracy for both approaches decrease. This observation

establishes a strong relationship between the similarity of source-target (coarse) classes

and the classification performance. The intuition is that the more common characteristics

the source and coarse target datasets hold, the easier it is for the transfer learning model

to classify better.

However, for the fine-grained datasets (DOG, PET, FLO, and CUB) no such pattern

is observed. We also observe that PET and FLO outperforms DOG despite having low
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similarity. The higher performance of PET and FLO datasets can be explained by the

fact that the datasets are comparatively easy for the machine learning classifiers due to

their level of complexity (more detail on next RQ).

RQ3: Our third RQ focuses on the relationship between visual similarity among

the target classes (fine-grained) and the transfer learning using the ImageNet trained

classification layer features. Among the selected target datasets, DOG, PET, FLO, and

CUB are fine-grained datasets. As shown in Figure 4.3, the classification performance

of the fine-grained datasets with more similarity among the classes lag behind the fine-

grained datasets with lower similarity among the classes. Particularly, the DOG and

CUB datasets comprise similar categories of dogs and birds, respectively. These two

datasets are difficult to classify as they have large number of common intra-dataset

semantic attributes. On the other hand, the PET dataset has different types of pets such

as cats and dogs, and FLO dataset has variety of flowers with less common attributes.

Therefore, PET and FLO datasets are comparatively easier than DOG and CUB to classify.

Hence, PET and FLO outperforms the nearest fine-grained target dataset DOG for both

AlexNet and VGGNet. CUB also outperforms DOG despite being the farthest to the

source dataset for VGGNet. Thus our study demonstrates that the transfer learning

classification performance is more influenced by the visual similarity among the target

classes than the source-target class similarity for fine-grained datasets. More specifically,

low inter-class similarity benefits the transfer learning performance more.

RQ4: Our empirical analysis demonstrates that the impact of coarse-grained (mixed

species) datasets in the transfer learning with the classification layer features is linked

to the global similarity between the source and target datasets. That is, the more the

coarse dataset is correlated (distance-based similarity) to the source dataset, the better

the classification accuracy (Figure 4.3). More specifically, VOC performs better than

CAL, CAL performs better than MIT, and MIT performs better than SUN. VOC is nearest

to the source dataset while SUN is the fartest among the coarse datasets. This also

indicates that this type of transfer learning benefits from the coarse dataset that has

more common classes to the source dataset, for example, VOC and CAL have more

overlapping classes with ImageNet. The traditional transfer learning also tends to show
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a similar pattern for this type of datasets. Another interesting finding is that when the

visual similarity of inter-classes of a coarse target dataset increases and the target dataset

has low similarity to the source dataset then the proposed approach yields comparatively

less performance. For example, SUN and MIT datasets have many common inter-class

scenes and objects within the datasets but have less common classes with the source

(ImageNet). Consequently, the performance of SUN and MIT lags behind VOC and

CAL. The intuition is that the greater global similarity than local similarity facilitates

this type of transfer learning for coarse datasets more.

Figure 4.4: Bar-chart showing performance for various number of training samples per class.

RQ5: To investigate our fifth RQ, we select two fine-grained and two coarse datasets.

We experiment with 50, 100 and 200 samples in each class. For CUB, we use data

augmentation to fulfil the number of samples per class. Figure 4.4 demonstrates that

classification performance is highly affected by the number of samples used during

training. For target datasets with different level of similarity to the source dataset,

experiments with 200 samples outperform other combinations. This indicates more

training samples assist better transfer learning.

Tables 4.3 and 4.4 shows the performance comparison of transfer learning with

the classification layer’s features (TLN ) and traditional transfer learning (TLO) for a

different number of classes in the target datasets where, C1 = 10, C2 = 20 for PET

and VOC, C2 = 20 for other datasets, C3 = 50 and All denotes all classes in target

datasets. Note that ‘-’ denotes not enough classes available in the dataset. As shown in
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Table 4.3: Performance comparison for various number of target classes (AlexNet).

Type Target Dataset
Classes

C1 C2 C3 All
TLO TLN TLO TLN TLO TLN TLO TLN

Coarse

VOC 81.4 82.6 77.8 79.3 - - 77.8 79.3
CAL 79.3 80.2 77.9 78.1 75.7 76.9 74.3 75.9
MIT 64.5 64.7 62.9 63.1 61.9 62.5 61.6 62.4
SUN 59.3 57.6 59.2 56.9 58.7 56.3 57.9 56.9

Fine-grained

DOG 70.2 71.8 70.1 69.5 67.3 68.3 65.9 67.2
PET 84.0 84.2 81.6 82.5 - - 78.7 80.5
FLO 87.3 87.2 86.8 85.9 86.2 85.1 85.3 84.2
CUB 66.2 65.9 66.1 64.5 65.8 63.9 64.2 64.3

Table 4.4: Performance comparison for various number of target classes (VGG16).

Type Target Dataset
Classes

C1 C2 C3 All
TLO TLN TLO TLN TLO TLN TLO TLN

Coarse

VOC 85.1 87.8 84.4 86.2 - - 84.4 86.2
CAL 85.5 86.8 85.1 85.6 84.1 84.5 82.3 83.3
MIT 66.7 67.8 65.9 65.9 65.7 64.8 62.4 63.9
SUN 63.1 61.9 62.8 61.1 62.1 60.8 60.9 60.0

Fine-grained

DOG 72.9 73.2 69.4 70.3 68.7 68.5 66.4 67.3
PET 87.8 88.9 87.9 87.7 - - 85.9 86.4
FLO 89.5 89.1 88.1 88.7 87.7 87.3 86.5 86.2
CUB 69.8 69.3 68.5 68.9 68.9 68.3 68.2 67.9

Tables 4.3 and 4.4, from left to right, with an increase in the number of classes in the target

datasets, the accuracy shows a decreasing trend. This means the proposed approach

performs better when the target dataset has less number of classes. Tables 4.3 and 4.4

also demonstrate that the proposed approach outperforms the traditional approach for

various number of target classes in the datasets.

4.3.5 Feature Importance Analysis

To verify the importance of classification layer features in transfer learning, we imple-

ment the feature selection algorithm for target datasets classification, as discussed in

Section 4.2.3. When the classification layer features are selected in significant proportion
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it means the features have generalisation ability and benefits transfer learning.

Figure 4.5: Bar-chart showing feature importance.

Figure 4.5 shows the percentage of feature selection for the classification layer and

traditional approach (penultimate FC layer) features with respect to the source-target

similarity. Here, the proportion of the selected classification layer features are coloured,

and the hollow bars represent the proportion of selected features of traditional transfer

learning approach. The x-axes show the proportion of feature selection and the y-axes

show the distance between ImageNet and target datasets.

For classifying coarse-grained target datasets (VOC, CAL, SUN, and MIT), it is

observed that the selection algorithm selects more classification layer features from the

target datasets that have more similarity to the source dataset (see Figure 4.5a). That

is, the percentage of classification layer feature selection decreases with the increasing

dissimilarity between the source and target datasets. For fine-grained target datasets

(DOG, PET, FLO, and CUB), the classification layer features of the datasets with less

inter-class similarity has more selection rate except for the DOG dataset (see Figure 4.5b).

More specifically, PET and FLO have low semantic similarity among the classes within

the datasets while DOG and CUB have high semantic similarity. PET and FLO have

more classification layer selection rate than DOG and CUB.

Apparently, the feature selection algorithm selects significant proportion of classifi-

cation layer features for majority of the target datasets. Therefore, the classification layer

features of a pre-trained CNN hold meaningful and valuable information that benefits

classification of new target datasets.
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4.4 Summary

In this chapter, we have proposed a transfer learning approach that uses the ImageNet

trained classification layer features. We have extensively studied the optimal classifier

and similarity-based correlation between the source and target datasets for the proposed

approach. We have found that the neural networks perform best for the proposed ap-

proach. Our study demonstrated that the ImageNet trained classification layer features

are more effective for classifying coarse-grained target datasets that hold more global

similarity (inter-dataset similarity) to the target dataset. However, for fine-grained target

datasets, the local similarity (inter-class similarity) influences more. In the end, we have

verified the importance of the ImageNet trained classification layer features in transfer

learning by utilising a feature selection algorithm.

Our second contribution discussed in this chapter has proven that the classification

layer features of a pre-trained CNN on diverse dataset plays vital role in improving

different types of inductive sequential transfer learning approaches. In the next chapter,

we will present the third contribution, i.e, to mitigate negative transfers using adaptive

weighting and improve open set domain adaptation.



Chapter 5

Reducing Negative Transfers in
OSDA Using Adaptive Weighting

1In previous two chapters, we presented our first contribution to improve the sequential

transfer learning using the category-specific CNN features. In this chapter, we will

present the third contribution of the thesis.

DA aims to transfer knowledge from a domain with adequate labelled samples to

a domain with scarce labelled samples. Prior research has introduced various OSDA

settings in the literature to extend the applications of DA methods in real-world scenarios.

In this thesis, we focus on the type of OSDA setting where the target domain has both

private (‘unknown classes’) label space and the shared (‘known classes’) label space.

However, the source domain only has the ‘known classes’ label space. This OSDA setting

can handle real-world problems due to supporting the availability of unknown classes

besides shared/known classes in the target domain. However, the negative transfer

is a critical issue in OSDA, which stems from misalignments of known/unknown

classes during adaptation. Current OSDA methods, in some cases, are vulnerable to

negative transfers. In this and the following chapters, we describe in detail our proposed

approaches to reduce negative transfers and thereby improve OSDA performance for

image classification.

Prevalent distribution-matching DA methods are inadequate in such a setting that

demands adaptation from a smaller source domain to a larger and diverse target domain

1Chapter 5 is adapted from: T. Shermin, G. Lu, S. W. Teng, M. Murshed, and F. Sohel, “Adversarial
network with multiple classifiers for OSDA,” IEEE Transactions on Multimedia, 2020.
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with more classes. To address this specific OSDA setting, prior research introduces a

domain adversarial model that uses a fixed threshold for distinguishing known from

unknown target samples and lacks at handling negative transfers. In this chapter, we

extend their adversarial model and propose a novel adversarial DA model with multiple

auxiliary classifiers. The proposed multi-classifier structure introduces a weighting

module that evaluates distinctive domain characteristics for assigning the target samples

with weights which are more representative to whether they are likely to belong to the

known and unknown classes to encourage positive transfers during adversarial training

and simultaneously reduces the domain gap between the shared classes of the source

and target domains. A thorough experimental investigation shows that our proposed

method outperforms existing DA methods on several benchmark DA datasets.

5.1 DA Setting

The OSDA setting of our focus constitutes a source domain Ds = (xsi , y
s
i )
ns
i=1 of ns

labelled instances associated with |Cs| classes, which are drawn from distribution ps

and a target domain Dt = (xtj)
nt
j=1

of nt unlabelled instances drawn from distribution

pt, where ps 6= pt. We denote the class labels of the target and source domains as Ct

and Cs respectively. The shared label space is denoted as C = Cs ∩ Ct. Ct = Ct \ C

represents the label sets private to the target domain, which should be recognised as

‘unknown’. According to the setting, we have access to a fully labelled source domain

and a fully unlabelled target domain during training. The source domain has only

known (C) classes, while the target domain has both known (C) and unknown (Ct)

classes. The task is to correctly classify the shared classes C and target private classes Ct

as ‘unknown’. As the target domain is unlabelled, it is difficult to identify which part

of the target label space Ct is shared with the source label space Cs because the target

domain is fully unlabelled and Ct is unknown at the training time. This setting is also

used in the next chapter.
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5.2 Overview

As discussed earlier, CNNs usually require a massive amount of labelled data entailing

highly laborious work for annotating data [3, 4, 176, 177]. An alternative is to use

labelled data from a related (source) domain to boost the performance of the model in

a target domain. However, as the source and target data may have domain gaps such

as different illumination set-ups, and perspectives, synthesised data by using different

variants of sensors, the performance of this approach may suffer. Existing DA methods

aim to decrease the above-mentioned domain divergences either by using distribution

matching methods [67, 73, 178, 179] or by transforming samples from one domain to

another through generative models [8,52,73,180–183]. Generally, it is assumed that label

sets across the source and target domains are identical (closed set DA [50, 51, 55]), as

shown in Figure 5.1a. However, such a simplified setting only has limited real-world

applications. OSDA [81, 84], and partial DA [105, 184, 185] methods have been proposed

to ease the closed set DA assumption. Open set and partial DA settings assume source

or target domain private label sets besides the identical (shared) label sets. The DA

models-based on these DA settings are required to recognise the samples of the target

domain private label sets as ‘unknown’ class and the samples belonging to shared label

sets as known classes. As illustrated in Figure 5.1b, partial DA [105, 184, 185] setting

assumes that the source domain label space is a superspace of the target domain label

space. OSDA setting proposed by [81] requires images from unknown classes both

in the source and target domain besides the shared known classes. However, this is

not a cost-effective setting for OSDA as it requires a collection of a large number of

unknown source samples with no prior knowledge about target labels. During training,

Busto et al. [81] bound the DA model to align unknown classes of the target domain

towards unknown classes of the source domain. This may enforce a firm boundary for

the unknown classes. During testing, samples from unknown classes other than the

trained unknown classes may confuse the model.

OSDA by back-propagation (OSBP) [84] setting takes another step towards the

practical DA scenario by removing unknown classes from the source domain such that
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(a) Closed set DA setting (b) Partial DA setting

(c) OSDA setting [81] (d) OSDA by back-propagation setting [84]

Figure 5.1: (a) The closed set DA setting assumes that both source and target domains consist of
images only of the same set of classes. (b) Partial DA setting assumes that the source domain
label space (classes) is the superspace of the target domain label space. This adaptation setting
includes images of unknown classes in the source domain only. (c) OSDA setting proposed by
Busto et al. [81] requires images of unknown classes in both source and target domains, i.e., both
source and target domains contain images that do not belong to the label space of interest. (d)
OSDA setting introduced by Saito et al. [84] requires images of unknown classes only in the
target domain besides the classes of interest. We focus on the DA setting illustrated in (d).

the source label space is a subset of the target label space (Figure 5.1d). This means that

the OSBP DA setting has samples from unknown classes only in the target domain and

encourages the DA model to learn to detect an unknown target sample as unknown

when it does not belong to the known classes. Thus, this setting assists in training the DA

model with a broader unknown class boundary and detect unknown samples during

testing better than the previous setting [81]. This chapter focuses on improving the

performance of DA model for the OSBP DA setting, which is realistic and challenging

as the source domain has less number of classes compared to the target domain. This

setting is suitable for several real-world applications. For example, if the automated car

robots are capable of recognising unseen traffic-signals/street-signs during training as

‘unknown’, the chances of on-road misclassification (which may stem life-threatening

accidents) can be reduced. Also, labeling them later will increase the knowledge base of

the robots.

Prevalent distribution matching DA methods [67, 73] cannot be applied to the OSBP
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DA setting as the absence of unknown samples in the source domain does not allow the

unknown samples of the target domain to be aligned. Saito et al. [84] have proposed

a generative model to address the OSBP DA setting where they enable the classifier

to draw a rough boundary between the source and target samples (i.e., initially all

the target samples will be classified as ‘unknown’) and the generator has to separate

the target samples into known and unknown classes adversarially. The adversarial

learning between the generator and the classifier depends on the pseudo decision of the

classifier. However, their proposed method does not explore any underlying domain

discriminative information to assess the pseudo decision of the classifier before the

adversarial training. Also, they set an empirical fixed threshold for generator-classifier

adversarial training to differentiate known target samples from unknown ones. We argue

that this concept of relying only on the rough decision of the classifier may encourage

the negative transfer of target samples.

Pan et al. [7] stated that a DA model is prone to negative transfers when it lags behind

a non-DA model (which is trained only on the source domain) in performance. The

fixed threshold (0.5) for constructing boundary between known and unknown target

samples leads to biased adversarial learning. That is, for a target sample, when the

classifier assigns an unknown probability low than the threshold based on its pseudo

decision boundary, the generator will always be encouraged to align that sample towards

known classes even if they belong to unknown classes. The OSBP method struggles to

perform better than non-DA classifier for some tasks discussed in Section 5.4.3 because

of negative transfers by aligning unknown target samples towards known classes.

To address the limitations of the current OSBP methods, we propose to extend their

domain adversarial network by integrating a new multi-classifier based weighting mod-

ule to the network. We refer to the extended generative model as the multi-classifier

based adversarial DA model. To reduce negative transfers, first, we evaluate the under-

lying discriminative domain information of the known and unknown target samples,

and then assign them with distinguishable weights which are more representative to

their similarities to the source domain. In particular, the underlying domain information

of target samples is measured by evaluating discriminative label information based on
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the resemblance to each source domain classes and probable similarity with the source

domain classes when measured against the probability of belonging to the unknown

classes of the target domain. This ensures that the proposed weighting module provides

a rough estimate of the underlying domain of the target samples. Then based on our

generated weights, the generative module performs adversarial DA and aligns known

target samples towards known source samples and rejects the unknown target samples.

Thus, in the proposed DA model, the generative module is not forced to draw a thresh-

old driven boundary between known and unknown target samples, which may initiate

negative transfers as the baseline method. The proposed model improves performance

over the previous method [84], which indicates it constructs a good boundary between

known and unknown target samples by eliminating negative transfers.

Several attempts to address partial DA [184, 185], universal DA [107], and open

set DA [85] by generating weights are identified in the literature. Zhang et al. [185]

utilise the output of an auxiliary domain discriminator to derive the probability of the

source samples belonging to the target domain and assign weights to the source samples

accordingly for partial DA. For improving prior partial DA methods participating in neg-

ative transfer [105, 106], Example Transfer Network (ETN) [184] degrades the weight of

source images from source private classes before integrating to the source classifier and

places a discriminative domain classifier to quantify sample transferability. To generate

weights for source samples belonging to the shared label sets, Universal Adaptation

Network (UAN) [107] integrates domain similarity and prediction uncertainty. Unlike

our proposed method, UAN does not integrate underlying label information to eval-

uate domain similarity between the source and target samples. The above-mentioned

methods concentrate on assigning weights to the source samples, whereas the OSBP

DA setting demands to assign weights to the unlabelled target samples. This is more

challenging than weighting source samples as we do not know the labels of target sam-

ples and the shared label space during training. We propose a new multi-classifier based

weighting scheme in an adversarial DA method for the OSBP DA setting. Separate

to Adapt (STA) [85] method assigns weights to a target sample based on its highest

similarity to one of the source domain classes. On the contrary, our proposed weighting
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module assesses domain information based on a target samples’ similarity to known

classes and dissimilarity to the unknown class, and then assign identifiable weights

(please refer to Section 5.3.2.2 for details). The main contributions of this paper are as

follows:

• We propose a domain adversarial model by integrating a new multi-classifier

module in the OSBP domain adversarial model [84] for the OSDA setting that has

access to unknown classes only in the target domain. The multi-classifier structure

introduces a weighting scheme in the proposed model, that assesses fundamental

domain information based on distinctive label information for assigning iden-

tifiable weights to the known and unknown target samples. This enhances the

positive transfer of target samples and facilitate the adversarial training. Unlike

the previous method [84], which requires an assumption of the known-unknown

boundary threshold, the proposed method is capable of automatically discovering

the boundary between known and unknown target samples.

• We conduct comprehensive experiments and demonstrate that our proposed model

reduces the rate of negative transfer and achieves better performance than contem-

porary DA methods on several datasets.

5.3 Proposed Methodology

In this section, we discuss the limitations of the baseline method and present our

proposed method.

5.3.1 Baseline Domain Adversarial Model

In this section, we briefly discuss the OSBP [84] model and its tendency to initiate

negative transfers. The OSBP method (Figure 5.2a) is an adversarial DA model that aims

to reduce divergence between the source and target domains by learning transferable

features in a two-player minimax game in line with existing domain adversarial networks
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(a) Block diagram of the OSBP DA model [84].

(b) Training phase of the proposed DA model.

(c) Testing phase of the proposed DA model.

Figure 5.2: (a) Block diagram of the baseline method [84]. (b) Block diagram of the training phase
of our proposed adversarial DA network with a multi-classifier based weighting scheme. Here,
GF , GC1

, GC2
and GD denotes the generator, domain classifier, non-adversarial supplementary

source and domain classifier respectively. EGC1
and EGC1adv

, EGC2
, and ED are errors for

optimising GF and GC1
, GC2

, and GD respectively. (c) A pictorial illustration of the proposed
model during the testing phase. Red arrows denote forward passes while other arrows represent
a backward pass.

[54, 56]. The first player of the model is a domain classifier GC1 and the second player is

a feature generator GF . The final objective of the OSBP method is to correctly classify

known target samples as corresponding known class and target samples belonging to

unknown classes as ‘unknown’.

The feature generator GF takes inputs from both source domain Ds and target

domain Dt at the same time. The domain classifier GC1 takes features from GF and

outputs N + 1 dimensional probability, where N specifies the number of known or

source categories (Cs) and the probability for the unknown category is indicated by

the (N + 1)th index. During the forward pass, within GC1 , the features are trans-
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formed to a N + 1-dimensional class probability through softmax function as, σ(z) =

exp (z)/(
∑N+1

i=1 exp (zi)), where z is the logit vector.

The OSBP method intends to construct a pseudo decision boundary for unknown

classes. As the target domain is unlabelled during training, the domain classifier GC1 is

weakly trained to construct a pseudo decision boundary between known source samples

and target samples by putting the target samples on the side of the unknown category.

The OSBP method trains the domain classifier GC1 to output P (y = N + 1|xtj) = T for

‘unknown class’. Then the feature generatorGF is trained to deceive the domain classifier

GC1 adversarially. The feature generator GF is trained with the ability to increase or

decrease the ‘unknown’ class probability P (y = N + 1|xtj) of the classifier GC1 for

maximising the error of GC1 and align target samples to known or unknown classes.

Also, the OSBP method assumes that the empirical threshold value T = 0.5 dictates the

generative model to construct a good boundary between known and unknown target

samples. The OSBP method trains the domain classifier and the generator on source

samples first as follows,

EGC1
=

1

ns

ns∑
i=1

LGC1
(GF (xsi ), y

s
i ). (5.1)

Here, LGC1
is the standard cross-entropy loss function for minimising the error of GC1 .

Then a binary cross-entropy loss is used for maximising the error of GC1 adversarially

to separate known and unknown target samples as follows,

EGC1adv
= − 1

nt

nt∑
j=1

T log(P (y = N + 1|xtj))−
1

nt

nt∑
j=1

(1− T ) log(1− P (y = N + 1|xtj)).

(5.2)
The overall training objective of the OSBP method is,

θGC1
= argmin

θGC1

EGC1
+ EGC1adv

, θGF = argmin
θGF

EGC1
− EGC1adv

. (5.3)

The training objective indicates that the domain classifierGC1 tries to set ‘unknown’ class

probability P (y = N+1|xtj) equal to T , on the other hand the generatorGF tries to make

P (y = N + 1|xtj) different from T for maximising the value of EGC1adv
. For calculating



§5.3 Proposed Methodology 85

the gradient of EGC1adv
efficiently, the OSBP method utilises a gradient reversal layer

proposed by [67].

Negative Transfer in the OSBP Method: The OSBP method does not evaluate any

underlying domain level discerning characteristics but relies only on the pseudo decision

of GC1 . The lack of such domain knowledge and enforcement of an assumed boundary

threshold T = 0.5 value for separating known and unknown classes will harm the model

as the generator will attempt to align all the target samples with P (y = N+1|xtj) < 0.5 to

known classes during training. As a result, the model will be deprived of the opportunity

to learn such image features which should be recognised as unknown even when

P (y = N + 1|xtj) is less than 0.5. For example, during training, the domain classifier

GC1 assigns P (y = N + 1|xtj) = 0.4 for a target sample and the rest 0.6 of the softmax

probability is distributed over other 1, 2, ..., N indices of GC1 with no index holding

P ≥ 0.4. This probability outcome distribution suggests the sample should be aligned

towards the unknown class. However, the generator will always find it easier to decrease

P (y = N + 1|xtj) < 0.4 to maximise the error of GC1 and align it towards known classes

as it does not explore underlying domain knowledge before adversarial training. Thus,

the model will be exposed to negative transfers during training and testing, i.e., target

samples from unknown classes will be aligned to known classes.

To reduce the propensity for such negative transfers in the OSBP method and improve

classification performance, we propose to extend their domain adversarial model. Our

proposed multi-classifier based domain adversarial model is discussed in the next

section.

5.3.2 Proposed Multi-classifier Based Domain Adversarial Model

The limitations of the OSBP method is mainly due to the lack of an indicator of the

likelihood of a target sample belonging to known or unknown classes. This prompted

us to design a method to produce the indicator of target samples belonging to known or

unknown classes before the adversarial training to facilitate DA. The proposed method

is illustrated in Figure 5.2b. To investigate underlying domain information of target
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samples for reducing negative transfers, we propose to integrate a multi-classifier based

weighting module in the baseline network. Our proposed method comprises of two

modules: 1) Adversarial module; and 2) Multi-classifier based weighting module.

5.3.2.1 Adversarial module

The adversarial module of our proposed method has a similar structure to the OSBP

method. The first player of the model is a domain classifier GC1 which is trained to

distinguish the features of the source domain from the target domain. The second player

is a feature generator GF which is simultaneously trained to reduce feature distribution

divergence in the opposite direction of the domain classifier. However, our proposed

method follows a different adversarial optimisation procedure for distinguishing un-

known target samples from the known target samples compared to the OSBP. The

ultimate goal is to train a source domain classifier that is transferred to the target domain

classifier with an extra category named ‘unknown’.

The proposed weighting module quantifies each target sample with a generated

weight W (xtj) (Section 5.3.2.2), which is an encoding of the underlying discriminative

domain information. In particular, prior to adversarial DA, we assign identifiable

weights W (xtj) to known and unknown target samples based on their similarity to

source domain to facilitate the generator in deciding whether to decrease or increase

the ‘unknown’ class probability P (y = N + 1|xtj) for maximising the error of GC1 and

eventually align the target samples to known classes or ‘unknown’ class. Therefore,

the generator does not have to draw an empirical threshold driven boundary between

known-unknown target samples by depending only on the pseudo decision of the

classifier, which may encourage negative transfer.

We use the standard cross-entropy loss optimisation, as illustrated in (5.1) for min-

imising the error of the domain classifier GC1 . To distinguish known from unknown

target samples and simultaneously maximise the error of the domain classifier GC1 ad-

versarially, we use a binary cross-entropy loss. We infuse our computed weight measure
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for the target samples in the optimisation procedure as follows,

E
′
GC1adv

= − 1

nt

nt∑
j=1

W (xtj) log(P (y = N + 1|xtj))

− 1

nt

nt∑
j=1

(1−W (xtj)) log(1− P (y = N + 1|xtj)).
(5.4)

The mini-max game between the generator and domain classifier in the adversarial

model is equivalent to aligning target samples towards known classes of the source

domain or ‘unknown’ class based on their weights.

5.3.2.2 Proposed Multi-classifier based weighting module

In this section, we present the conceptual details of the weighting scheme of our pro-

posed DA method.

Overview The main challenge in our proposed method, as illustrated in (5.1) and

(5.4), is the way of measuring the probability of each target samples resembling the

source domain on the basis of which the boundary between known and unknown classes

is to be constructed. We aim to develop a weight measure W (xtj) for each target samples

based on their discriminative label and domain information. We propose to integrate a

supplementary source classifier GC2 in the adversarial model (Figure 5.2b) to determine

the similarity of target samples to individual known-source labels Cs. The combined

similarity to each known classes represents the similarity to the source domain and

utilise the pseudo-decision of GC1 to compute the combined similarity to all known

classes (i.e., similarity to source domain) measured against target private labels Ct. This

ensures the exploitation of probable underlying label information of target samples

concerning both known and unknown classes.

We further introduce a non-adversarial supplementary domain classifier GD in the

model to evaluate underlying domain information and produce a weight for target

samples. The non-adversarial supplementary domain classifier GD assumes that the

target samples belonging to the shared label space C are closer to the source domain
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samples than Ct. Being inspired by a prior work [186] that integrated the label informa-

tion into the domain discriminator, we combine the domain similarity measure of GC1

and GC2 , and encode in GD. Now that the supplementary domain classifier GD holds

the encoded information required to serve our purpose, GD is jointly trained with GC2

to distinguish the source domain samples from the target domain samples by utilising

the Sigmoid probability of classifying each target sample (xtj) to the source domain. The

output (W (xtj)) of GD for target samples gives the probability of a sample belonging to

the shared label space. This constitutes our multi-classifier based weighting module.

The purpose of the weighting scheme is to assign either high or low weights to the target

samples depending on their similarity to the source domain and reduce the chances of

negative transfer. The generated weights are back-propagated to the adversarial module

for optimising the generator GF and the domain classifier GC1 to construct boundary

between known and unknown classes.

Mechanism in detail: We place the supplementary source classifier GC2 to predict

the source class labels with a leaky-softmax function [184], which maintains the total

probability of less than 1. The supplementary source classifier GC2 converts features of

the generator GF to |Cs|-dimensional class probabilities as follows,

σ(l) =
exp (l)

|Cs|+
∑|Cs|

c=1 exp (lc)
(5.5)

where l is the logit vector. The parameters of GC2 is trained only on the source samples;

therefore, unlike source samples, target samples will have smaller logits or uncertain

predictions. We define the probability of each sample belonging to the source domain

based on known-source label information d1(x) as follows,

d1(x) =

|Cs|∑
k=1

GkC2
(GF (x)) (5.6)

where, GkC2
(GF (x)) is the probability of a sample belonging to the kth known class. The

element-sum (d1(x)) of the leaky-softmax outputs for samples resembling the source

domain will be high or close to 1 whereas, samples dissimilar to source domain will
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yield low or close to 0 outputs. That is, the higher the value of d1(xtj) is, the higher the

chance that a target sample lies in the vicinity of shared label space C. On the other hand,

the smaller the value of d1(xtj) is, the more probable that the target sample comes from

Ct. We train GC2 by a multiclass one-vs-rest binary loss for the |Cs|-class classification

as,

EGC2
= − 1

ns

ns∑
i=1

|Cs|∑
k=1

ysi,k logGkC2
(GF (xsi )) + (1− ysi,k) log(1−GkC2

(GF (xsi ))) (5.7)

where ysi,k denotes the ground-truth label for source example xsi and the probability of

each sample x belonging to class k is GkC2
(GF (x)). This similarity measure defined so

far is still exposed to risk as to the value of d1(x) for target samples can be uncertain.

To further support the similarity measure, we compute the probability of a sample

belonging to C when measured against the ‘unknown’ class probability from the domain

classifier GC1 as follows,

d2(x) = (1− P (y = N + 1|x)). (5.8)

Target samples residing in the shared label set are likely to produce higher d2(x) than

unknown target samples. Now, we define our final similarity measure supported by

GC1 and GC2 as,

GD(GF (x)) = (d2(x))(d1(x)). (5.9)

Now, GD(GF (xtj)) can be seen as the complete measure of the likelihood of target

samples belonging to shared label space C, i.e., for target samples, the higher the value

of GD(GF (x)) is the more probable that it belongs to the shared classes.

For the convenience of understanding, we represent the possible cases of outcomes from

the two deciding factors (i.e., d1(xtj) and (d2(xtj)) for computing the similarity measure

of the known and unknown target samples as follows:

AH: For the target samples belonging to the shared label space C, it is highly likely the

output of d1(xtj) will be high.

AL: For the target samples belonging to the target private label space Ct, it is highly

likely the output of d1(xtj) will be low.

BH: For the target samples belonging to the shared label space C, it is highly likely the
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output of d2(xtj) will be high.

BL: For the target samples belonging to the target private label space Ct, it is highly

likely the output of d2(xtj) will be low. Note that, here, high means close to 1 and low

means close to 0. In the cases below, (A,B) denotes the occurrence of A and B for

measuring the similarity of a target sample to the source domain.

Case 1 (AL, BL): For this case, the computed similarity measure (5.9) will be low and

this will assist the generator in deciding to increase the value of P (y = N + 1|xtj) for

maximising the error of the domain classifier GC1 and align the sample towards the

‘unknown’ class.

Case 2 (AL, BH ): For this case, the computed similarity measure (5.9) will be low and

this will assist the generator in deciding to increase the value of P (y = N + 1|xtj) for

maximising the error of the domain classifier GC1 and align the sample towards the

‘unknown’ class.

Case 3 (AH , BL): For this case, the computed similarity measure (5.9) will be low and

this will assist the generator in deciding to increase the value of P (y = N + 1|xtj) for

maximising the error of the domain classifier GC1 and align the sample towards the

‘unknown’ class.

Case 4 (AH , BH ): For this case, the computed similarity measure (5.9) will be high and

this will assist the generator in deciding to decrease the value of P (y = N + 1|xtj) for

maximising the error of the domain classifier GC1 and align the sample towards the

known classes.

We train the supplementary domain classifier GD as follows,

EGD = − 1

ns

ns∑
i=1

log(GD(GF (xsi ))−
1

nt

nt∑
j=1

log(1−GD(GF (xtj))). (5.10)

Equations (5.9) and (5.10) indicate that the outputs of GD are dependent on the output

of the supplementary source classifier GC2 and the output of the domain classifier GC1 .

This verifies that GD is trained to evaluate target samples based on the discriminative

known classes and unknown class label information, which will assist GD to assign

meaningful and identifiable weights to target samples belonging to C and Ct. Thus, we
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obtain weights to quantify the similarity of target samples to the source domain from

GD as,

W (xtj) = GD(GF (xtj). (5.11)

During the early phase of training, if either one of the classifiers (GC1 , GC2) produces

uncertain similarity measure (d2(x), d1(x)), it will be supported by the other ones’

decision for assigning weights to the target samples. However, over the training epochs,

both the classifiers will converge to their optimal value for the feature extractor GF . In

such an advanced phase of training, the target samples belonging to the shared label

space will surely get close to 1 similarity score fromGC2 as it is trained on source samples

only. Similarly, the similarity score for that target sample from GC1 will also be high

as GC1 learns to yield low ‘unknown’ class probability for target samples belonging

to C. Thus, the combined weight W (xtj) will be high, and the sample will be aligned

to the known classes. On the other hand, if a target sample comes from outside the

shared label space, then the GC2 will produce close to 0 similarity score. The GC1 will

produce low score as well for such sample, and eventually, the weight W (xtj) will be low,

and the sample will be aligned to the ‘unknown’ class. Section 5.4.6 provides pictorial

representation of learned weights.

Considering all the above-discussed derivations, we present our proposed adversar-

ial DA model with multi-classifiers. We denote the parameters of the supplementary

source classifier GC2 as θGC2
. The overall objectives of our proposed method are:

θGC1
= argmin

θGC1

EGC1
+ E

′
GC1adv

, θGF = argmin
θGF

EGC1
− E′GC1adv

,

θGC2
= argmin

θGC2

EGC2
+ ED.

(5.12)

During back-propagation, we use a gradient reversal layer [67] to calculate the gradient

of E
′
GC1adv

efficiently. Unlike prior work [84], our proposed model does not need any

prior training on the source dataset. We optimise all the objectives simultaneously in an

end-to-end fashion.



§5.4 Experimental Studies 92

5.3.2.3 Constraining positive transfer

In this section, we discuss how the proposed method limits the tendency of negative

transfer in the OSBP model based on the case discussed in Section 5.3.1, which explains

negative transfers in the OSBP model. In contrary to OSBP model, for example, when

the domain classifier assigns P (y = N + 1|xtj) = 0.4 for a target sample, the GD in

our proposed method will generate a weight W (xtj) for the sample after evaluating its

similarity to the source domain based on (5.5 - 5.11). In short, we compute the value of

d2(xtj) (5.6) and d1(xtj) (5.6). The former one is 0.6 in this case (we consider this value

as a high as it is closer to 1 than 0), and the latter one can be either high and yield high

weight W (xtj) or low leading to low weight W (xtj) based on (5.11). If the weight W (xtj)

is high, the proposed model will assist the generator in aligning the sample to known

classes by decreasing P (y = N+1|xtj). Otherwise, if the weightW (xtj) is low, the sample

will be aligned to ‘unknown’ class by maximising the value of P (y = N + 1|xtj). Thus,

our DA model does not participate in negative transfer by aligning unknown samples to

known classes.

5.3.2.4 Testing Phase

During the training phase, we fulfill our goal to transform the domain classifierGC1 from

source domain classifier to target domain classifier, including the category ‘unknown’

by utilising GC1 and GD classifiers. In the testing phase, we omit the supplementary

classifiers and utilise only the trained feature generator GF , and GC1 to classify test

images correctly, as shown in Figure 5.2c.

5.4 Experimental Studies

In this section, we describe the datasets, our evaluation details, and the results. We

conduct experiments to evaluate our proposed method with contemporary DA methods

on four standard datasets.
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5.4.1 Datasets

Office-31 [57] has 31 categories in three visually distinct domains, namely: amazon

(A), DSLR (D) and webcam (W). This dataset comprises a collection of samples from

amazon.com, captured samples from DSLR and web camera for DA. We have chosen

the first 10 classes as C and the last 10 classes as ‘unknown’ samples in the target domain

Ct for accomplishing six open set DA tasks: A→W, D→W, W→ D, A→ D, D→ A and

W→ A.

VisDA2017 [187] poses a special DA setting by focusing on a simulation (rendered

3D images) to real-world DA setting. Game engines generate the samples of source

domain while the target domain samples are actual images. This dataset comprises 12

categories. Inline with [84], we have chosen six classes (bicycle, bus, car, motorcycle,

train, and truck) as the shared classes C and the remaining six classes as ‘unknown’

classes in the target domain.

Office-Home [188] consists of 65 classes in four different domains: Artistic images

(Ar), Clip-Art images (Cl), Product images (Pr), and Real-World images (Rw). The first

10 classes in alphabetical order are used as the shared classes C. Leaving the next five

classes private to the source domain, the rest classes are considered as ‘unknown’ or

private to the target domain. For this dataset, we have designed 12 open set DA tasks:

Ar→ Cl, Ar→ Pr, Ar→ Rw, Cl→ Ar, Cl→ Pr, Cl→ Rw, Pr→ Ar, Pr→ Cl, Pr→ Rw, Rw→

Ar, Rw→ Cl and Rw→ Pr.

ImageNet-Caltech is a combination of ImageNet-1K [175] consisting 1000 categories

and Caltech-256 with 256 categories. In line with previous works [105,184], we have used

the common 84 classes as the known or shared classes C and have used the remaining

classes as the ’unknown’ class in the target domain. We have performed two open set

DA tasks I→ C and C→ I for this dataset.

5.4.2 Evaluation Details

Evaluation Protocols. In this paper, we have followed the evaluation protocol of the

Visual DA (VisDA 2018) Open-Set Classification Challenge. This protocol assumes all the
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target domain private classes |Ct| as a unified ‘unknown’ class and the average per-class

accuracy for all the |C| + 1 classes is the final result. Also, being inspired by [57], we

present the normalised classification accuracy measured on all the known classes and

the ‘unknown’ classes (|C|+ 1) as OS, and the normalised classification accuracy only

on the shared classes (|C|) as OS?.

Implementation Details. We have used ImageNet pre-trained ResNet-50 and ResNet-

152 [4] with new fully-connected and batch normalisation layers as the feature generator.

We have used SGD with a learning rate of 0.001 for pre-trained layers, 10 times higher

than that for new layers, and momentum of 9. Note, while the original papers show

results on a variety of backbone networks such as VGG, AlexNet, and ResNet-50, for

the sake of fairness and consistency we tested them all using ResNet-50. Also, we have

executed up to 1000 epochs for training, but if any of the contemporary methods con-

verged earlier than that, we stopped the training. The performance difference between

our implementation of the contemporary DA methods and the original papers is mainly

due to different backbone networks and the number of iterations. Note that the results

cannot be directly compared against other publicly reported results due to different

train-test data split and versions of PyTorch.

Compared DA Methods. For the sake of thoroughness, we have compared the per-

formance of the proposed method with: 1) Classifier without DA: ResNet [4] (Note that

Negative transfer is calculated against this non-DA classifier.); 2) Closed-set DA methods:

Domain-Adversarial Neural Networks (DANN) [54] and Residual Transfer Networks

(RTN) [50]; 3) Partial DA methods: Importance Weighted Adversarial Nets (IWAN) [185]

and Example Transfer Network (ETN) [184]; 4) Open set DA methods: Unsupervised DA

by back-propagation (BP) [67] with unknown source samples, Assign-and-Transform-

Iteratively (ATI) [81], OSDA by Back-Propagation (OSBP) [84] and Separate to Adapt

(STA) [85]; 5) Universal DA method: Universal Adaptation Network (UAN) [107].

5.4.3 Classification results

The classification results on the 12 tasks of Office-Home, 6 tasks of Office-31, the task

of VisDA and 2 large-scale tasks of ImageNet-Caltech are shown in Tables 5.1, 5.2, 7.3
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Table 5.1: Classification accuracy (%) of proposed and contemporary DA methods on Office-
Home dataset tasks.

Approach
Accuracy (%)

Ar→ Cl Ar→ Pr Ar→ Rw Cl→ Ar Cl→ Pr Cl→ Rw Pr→ Ar Pr→ Cl Pr→ Rw Rw→ Ar Rw→ Cl Rw→ Pr Avg
OS OS? OS OS? OS OS? OS OS? OS OS? OS OS? OS OS? OS OS? OS OS? OS OS? OS OS? OS OS? OS OS?

ResNet [4] (2016) 54.4 54.8 69.5 70.1 78.7 78.1 62.0 61.3 60.8 62.3 71.6 72.5 64.2 64.4 58.9 58.6 75.5 76.1 70.3 69.2 52.5 51.5 74.5 75.3 66.1 66.2
DANN [54] (2016) - 44.8 - 68.5 - 79.5 - 65.5 - 57.9 - 67.4 - 56.9 - 40.2 - 77.5 - 68.5 - 45.2 - 77.6 - 62.4

RTN [50] (2016) - 50.9 - 75.6 - 82.9 - 66.5 - 73.4 - 85.7 - 65.6 - 47.9 - 84.5 - 78.1 - 56.9 - 77.6 - 70.4
IWAN [185] (2018) 53.1 52.1 79.4 78.5 86.1 86.4 70.2 69.7 70.9 71.3 86.8 85.1 74.9 74.5 55.6 55.7 85.1 84.2 77.9 78.7 60.8 59.4 77.2 76.8 73.1 72.7
ETN [184] (2019) 59.3 59.0 77.1 76.8 85.6 85.7 63.1 62.9 65.6 65.1 75.3 75.6 68.3 67.8 55.4 55.6 86.4 85.9 78.7 77.5 62.3 61.5 84.4 84.2 71.8 71.4
UAN [107] (2019) 63.0 62.5 82.8 82.4 86.8 85.9 76.8 76.9 78.7 79.1 84.4 84.8 78.2 77.4 58.6 57.8 86.8 85.9 83.4 82.5 63.2 63.0 79.1 78.1 76.8 76.6

BP [67] (2015) 53.6 51.0 69.1 65.9 75.9 74.1 59.5 57.3 65.2 62.5 73.2 72.0 47.2 45.0 43.9 40.2 78.7 76.4 70.6 65.3 45.6 42.1 77.5 74.2 63.3 60.5
ATI [81] (2017) 53.8 51.3 80.4 77.9 86.1 85.0 71.2 67.8 72.3 70.5 85.1 83.2 74.3 72.5 57.9 55.1 85.6 84.7 76.1 75.2 60.2 58.7 78.3 77.0 73.4 71.5

OSBP [84] (2018) 48.5 48.6 70.9 70.6 75.2 74.2 59.5 58.2 61.6 59.9 75.1 74.5 61.9 62.2 43.5 43.2 79.9 80.4 70.1 70.2 53.9 54.1 75.7 75.4 64.6 64.3
STA [85] (2019) 57.8 58.1 71.3 70.1 84.9 85.5 61.4 61.9 68.1 67.9 75.2 75.8 64.3 63.2 51.8 52.2 80.2 79.1 73.9 74.2 53.6 54.5 80.5 81.4 68.6 68.7
Our(ResNet-50) 64.8 64.9 84.6 84.9 88.1 88.2 79.6 79.9 81.6 82.9 85.6 86.8 77.9 78.5 61.8 63.1 85.9 87.5 85.4 85.6 67.5 65.2 80.9 80.1 78.6 79.0
Our(ResNet-152) 66.1 66.9 85.9 86.7 87.6 87.9 80.5 80.8 83.5 85.6 86.9 87.9 79.9 81.1 63.1 64.8 87.9 88.7 86.9 88.2 68.8 69.7 82.1 82.8 80.0 80.9

Table 5.2: Classification accuracy (%) of proposed and other DA methods on Office-31 tasks.

Approach
Accuracy (%)

A→W D→W W→ D A→ D D→ A W→ A Avg
OS OS? OS OS? OS OS? OS OS? OS OS? OS OS? OS OS?

ResNet [4] (2016) 83.2 83.8 93.8 94.7 95.8 94.6 84.6 84.7 72.3 71.9 75.5 75.3 84.2 84.2
DANN [54] (2016) - 80.2 - 79.9 - 87.5 - 80.4 - 74.9 - 80.9 - 80.6

RTN [50] (2016) - 88.1 - 89.8 - 84.8 - 73.1 - 85.1 - 84.7 - 84.2
IWAN [185] (2018) 86.5 84.9 89.9 87.1 91.1 90.3 82.3 79.6 82.2 80.6 85.7 83.1 86.3 84.3
ETN [184] (2019) 85.7 84.4 93.6 92.9 96.9 96.0 84.9 85.1 84.9 85.6 85.2 85.0 88.5 88.1
UAN [107] (2019) 85.6 84.3 94.7 93.9 97.9 97.5 86.5 84.9 85.5 85.6 85.1 84.6 89.2 88.4

BP [67] (2015) 75.9 74.1 89.7 87.2 94.4 93.2 78.4 76.8 56.8 55.3 62.9 62.7 76.3 74.8
ATI [81] (2017) 78.4 74.9 92.6 90.6 97.1 95.6 78.9 77.5 71.6 70.1 76.8 74.2 82.5 80.4

OSBP [84] (2018) 67.4 66.9 83.7 83.5 95.1 94.8 82.6 82.0 76.6 76.5 79.5 78.9 80.8 80.4
STA [85] (2019) 88.6 90.1 97.1 95.2 97.3 97.5 91.9 93.1 88.3 88.6 84.1 84.2 91.2 91.4
Our(ResNet-50) 88.3 88.4 97.3 97.8 98.1 98.4 87.8 88.6 89.9 89.6 84.9 85.8 91.1 91.5
Our(ResNet-152) 90.2 90.8 97.9 98.8 98.6 98.8 89.5 89.7 91.0 91.7 86.8 87.6 92.4 92.9

and 5.4 respectively (‘-’ indicates that results could not be regenerated because of closed

set DA setting and negative transfer for DA classifiers against the non-DA classifier

ResNet [4] (shown in gray background) are indicated by showing the classification

accuracy in italic). Our proposed method outperforms all the compared methods in

terms of the average per-class accuracy except for Office-31 dataset, where STA [85]

leads by 0.1%. However, we have better OS? than STA for Office-31 dataset. We observe

that all contemporary partial, universal, and open set DA methods lag behind ResNet

classifier [4] on some tasks because of negative transfer during adaptation. This negative

transfer is the effect of the difference in source and target domain label space introduced

by unknown classes. In addition, the accuracy of the OS? is lower than that of OS for the

majority of the tasks, which means a large number of unknown images are misclassified.
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Table 5.3: Classification accuracy (%) of proposed and other DA methods on ImageNet-Caltech
tasks.

Approach
Accuracy (%)

I→ C C→ I Avg
OS OS? OS OS? OS OS?

ResNet [4] 75.7 75.1 67.1 67.8 71.4 71.5
DANN [54] (2016) - 71.1 - 65.9 - 68.5

RTN [50] (2016) - 71.9 - 66.2 - 69.1
IWAN [185] (2018) 74.1 72.9 68.7 65.3 71.4 69.1
ETN [184] (2019) 74.9 74.8 69.8 69.9 72.4 72.4
UAN [107] (2019) 75.3 76.3 70.2 70.8 72.7 73.6

BP [67] (2015) 68.9 67.3 61.2 59.0 65.0 63.2
ATI [81] (2017) 71.6 65.9 67.4 65.1 69.5 65.5

OSBP [84] (2018) 63.1 63.4 54.8 53.6 58.9 58.5
STA [85] (2019) 75.3 74.2 68.1 68.3 71.7 71.3
Our(ResNet-50) 77.4 77.8 69.8 70.1 73.6 74.0
Our(ResNet-152) 78.9 79.7 71.9 71.7 75.4 75.7

Table 5.4: Classification accuracy (%) of proposed and other DA methods on VisDA2017 tasks.

Approach
Accuracy (%)

bicycle bus car motorcycle train truck unknown OS OS?

ResNet [4] (2016) 40.2 55.4 63.5 70.8 74.1 35.2 45.6 54.9 56.5
DANN [54] (2016) 32.4 51.6 65.1 71.3 85.1 23.1 - - 52.1

RTN [50] (2016) 31.6 63.6 54.2 76.9 87.3 21.5 - - 51.1
IWAN [185] (2018) 30.6 69.8 58.3 76.8 65.5 30.8 69.7 57.3 55.3
ETN [184] (2019) 31.6 66.8 61.7 77.8 70.8 30.8 70.7 58.6 56.6
UAN [107] (2019) 42.6 67.8 65.7 76.9 69.8 31.8 70.7 60.9 59.1

BP [67] (2015) 31.8 66.5 50.5 70.1 86.9 21.8 38.5 52.3 54.6
ATI [81] (2017) 33.6 51.6 64.2 78.1 85.3 22.5 42.5 54.8 52.6

OSBP [84] (2018) 35.6 59.8 48.3 76.8 55.5 29.8 81.7 55.4 50.9
STA [85] (2019) 50.1 69.1 59.7 85.7 84.7 25.1 82.4 65.3 62.4
Our(ResNet-50) 50.6 74.8 66.7 80.6 75.9 38.8 73.9 65.9 64.6

Our(ResNet-152) 52.1 77.7 67.7 81.4 80.8 39.8 75.5 67.8 66.6

Our proposed method yields better results for OS? than OS which indicates a better

separation of known and unknown target samples.

DA methods such as BP (with unknown classes in the source domain) [67] and

ATI [81] are trained to align target domain towards source domain employing distri-

bution matching methods. During this process, the unknown source or target samples

disturb the known class feature alignment leading to such performance degradation.

The performance lag in OSBP [84] method compared to ResNet backbone for some tasks

supports our claim. That is, the OSBP incurs negative transfer because it tends to align
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some unknown target samples to known classes by enforcing empirical boundary thresh-

old, and not exploring underlying domain information of target samples. However,

because of adapting sample-level transferability, IWAN [185], ETN [184], UAN [107],

and STA [85] have lower negative transfer rate compared to other existing methods.

(a) RTN (b) ATI

(c) ETN (d) IWAN

(e) OSBP (f) Our

Figure 5.3: Learned features of our proposed method for A→W task from Office-31 dataset
show a better separation of unknown samples (red dots) from known classes than contemporary
DA methods. We select 10 shared classes, 10 source domain private classes, and 10 target
domain private classes for the task. Visualisation prepared by the t-SNE algorithm [172] with the
Perplexity parameter set to 50.

In Figure 5.3, we plot the t-SNE [172] embeddings of the features learned by RTN [50],

ATI [81], IWAN [185], ETN [184], OSBP [84] and proposed method on A → W task

with 10 shared classes, 10 source domain private classes and 10 target domain private

classes as per respective DA settings. The proposed method demonstrates significantly

comprehensible and well-segregated clusters for all known and unknown classes than

other DA methods. This distinct separation of unknown target samples from the known

ones is because of the supplementary source classifier, which is trained only on the

source samples to learn discriminative features for known classes. Unlike OSBP [84],

we do not need any prior training on the source domain to learn discriminative known

class features to support better classification. On the other hand, RTN [50] and ATI [81]

methods which utilise distribution matching techniques such as MMD only tries to

align target samples with the source ones and do not separate well among known and
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Table 5.5: Accuracy (%) of proposed method on VisDA2017, Office-31, and ImageNet-Caltech
tasks for ablation study.

Approach
Accuracy (%)

VisDA A→W D→W W→ D A→ D D→ A W→ A Avg I→ C C→ I Avg
w/o d2 63.3 86.1 93.1 96.2 84.2 86.5 82.1 88.0 75.3 66.4 70.9
w/o d1 61.1 84.8 93.8 94.7 85.1 84.7 82.3 87.6 74.6 65.0 69.8

Our(ResNet-50) 65.9 88.3 97.3 98.1 87.8 89.9 84.9 91.1 77.4 69.8 73.6

unknown classes. Though ETN [184] shows better clusters than IWAN [185] for initiating

less negative transfers, it certainly lags behind our method.

5.4.4 Analysis on Various Open Set DA Settings

(a) (b)

Figure 5.4: (a) The proposed method consistently performs better than contemporary DA meth-
ods for all cases of |Ct|. The performance of our proposed method increases with an increase of
the number of unknown classes in the target domain |Ct|. (b) Our proposed method outperforms
contemporary DA methods with different DA settings for different sizes of the shared label set.
We observe that when |C| reaches beyond 20, the performance of our method decreases slightly.
This indicates our proposed method is more suitable for tasks that have more ‘unknown’ classes
in the target domain.

Varying Size of Ct. We compare the performance of our proposed method with

other methods by varying the number of unknown samples in the target domain for

D→ A task. Figure 5.4a shows that our proposed method maintains moderate increment

of performance with no significant drop in-between transitions of varying |Ct| and

outperforms all compared DA methods for all cases. This indicates a larger number of

unknown classes in the target domain |Ct| compared to the shared classes assists both the
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source GC1 and supplementary source GC1 classifiers, by initiating less distraction and

can lead to solving more realistic tasks where unknown source samples are unavailable.

Note that our proposed method does not take advantage of any prior knowledge about

the label sets like OSBP [84] and IWAN [185].

Varying Size of C. We further explore the performance of the proposed method by

varying the number of shared classes for the same task D→ A and compare it with other

methods (Figure 5.4b). The proposed method maintains high accuracy with a slight

drop when |C| > 20. The evaluation of the task shown here is a sub-task of the Office-31

dataset. The office-31 dataset has 31 categories when the shared label set C is beyond

20 the target private label set |Ct| decreases to less than 10. The proposed method is

designed to handle well the tasks which have a large number of unknown classes in the

target private label space. Therefore, the increment of shared label space, which causes

decrement of target private label space in a large proportion, harms the model. However,

the proposed method substantially outperforms other compared methods for all cases

of |C|.

5.4.5 Ablation Study

We execute an ablation study for evaluating two variants of the proposed DA method

with the multi-classifier based weighting module to investigate deeper into its effective-

ness. w/o d2 is the variant of proposed method without integrating the outcome of d2(x)

(domain information) in the procedure of weighting target samples, i.e., in (5.9) and

(5.10). w/o d1 is the variant without integrating the known-source label information into

the weighting mechanism by omitting GC2 and deploying GD to depend only on the

value of d2(x) for source and target samples. To execute this variant, we need to omit

(5.5) and (5.7), omit d1(x) in (5.9) and (5.10).

Table 5.5 presents the results for the variants of the proposed method, as mentioned

above. The performance of both w/o d2 and w/o d1 lag behind the proposed method.

This is because both the deciding factors d1(xti) and d2(xti) are required for defining

meaningful weights W (xtj) to the target samples. We also observe that the variant
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without w/o d2 achieves better average per-class accuracy than the other one for all

three tasks, which indicates integrating the supplementary source classifier GC2 in the

weighting module for exploiting label information is more effective.

5.4.6 Weight Visualisation

(a) (b)

Figure 5.5: Pictorial representation of learned weights of (a) known target samples and (b)
unknown target samples for the task D→ A (Office-31). Here, W represents the weights assigned
to target samples during training by GD after assessing the two similarity measures d1 and d2.

To analyse the trend of generated weights, we plot the learned similarity measures

(d1 and d2) and final weights (W ) of known and unknown target samples against the

training epochs in Figure 5.5. Figures 6.7a and 6.7b show that our proposed method

assigns sufficiently high and low weights (W ) to known and unknown target samples,

respectively. It is evident that such weights will assist the adversarial module in en-

hancing positive transfer by better separation of known target samples from unknowns.

During the early stage of learning, both d1 and d2 increases for known and unknown

samples which means the classifiers give uncertain decisions. However, after some

initial epochs, for known samples, d1 seems to increase at a larger pace and learns to

yield a much higher value than d2. This is because the classifier GC2 is trained only on

source samples. On the other hand, for unknown samples, both the similarity measures

start to decrease. When both GC2 and GC1 converge to their optimal value for GF , d1, d2

and W for known target samples reaches near 0.98, 0.88 and 0.86 respectively. Which

means the target samples get very high weights as the training proceeds and dictate
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GF to decrease the ‘unknown’ class probability for aligning them to known classes. For

unknown target samples, d1, d2 and W decreases to 0.15, 0.25 and 0.04 respectively.

This indicates the target samples get very low weights and assists GF to increase the

‘unknown’ class probability and align them to unknown classes. It is worth mentioning,

the final value of d1, d2 and hence W may differ a little based on the dataset or task.

5.5 Summary

In this chapter, we have proposed a multi-classifier based domain adversarial network

for an OSDA setting, where the target domain has a larger number of classes than

the source domain. The multi-classifier structure incorporates a weighting module

that explores discriminative label and domain information, and assigns distinguishable

scores to the known and unknown target samples for enhancing positive transfer and

eventually, assisting the feature generator and the domain classifier to separate known

and unknown target samples. Another noteworthy attribute of our proposed method is

the ability to discover the boundary between shared label space and target private label

space automatically. A thorough experimental evaluation has demonstrated that the

proposed method consistently outperforms the existing DA methods. We have further

shown through the ablation study that the two deciding factors for generating weights

for target samples are crucial for maintaining the integrity of the model and initiating

positive sample transfer.

This chapter has discussed in detail our third contribution. In the next chapter,

we discuss our fourth contribution, i.e., utilise mutual information concept from the

information theory to mitigate negative transfers from OSDA.



Chapter 6

Reducing Negative Transfers in
OSDA by Mutual Information

1In the previous chapter, we introduced our proposed multi-classifier based adaptive

weighting scheme to reduce negative transfers and improve OSDA performance. This

chapter examines how to mitigate negative transfers from OSDA by utilising mutual

information (I), thereby fulfilling the fourth contribution of this thesis.

In some cases, current OSDA methods are vulnerable to negative transfers due to de-

ficient known-unknown target sample separation modules. In this chapter, we propose

another novel approach to OSDA, Domain Adaptation based on Mutual Information

(DAMI) to address this problem. For learning a better separating module, we propose

optimising Mutual Information to increase shared information between source and known

target samples and decrease shared information between source and unknown target

samples. Then, we propose to use Point-wise Mutual Information to compute the similar-

ity between the source and target samples. A weighting module in DAMI utilises the

mutual information optimisation and point-wise mutual information to execute coarse-to-fine

separation of the known and unknown target samples. An adversarial DA module in

DAMI uses the weighting module for adapting known target samples towards the source

domain. The weighting module limits negative transfer by step-wise evaluation and

verification. We demonstrate that DAMI is robust to various openness levels, performs

1Chapter 6 is adapted from: T. Shermin, G. Lu, S. W. Teng, M. Murshed, and F. Sohel, “Adversarial
Open Set Domain Adaptation based on Mutual Information,” Revision Submitted to IEEE Transactions on
Image Processing, 2021 [arXiv: 2007.00384v1].
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well across significant domain gaps, and remarkably outperforms contemporary DA

methods on several benchmark datasets.

6.1 Overview

Like in Chapter 5, we focus on OSBP DA setting (Figure 5.1d) in this chapter. To mitigate

negative transfer, the OSDA model must first separate the unknown and known target

samples and then only align the known target samples to the source domain. Many

authors have relied only on the domain confidence of a source trained classifier for

separating known-unknown target samples [85–87, 189]. Such separating classifiers do

not have knowledge about the target domain and misclassify unknown target samples

as known target samples. Consequently, DA performance degrades. Clearly, an OSDA

model with a faulty known-unknown target samples separation module is vulnerable to

negative transfer and DA performance.

To address the issue of negative transfer and improve OSDA performance, we pro-

pose an adversarial OSDA model. We refer to our proposed OSDA model as Domain

Adaptation based on Mutual Information (DAMI). DAMI has a new three-step coarse-to-

fine known-unknown separation weighting module and a domain adversarial network

(DAN). First, the weighting module assigns distinguishable weights to known and

unknown target samples by exploiting distinctive domain information and mutual de-

pendence between domains. Then based on the generated weights, the DAN performs

adversarial domain adaptation by aligning known target samples towards known source

samples and recognises the unknown target samples as ‘unknown’. Unlike existing

works [85–87, 189], our weighting module do not rely only on the domain confidence.

First, it coarsely separates known-unknown target samples based on underlying dis-

criminative domain information. Then it simultaneously maximises mutual information I

between the source samples and the preliminary known target samples and minimises I

between the source samples and the preliminary unknown target samples. This opti-

misation reduces the uncertain predictions for out-of-the-source distribution samples.

Specifically, it forces the preliminary unknown target samples to move away from the
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source domain and pull the preliminary known target samples closer to the source

domain. After this optimisation, the weighting module gains better knowledge about

target samples similar and dissimilar to the source domain. Consequently, the module

learns richer known-unknown discriminative features. Finally, the weighting module

uses the richer features for fine separation and assigns distinguishable weights to the

known-unknown target samples. Fine separation is performed by evaluating the point-

wise mutual information (pmi) between each target sample and the source domain. The

known target samples will exhibit strong statistical relation/dependence with the source

samples compared to the unknown target samples. Thus, pmi score for known target

samples will be higher than unknown samples making the known-unknown separation

more accurate. The three-step assessment ensures that our model encourages improved

separation of known-unknown target samples. As a result, DAMI delivers a better

adaptation of known target samples to the source domain compared to contemporary

works. DAMI also outperforms the non-DA classifiers, which indicates the mitigation of

negative transfers.

For different DA settings, existing DA works based on I either minimises or max-

imises I [95–99]. However, DAMI simultaneously maximises and minimises I for OSDA.

For optimising I, existing works use adversarial approximation of the variational upper

bound and contrastive lower bound [97], Kullback–Leibler divergence [98], Jensen-

Shannon I estimator [99, 190], and Barber & Agakov lower bound [191] of I [100]. DAMI

adopts a neural estimator (MINE [192]) compatible with GANs for optimising I. MINE

produces tractable estimators, which have tighter bounds than [191] with the optimal

critic [193]. MINE has not been exploited for simultaneous minimisation and maximisa-

tion of I. pmi is a measure of co-occurrence. In prior research, pmi is used for sentiment

classification, speech tagging, and other DA tasks in Natural Language Processing

(NLP) [101, 104]. However, to the best of our knowledge, we are the first to exploit pmi

in OSDA for image recognition.

The key contributions of this chapter can be summarised as follows:

• We propose a novel OSDA model that has a three-step coarse-to-fine weighting
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module for separating known-unknown target samples to limit negative transfer

and an adversarial DA module.

• The proposed weighting module does not only rely on domain confidence. It

optimises I between known-unknown target samples and the source domain to

learn better known-unknown discriminative features and ensure better separation.

For fine separation, it uses pmi score between the source and target samples. This

facilitates in generating distinguishable instance-level weights for known and

unknown target samples.

• We present an extensive empirical evaluation on several benchmark datasets

to demonstrate the superior state-of-the-art performance of DAMI compared to

contemporary methods. We also show that DAMI maintains desirable performance

on different levels of openness and domain gaps.

6.2 Proposed Method

The proposed method DAMI shown in Figure 6.1 comprises of two modules: 1) Weight-

ing module to separate known-unknown target samples, and 2) Domain Adversarial

Network (DAN). The weighting module uses domain confidence and mutual domain

dependence to generate identifiable weights for the known-unknown target samples.

This will encourage correct separation and mitigate negative transfers. Then, the genera-

tive adversarial DA module, DAN, uses the weights to align the known target samples

to the source domain and recognises the unknown target samples as ‘unknown’. A

conceptual overview of DAMI is shown in Figure 6.2.

6.2.1 Weighting Module to Separate Known-Unknown Target Samples

In this section, we present the weighting module of DAMI in detail. The weighting

module aims to assign an instance-level weight w(xtj) to every target sample in three

steps. The three steps of the coarse-to-fine weighting module are (1) Coarse Separation



§6.2 Proposed Method 106

Figure 6.1: Block diagram of DAMI. The Domain Adversarial Network (DAN) comprises the
feature extractor F , main classifier Cl1, and adversarial domain discriminator D3. The Weighting
module is constructed with a classifier Cl2, two non-adversarial binary discriminators D1 and
D2, and a feature discriminator G. The distinguishable weights w for known and unknown
target samples are generated after three-step evaluation through (1) Coarse Separation Network
(CSN); (2) Mutual Information Optimisation Network (MION); and (3) Fine Separation Network
(FSN). The DAN uses w to perform the OSDA task. The right arrows denote forward passes; the
dotted arrows represent the similarity measures in different steps, and the left arrows represent
backward passes.

Figure 6.2: A conceptual overview of the proposed DAMI. (a) A view of the initial state of the
OSDA setting. (b) CSN roughly determines the known-unknown target samples. (c) MION
pushes the unknown classes away from known classes (purple arrows) and pulls known target
classes towards the known source classes(black arrows). (d) FSN utilises the latent space created
between the known and unknown domain in the MION to finely separate known-unknown
target samples using pmi and generate distinguishable weights w. (e) Finally, DAN uses w to
align known target samples to source domain and unknown target samples as ‘unknown’.

Network (CSN), (2) Mutual Information Optimisation Network (MION), and (3) Fine

Separation Network (FSN).

Overview: First, the CSN uses domain confidence to coarsely separate known-
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unknown target samples. The domain confidence is computed by evaluating the under-

lying domain similarity of the target samples to the source domain. Since this rough

separation is dependent only on the domain confidence of a classifier, it is not satisfac-

tory for reducing negative transfers. Then, to learn better discriminative information

for known and unknown target samples, we impose the knowledge of the similarity

and dissimilarity of the target samples to the source domain in the MION. MION uses

the decision of CSN to simultaneously maximise I between preliminary known target

samples and source samples and minimise I between preliminary unknown target sam-

ples and source samples. Hence, MION drives preliminary unknown target samples

away from the source domain and pulls preliminary known target samples closer to the

source domain (see Figure 6.2c). Consequently, MION better understands discriminative

information for dissimilar source-target classes and common information for similar

source-target classes. Finally, FSN uses the richer features of MION for fine separation

and generates distinguishable weights to the known-unknown target samples. Fine

separation is performed by evaluating the pmi score between every target sample and

the source domain. Since MION optimises I, computing the pmi score depending on

MION will lead to finer separation (see Figure 6.2d). The target sample of a source-target

pair with a high pmi score will be assigned higher weights and vice-versa.

CSN: For coarse separation, we determine the underlying domain similarity between

the source and target samples. To accomplish this, we place a multi-class one-vs-rest

source classifier Cl2 (Figure 6.1).We aim to estimate the similarity of a target sample to

the source classes based on the domain confidence of Cl2. The Cl2 takes features from

the feature generator F and determines the similarity of target samples to individual

source labels Cs. We utilise a leaky softmax [184] and binary cross-entropy loss to

optimise Cl2 as follows,

ECl2 = − 1

ns

ns∑
i=1

|Cs|∑
c=1

ysi,c log(Clc2(F (xsi ))) + (1− ysi,c) log(1− Clc2(F (xsi ))), (6.1)

where ysi,c denotes the ground-truth label for the ith source sample, which belongs

to the cth known class. Clc2(F (xsi )) is the probability of a sample belonging to the
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cth known class. As Cl2 is trained only on the source domain Clc2(F (x)) represents

the similarity between the target sample and the cth known class. The element-sum

(Esum(x) =
∑|Cs|

c=1 Cl
c
2(F (x))) of the leaky-softmax outputs will be high or close to 1 for

target samples resembling the source domain. However, it will low or close to 0 for

samples dissimilar to the source domain. Thus, known target samples are prone to

producing a higher Esum(x).On the other hand, the unknown target samples produce

low Esum(x).

We then utilise Esum(x) to train a binary discriminator D1 to generate coarse similar-

ity scores. The binary discriminator assumes that known target samples belong to the

shared label space. Therefore, D1 trains itself to produce high output for samples with

high Esum(x) and low output for samples with low Esum(x) as follows,

ED1 = − 1

ns

ns∑
i=1

logD1(Esum(xsi ))−
1

nt

nt∑
j=1

log(1−D1(Esum(xtj))). (6.2)

Now, we represent the output probability of D1 as d(xtj) = D1(Esum(xtj)). d(xtj) rep-

resents a probabilistic domain confidence, which is a preliminary similarity score for

coarse separation of source-like target samples and source-unlike target samples at this

step. For a source-like target sample d(xtj) is high while for a source-unlike target sample

d(xtj) is a low probability value (for more details see Section 6.3.4).

MION: Now, we introduce a feature discriminator G to minimise I between pre-

liminary unknown target samples and the source samples and maximise I between

preliminary known target samples and the source samples. Maximising I will increase

the amount of uncertainty removed in G for the preliminary known target samples. On

the other hand, minimising I will introduce more uncertainty in G for the preliminary

unknown target samples. In particular, simultaneously knowing how to group target

classes similar to the source domain and separating target classes dissimilar to the source

domain will assist G to learn better known-unknown discrimination for the target do-

main. We rank d(xtj) for the target samples to identify m preliminary known and m

preliminary unknown target samples, where, m = b/4 and b = batch size. We use the

selected m preliminary known, m preliminary unknown target samples and the source
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samples for optimising I. Note that the value of m = b/4 is determined empirically and

is suitable for a wide range of tasks.

We adopt MINE [192] to calculate the I. In DAMI, MINE exploits the bound I(Xs, Xt) ≥

IΘ(Xs;Xt), where X represents the output features of G and IΘ(Xs;Xt) denotes the

neural information measure. The unbiased estimation of I on l i.i.d samples is measured by

using a neural network Tθ as,

I(Xs;Xt)l

∧
= sup

θ∈Θ
E
P

(l)

XsXt
[Tθ]− log(E

P
(l)
Xs )⊗P̂ (l)

Xt
[expTθ ]. (6.3)

Here, PXsXt is the joint probability distribution of (G(F (Ds)), G(F (Dt))), andPXs=
∫
Xt PXsXt

and PXt=
∫
Xs PXsXt are the marginals. The objective of maximising and minimising I is

fulfilled by gradient ascent and descent, respectively. The expectations are estimated by

shuffling the samples from the joint distribution within a batch (during training). This

establishes dependency through marginalisation. G is trained to optimise I as,

EMIk = λ1I(Xs;Xt
k)l

∧
, EMIuk = λ2I(Xs;Xt

uk)l

∧
. (6.4)

Here, EMIk and EMIuk represent the computed I of preliminary known Xt
k and pre-

liminary unknown Xt
uk target samples with the source samples Xs, respectively. The

hyper-parameters (λ1 and λ2) are easy to choose empirically and work well across multi-

ple tasks. Setting λ1 > λ2 ensures that I of known samples are given higher attention

than unknowns. After optimising (6.4), G learns a function that partitions the data

such that the features of source and known target samples are closer compared to the

unknown target samples.

FSN: For fine separating known-unknown target samples, first, for source and

target samples, we convert the output features X of G to probability distribution using

a softmax layer. Then, we compute the pmi scores between softmax outputs of the

target and source samples. The softmax outputs for all target samples (Zt) and source

samples (Zs) can be treated as a distribution of discrete random variables. The pmi score

between two instances (Zsi and Ztj) of two random variables (Zs and Zt) represents the
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probability of their co-occurrence compared to their independent occurrence. The pmi

score is formalised as,

pmi(Zsi ;Ztj) = log
P (Zsi , Z

t
j)

P (Zsi )P (Ztj)
. (6.5)

The dependency between Zs and Zt is ensured by marginalisation over all samples. The

joint probability distribution is constructed as M = Zs · Zt> (ns × nt tensor M ), where

Zs and Zt matrices hold the dimension of n×X . The marginals are computed from the

summation of rows and columns of M . In the OSDA setting, the target samples from

the shared classes possess a great deal of similarity to the source samples. Thus, for G

and image feature pairs (F (xsi ), F (xtj)), when each image feature contains the similar

object of its pair but has a domain gap, the random variable constructed by the first of

each pair, Zsi , will have a powerful statistical influence on the random variable for the

second one, Ztj . On the other hand, image feature pair with dissimilar images will pose

a weak statistical relation. Therefore, the known target samples will produce higher pmi

than unknown samples. We compute the pmi of a target sample to every source sample

and consider the highest pmi value.

For generating the final instance-level weights, we introduce the binary discriminator

D2 in FSN. The goal of D2 is to distinguish known and unknown target samples depend-

ing on the computed pmi scores. To be specific, D2 learns to generate higher weights for

target samples with highest pmi than samples with the lowest pmi. We optimise D2 as

follows,

ED2 = − 1

nt

nt∑
j=1

(log(Dh
2 (G(F (xtj)))) + log(1−Dl

2(G(F (xtj))))), (6.6)

where Dh
2 (G(F (xtj))) and Dl

2(G(F (xtj))) denote the probability of target samples with

highest and lowest pmi scores, respectively. After optimising (6.6), D2 can generate fine

distinctive weights (w(xtj) = D2(G(F (xtj)))) for the target samples. The value of w(xtj)

is close to 1 for known target samples and close to 0 for unknown target samples. This

fine separation by D2 has high confidence because only extremely similar and dissimilar
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samples are used. The target samples with high w(xtj) value will be aligned to the source

domain by DAN and the target samples with low w(xtj) value will be recognised as

‘unknown’ (6.10).

6.2.1.1 Domain Adversarial Network

DAN aims to classify known target samples to corresponding source (known) classes

and recognises unknown target samples as ‘unknown’. Known target samples are first

aligned to the source domain adversarially in a two-player minimax game and then

classified to corresponding known classes. Note that the weighting module identifies

known and unknown target samples.

Adversarial adaptation of known target samples: In line with [54, 84], we exploit

the generative adversarial principle in DAN. The first player of DAN is a domain

discriminator D3. D3 distinguishes the features of the source domain from the target

domain. The second player is a feature generator F . F simultaneously reduces the

feature distribution divergence in the opposite direction ofD3. In particular, the objective

of D3 is to adversarially assist F to learn transferable features for the known target

samples and align them towards the source domain. F takes inputs from both source

domain Ds and target domain Dt. D3 takes input from F . For adversarially aligning the

distributions of source and known target samples, we optimise the objective below,

ED3 = − 1

ns

ns∑
i=1

log(D3(F (xsi )))−
1

nt

nt∑
j=1

w(xtj) log(1−D3(F (xtj))). (6.7)

where, D3(F (xsi )) and D3(F (xtj)) denote the probability of source and target samples,

respectively. D3 uses the generated weights w(xtj) (Section 6.2.1) in the adversarial

optimisation. This optimisation is equivalent to aligning known target samples towards

the source domain.

Now, to perform the final classification of known and unknown classes, we place a

source classifier Cl1 with |C|+ 1 indices in DAN, where |C| indices represent the known

classes in the source domain and the (|C|+ 1)th index denotes the ‘unknown’ class for

Ct.
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Classifying known classes: The classifier Cl1 takes features from F and produces

|C| + 1 dimensional output. Softmax function transforms the output into a |C| + 1-

dimensional class probability as, σ(z) = exp (z)/(
∑|C|+1

i=1 exp (zi)), where z is the logit

vector. We define the classification loss on the known classes as follows,

EsCl1 =
1

ns

ns∑
i=1

LCl1(Cl1(F (xsi )), y
s
i ). (6.8)

Here, LCl1 is the standard cross-entropy loss function for minimising the error of the

classifier Cl1 and ysi is the ground truth label of ith source sample.

To preserve cluster assumption characteristics during adaptation, we further min-

imise the conditional entropy (CE) for the known classes of the target domain as follows,

Etce = −Exj∼Dt [w(xtj)Cl1(F (xtj))
> log(Cl1(F (xtj)))]. (6.9)

Here, Cl1(F (xtj)) denotes the probability of jth target sample from Cl1. Minimising CE

will enforce confidence in Cl1 for unlabelled target samples, and the decision boundaries

will occur far away from the data-dense regions. We incorporate w(xtj) to the CE

minimisation so that only the entropy of known target samples is minimised. However,

if Cl1 is not locally-Lipschitz, only minimising CE may over-fit the training samples. To

prevent this, we use virtual adversarial training (VAT) [194] to smooth the surface of Cl1

around the unlabelled points [194, 195]. In line with [195], we optimise the VAT loss for

the source and target domain as follows,

Etv = −Ex∼Dt [w(xtj)max
‖γ‖<ε

DKL(Cl1(F (xtj))‖Cl1(F (xtj + γ)))],

Esv = −Exi∼Ds [max
‖γ‖<ε

DKL(Cl1(F (xsi ))‖Cl1(F (xsi + γ)))].
(6.10)

where, DKL(.), Cl1(F (xtj)), Cl1(F (xsi )), γ, and ε represent the Kullback–Leibler diver-

gence, probability of jth target sample, probability of ith source sample, adversarial

perturbation, and noise, respectively. Note that we have used w(xtj) in VAT losses for
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enforcing Cl1 to be consistent within the norm-ball neighbourhood of each sample

belonging to the label space C.

Classifying unknown class: Based on our weighting module, target samples with

low weights (w(xtj)) have more probability of belonging to the unknown classes. We use

the target samples with the lowest weights to recognise unknown target samples. We

define the weighted loss for recognising the ‘unknown’ class by Cl1 as,

EtCl1 =
1

nt

nt∑
j=1

(1− w(xtj))LCl1(Cl1(F (xtj)), y
t
u), (6.11)

where ytu denote the label ‘unknown’. Note that Dt is unlabelled and the label ytu is not

provided by the DA setting. We force Cl1 to classify the target samples with lowest

w(xtj) as ‘unknown’. This loss is minimised only for the (|C|+ 1)th index of the classifier

Cl1.

6.2.2 Training phase

We denote the parameters of the DAMI components: F ; G; Cl1; D3; Cl2; D1; and D2

as θF ; θG; θCl1 ; θD3 ; θCl2 ; θD1 ; and θD2 , respectively. The overall training objectives of

DAMI are as follows,

θCl2 , θD1 = argmin
θCl2 ,θD1

ECl2 + ED1 ,

θG = argmin
θG

EMIuk − EMIk , θD2 = argmin
θD2

ED2 ,

θCl1 , θD3 = argmin
θCl1 ,θD3

EsCl1 + EtCl1 + ED3 + Etce + Esv + Etv,

θF = argmin
θF

EsCl1 + EtCl1 − ED3 + Etce + Esv + Etv.

(6.12)

During forward propagation, the values of the loss functions shown in (6.12) are com-

puted. During backward propagation, the gradients are calculated. We use a gradi-

ent reversal layer (GRL) [67] to calculate the gradient of ED3 efficiently during back-
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propagation. The gradient reversal phenomenon confirms that the feature distributions

over the shared classes C of the source and target domains are made as indistinguishable

as possible in F and Cl1. Then, the parameters of the weighting module are updated

by the gradients of the first three equations of (6.12). Finally, the parameters of DAN

components are updated by the gradients of the last two equations of (6.12). The training

procedure is outlined in Algorithm 1.

Algorithm 1 DAMI Training Procedure
Input: labelled Ds; unlabelled Dt; Feature generator F ; classifier Cl1; adversarial domain
discriminator D3; feature discriminator G; auxiliary source classifier Cl2; two non-
adversarial discriminators: D1 and D2. F , Cl1 and Cl2 are trained on Ds.
Output: Trained F and Cl1.

1: while not converged do
2: Sample mini-batch from (xsi , y

s
i )
ns
i=1 and (xtj)

nt
j=1

;
3: Update F , Cl2, and D1 by (6.1) + (6.2);
4: Select m preliminary known and m preliminary unknown target samples using
d(xtj);

5: Compute mutual information by (6.3);
6: Update G by (6.4) ;
7: for j = 1:mini-batch do
8: Compute pmi between every source sample (xsi , y

s
i )
ns
i=1 and (xtj) by (6.5);

9: Record the highest pmi;
10: end for
11: Record target samples with highest and lowest pmi;
12: Update D2 by (6.6);
13: Compute losses by (6.7) – (6.11) and update Cl1, F , and D3 jointly by computed

losses;
14: end while
15: return Trained Cl1 and F .

6.3 Experimental Studies

This section describes the datasets, evaluation details, experimental outcomes (classifi-

cation results, visualisation of learned features, impact of openness, loss convergence

analysis and hyper-parameters setups), analyse visualisation of learned weights, fea-

tures, and present a detailed ablation study. Datasets used are discussed in Chapter 5
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and we follow the similar evaluation protocols as discussed in Section 5.4.2.

6.3.1 Implementation Details

We have used ImageNet pre-trained ResNet-50 [4] with customised new layers as the

feature generator F for all datasets. For VisDA, additionally, we use ImageNet pre-

trained VGG-16 and VGG-19. The classifier Cl2 has a 1024-dimensional hidden layer

and discriminatorD1 has no hidden layer. The feature discriminatorG, discriminatorD2,

and classifier Cl1 have a hidden layer of 256 dimensions each. The final discriminator

D3 has a hidden layer of 1024 dimensions. We have used RELU in F and Cl2 structures,

and Leaky RELU in Cl1, D3, G, and D2. We have used SGD with a learning rate of 0.001,

a weight decay of 0.005, and momentum of 0.9. We found the value of λ1 as 10 times

greater than λ2 optimal for all tasks. A batch size greater than or equal to 16 is suitable

for the model’s effective computation of I. We have applied data augmentation over

the m selected samples to make the computation of I robust—for example, different

transformations such as random crops, central crops and horizontal flips. The images

within each batch are repeated to ensure that every source sample is paired with the

original target sample and their transformations. We have set the values of λ1 = 1

and λ2 = 0.1 for I optimisation. For optimising (6.12), we have used 0.001 as the

coefficient of Etce, Esv , and Etv, 0.3 as the coefficient of ED3 , and 0.3 as the coefficient of

EtCl1 . Depending on the tasks of interest, the values of the hyper-parameters and the

coefficients are to be adjusted empirically.

6.3.2 Compared DA Methods

For thorough comparison, we have compared the performance of DAMI with a number

of contemporary methods. They include 1) Classifier without DA: ResNet [4] (Note

that Negative transfer is calculated against this non-DA classifier.); 2) Closed-set DA

methods: Domain-Adversarial Neural Networks (DANN) [54] and Residual Transfer

Networks (RTN) [50]; 3) OSDA methods: Assign-and-Transform-Iteratively (ATI) [81],

OSDA by Back-Propagation (OSBP) [84], Separate to Adapt (STA) [85], DA with Multiple
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Classifiers (DAMC) [189], Towards Inheritable Models (TIM) [87], Mutual to Separate

(MTS) [86], Progressive Graph Learning (PGL) [89], Joint Partial Optimal Transport

(JPOT) [196], and Factorised Representations for Open-set DA (FRODA) [90]. DAMI

follows the same setting and evaluation protocols.

6.3.3 Classification results

In this section, we compare the performance of DAMI against contemporary works.

Tables 6.1, 6.2, 6.3, and 6.4 present the results on Office-31, Office-Home, ImageNet-

Caltech, and VisDA datasets, respectively. The results of the compared methods on

Office-31, Office-Home, and VisDA datasets are adopted from [85–87, 89, 90, 189, 196].

Similar to [85] and [87], we report only OS accuracy in Table 6.2. As some of the results of

compared methods for the ImageNet-Caltech tasks are not available in the literature, for a

fair comparison, we produce the results of all the compared methods except FRODA [90]

in Table 6.3. We use ResNet-50 as the backbone. Because of the number of iterations

and data split, the results may vary from other papers. The results of FRODA [90]

on ImageNet-Caltech is adopted from the original paper. The contemporary OSDA

methods have several different backbone networks for VisDA tasks. We experiment

with ResNet-50, VGG-16, and VGG-19 as the backbone networks for a fair comparison

with the contemporary works and report the results in Table 6.4. For DAMI, we report

the mean of OS and OS? over three separate runs in all the tables. Note that negative

transfers (performance lower than ResNet) are highlighted in blue colour in the tables.

It is evident from Tables 6.4, 6.2, 6.3, and 6.4 that DAMI outperforms all the compared

methods on the majority of the tasks for all the datasets. For closed set methods [54]

and [50], we observe that the performance lags behind ResNet on some tasks when

evaluated following the OSDA setting (Table 6.1). The lag in the performance compared

to the non-DA classifier results from the negative transfer. Negative transfers are initiated

by aligning the whole target domain with the source domain.

The majority of existing OSDA methods perform better than the non-DA classifier

ResNet and show no negative transfer in the Office-31 tasks (Table 6.1) as the dataset



§6.3 Experimental Studies 117

Table 6.1: Classification accuracy (%) of DAMI and compared DA methods on Office-31 tasks
(ResNet-50). Here, OS denotes the average per-class accuracy measured on all known and
unknown classes and OS? represents the average per-class accuracy computed on only the
known classes.

Method
Accuracy (%)

A→W A→ D D→W W→ D D→ A W→ A Avg
OS OS? OS OS? OS OS? OS OS? OS OS? OS OS? OS OS?

ResNet [4] (2016) 82.5 82.7 85.2 85.5 94.1 94.3 96.6 97.0 71.6 71.5 75.5 75.2 84.2 84.4
DANN [54] (2016) 85.3 87.7 86.5 87.7 97.5 98.3 99.5 100.0 75.7 76.2 74.9 75.6 86.6 87.6

RTN [50] (2016) 85.6 88.1 89.5 90.1 94.8 96.2 97.1 98.7 72.3 72.8 73.5 73.9 85.4 86.8
OpenMax [80] (2016) 87.4 87.5 87.1 88.4 96.1 96.2 98.4 98.5 83.4 82.1 82.8 82.8 89.0 89.3

ATI [81] (2017) 87.4 88.9 84.3 86.6 93.6 95.3 96.5 98.7 78.0 79.6 80.4 81.4 86.7 88.4
OSBP [84] (2018) 86.5 87.6 88.6 89.2 97.0 96.5 97.9 98.7 88.9 90.6 85.8 84.9 90.8 91.3

FRODA [90] (2018) 78.8 - 88.0 - 94.6 - 98.0 - 73.7 - 76.5 - 84.9 -
STA [85] (2019) 89.5 92.1 93.7 96.1 97.5 96.5 99.5 99.6 89.1 93.5 87.9 87.4 92.9 94.1

DAMC [189] (2020) 90.2 90.8 89.5 89.7 97.9 98.8 98.6 98.8 91.0 91.7 86.8 87.6 92.4 92.9
TIM [87] (2020) 91.3 93.2 94.2 97.1 96.5 97.4 99.5 99.4 90.1 91.5 88.7 88.1 93.4 94.5
MTS [86] (2020) 92.4 96.8 94.7 98.2 97.9 99.5 98.9 100.0 89.6 92.0 89.7 91.9 93.8 96.4

JPOT [196] (2020) 92.8 92.2 95.2 96.0 98.1 96.2 99.5 98.6 93.0 94.1 88.9 88.4 94.6 94.3
DAMI 96.3 98.6 98.2 100.0 100.0 100.0 98.7 99.9 95.7 97.8 93.4 95.8 97.0 98.6

Table 6.2: Average per-class accuracy (%) of DAMI and contemporary DA methods on Office-
Home dataset tasks for all known and unknown classes. Here, ResNet-50 is used as the backbone
network.

Method
Accuracy (%) (OS)

Ar→ Cl Pr→ Cl Rw→ Cl Ar→ Pr Cl→ Pr Rw→ Pr Cl→ Ar Pr→ Ar Rw→ Ar Ar→ Rw Cl→ Rw Pr→ Rw Avg
ResNet [4] (2016) 53.4 52.7 51.9 69.3 61.8 74.1 61.4 64.0 70.0 78.7 71.0 74.9 65.3

ATI [81] (2017) 55.2 52.6 53.5 69.1 63.5 74.1 61.7 64.5 70.7 79.2 72.9 75.8 66.1
OpenMax [80] (2016) 56.5 52.9 53.7 69.1 64.8 74.5 64.1 64.0 71.2 80.3 73.0 76.9 66.7

OSBP [84] (2018) 56.7 51.5 49.2 67.5 65.5 74.0 62.5 64.8 69.3 80.6 74.7 71.5 65.7
STA [85] (2019) 58.1 53.1 54.4 71.6 69.3 81.9 63.4 65.2 74.9 85.0 75.8 80.8 69.5

DAMC [189] (2020) 64.8 63.1 67.5 84.6 81.6 80.9 79.6 77.9 85.4 88.1 85.6 85.9 78.7
TIM [87] (2020) 60.1 54.2 56.2 70.9 70.0 78.6 64.0 66.1 74.9 83.2 75.7 81.3 69.6
MTS [86] (2020) 63.7 58.4 64.4 80.6 74.2 83.3 68.4 71.1 78.0 86.0 79.5 82.7 74.2
PGL [89] (2020) 61.6 58.4 65.0 77.1 72.0 83.0 68.8 72.2 78.6 85.9 82.8 82.6 74.0

JPOT [196] (2020) 59.6 54.2 54.6 72.3 70.1 82.1 62.9 68.3 75.1 84.8 77.4 81.2 70.2
DAMI 68.1 63.2 70.5 83.7 83.8 86.3 76.7 80.9 86.3 91.2 87.8 88.9 80.6

has easily adaptable domain differences. However, these methods lag behind ResNet

on some tasks of Office-Home and ImageNet-Caltech as reported in Tables 6.2 and

6.3. These datasets are more challenging as they have a larger domain gap than the

Office-31 dataset and more samples per class. The effect of negative transfer causes the

performance sacrifice in the contemporary OSDA methods. Though OSDA methods do

not blindly align all target samples to source samples, the negative transfer happens

during the known-unknown target sample separation stage before DA.

The issue of negative transfer in OSDA methods can further be explained by the
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Table 6.3: Classification performance of DAMI and compared DA methods on ImageNet-Caltech
tasks (ResNet-50). Here, OS and OS? denote the average per-class accuracy measured on all
known and unknown classes and the average per-class accuracy computed only on the known
classes, respectively.

Method
Accuracy (%)

Im→ Cal Cal→ Im Avg
OS OS? OS OS? OS OS?

ResNet [4] 75.6 75.1 67.3 67.9 71.4 71.5
ATI [81] (2017) 71.9 66.9 67.6 65.7 69.8 66.3

OSBP [84] (2018) 64.2 64.5 54.9 53.7 59.6 59.1
FRODA [90] (2018) 79.9 - 74.5 - 77.2 -

STA [85] (2019) 75.4 74.1 67.9 68.1 71.7 71.1
MTS [86] (2020) 78.7 80.5 68.1 67.2 73.4 73.9

DAMC [189] (2020) 77.1 77.9 69.9 67.8 73.5 72.9
DAMI 81.3 83.8 73.3 75.4 77.3 79.6

Table 6.4: Classification accuracy (%) of DAMI (ResNet-50, VGG-16, and VGG-19) and other
DA methods on VisDA2017 tasks. Here, we represent average per-class accuracy for every
known and unknown classes separately, combined per-class accuracy combining all known and
unknown classes as OS, and combined per-class accuracy for all known classes as OS? for better
analysis.

Method
Accuracy (%)

bicycle bus car motorcycle train truck unknown OS OS?

ResNet [4] (2016) 40.2 55.4 63.5 70.8 74.1 35.2 45.6 54.9 56.5
DAMC [189] (ResNet-50) (2020) 50.6 74.8 66.7 80.6 75.9 38.8 73.9 65.9 64.6

DAMI (ResNet-50) (Our) 60.1 81.9 89.7 96.1 90.8 40.4 81.5 77.2 76.5
STA [85] (VGGNet) (2019) 52.4 69.6 59.9 87.8 86.5 27.2 84.1 66.8 63.9
TIM [87] (VGG-16) (2020) 53.5 69.2 62.2 85.7 85.4 32.5 88.5 68.1 64.7

DAMI (VGG-16) (Our) 58.1 78.9 88.7 96.8 87.8 42.6 83.1 76.5 75.4
OSBP [84] (VGG-19) (2018) 51.1 67.1 42.8 84.2 81.8 28.0 85.1 62.9 59.2
PGL [89] (VGG-19) (2020) 93.5 93.8 75.7 98.8 96.2 38.5 68.6 80.7 82.8

DAMI (VGG-19) (Our) 74.1 90.9 89.9 98.9 97.1 40.6 85.5 82.4 81.9

comparison of OS? and OS results. It is worth mentioning that VisDA dataset is way

more challenging than the other datasets as the adaptation has to happen from synthetic

to real images. In Table 6.4, we observe that there is a considerable gap between the

accuracy of the OS? and OS for the majority of the contemporary methods (shown in

purple colour). The OS? lags behind OS, which means a large number of known images

are classified as unknown images. PGL [89] shows less negative transfer compared to

other methods. However, PGL lags far behind DAMI and other methods in recognising

the unknown class, which shows the approach is not robust enough for OSDA tasks.
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DAMI (VGG-16) and DAMI (VGG-19) shows increased per-class accuracy compared to

other methods and decreased the gap between OS? and OS. This means optimisation

of I facilitates the weighting module of DAMI by imposing better known-unknown

discrimination.

Table 6.5: AUC-ROC of DAMI and other compared methods. Here, DAMI w/ D2 and DAMI w/
multi-binary D2 denote the binary discriminator D2 and one-vs-rest multi-binary discriminator
D2, respectively.

Method
AUC-ROC

A→W A→ D D→W W→ D D→ A W→ A Avg
STA [85] (2019) 82.7 83.6 84.1 72.1 74.2 78.5 79.2

ROS [197] (2020) 89.0 85.1 89.8 95.9 83.5 80.8 87.3
DAMI w/ D2 87.5 97.3 100 99.8 89.1 87.1 93.4

DAMI w/ multi-binary D2 87.1 96.8 99.0 99.5 88.2 88.2 93.1

Table 6.6: Average per-class accuracy for all the known (OS) and unknown (UNK) classes of
DAMI and compared open set DA methods.

Method
Accuracy (%)

A→W A→ D D→W W→ D D→ A W→ A Avg
OS? UNK OS? UNK OS? UNK OS? UNK OS? UNK OS? UNK OS? UNK

OSBP [8] (2018) 87.8 75.2 90.7 75.2 96.7 95.7 98.9 84.0 78.1 70.3 73.5 74.0 87.6 79.0
STA [85] (2019) 92.4 57.9 95.9 45.7 96.1 48.7 96.6 48.5 94.1 55.0 91.1 47.3 94.3 50.5

DAMI 98.6 73.3 100.0 80.2 100.0 100.0 99.9 95.9 97.8 74.7 95.8 69.4 98.6 82.2

AUC-ROC Analysis. To further analyse the effectiveness of the separation module

(CSN + MION + FSN) of DAMI, we compute the area under the receiver operating

characteristic curve (AUC-ROC) over the final probabilistic weights w in two settings.

First, we compute AUC-ROC using the one-vs-rest (i.e., unknown-vs-all known) binary

discriminator D2. Second, we replace D2 with |C|+ 1 one-vs-rest multi-binary classifiers.

For every target sample in a batch, we compute the pmi score with all source samples.

Then, for a target sample, if the pmi score is closer to 1, we record the source class

yielding the highest pmi score and channel the target sample to that one-vs-rest classifier.

If the pmi score is closer to 0, the target sample is channelled to the (|C|+ 1)th one-vs-rest

classifier. We perform the second experiment to observe the robustness of the weighting

module for multi-class weight generation. The results are reported in Table 6.5.
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To compare the AUC-ROC of DAMI with contemporary works, we reproduce the

AUC-ROC for ROS [197], and STA [85]. We follow the setting in [197] for reproducing the

results. For ROS, we compute the AUC-ROC using the multi-rotation classifier over the

normality score. For STA, we calculate the AUC-ROC using the multi-binary classifier

over the instance-level weights. For all three methods, we report an average of three

runs. Table 6.5 demonstrates that both variants of DAMI achieve better AUC-ROC than

ROS and STA for the majority of individual tasks. As expected, the performance of the

multi-binary D2 is lower than the binary D2. This is because the unknown class may

have some similarities to some of the known classes, and that will degrade the binary

classification performance of those known classes. This observation again verifies the

robustness of the separation module of DAMI with binary D2 for separating known

and unknown samples. Moreover, to compare the unknown class and known classes

accuracy separately, we compute the OS? and UNK (average unknown-class accuracy)

for DAMI and three contemporary methods. The results in Table 6.6 provide an insight

into how well DAMI recognises the unknown class compared to other methods.

Feature Visualisation. We use the t-SNE [172] algorithm for analysing the learned

features. The t-SNE algorithm reduces the divergence between two distributions by

preserving the closely related clusters of high dimension in converted low dimension.

Figure 6.3 shows the t-SNE visualisation of the extracted features from the last layer of

STA, DAMC, TIM, and DAMI for task A→ D. The learned features of some unknown

classes in the STA method lie in the near vicinity of the known classes. In contrast, others

are intermingled with known class features. This proves that STA confuses known and

unknown samples because of depending only on the multi-binary classifier. However,

DAMC suffers from less negative transfer than STA due to not depending only on a

source trained classifier. For some cases, TIM improves over the STA and DAMC method

and shows better separation. For other cases, TIM lags behind STA and DAMC. This is

due to having no access to the source domain during adaptation. DAMI features show

a better known-unknown separation and well-segregated clusters of aligned shared

classes.

Robustness to Openness. To further substantiate the robustness of DAMI in differ-
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(a) (b) (c) (d)

Figure 6.3: The t-SNE [172] visualisation of the last-layer features of the adapted classifiers for
the task A→ D. Source, target-known and target-unknown samples are shown in green, blue
and red colour respectively.

Figure 6.4: OS accuracy with respect to different openness levels in the target domain for the
task A→ D of Office-31 dataset.

ent degrees of openness, we execute experiments on the Office-31 dataset. In Figure 6.4,

we present the OS accuracy on different levels of Openness, O = 1− |Cs|/|Ct| [198]. The

superior performance of DAMI demonstrates that our method is robust for a wide range

of openness settings. The improved known-unknown separation and proper adaptation

achieved the ability to perform well in different openness settings.

Figure 6.5: Mutual information optimisation training errors EMIuk
, EMIk

, and accuracy with
respect to the training epochs for the A→W task.
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Convergence Analysis. We plot the I optimisation losses EMIuk , EMIk (6.4), and

the accuracy with respect to the training epochs in Figure 6.5. The graph shows that I

between preliminary known target samples and the source domain is maximised, and I

between preliminary unknown target samples and the source domain is minimised over

the epochs. At the same time, the accuracy steadily increases.

Hyper-parameters Setups. We analyse different hyper-parameters (λ1 and λ2) se-

tups and accuracy in Figure 6.6. We show four different combinations starting from

Figure 6.6: Classification accuracy using different combinations of hyper-parameters (λ1 and λ2)
with respect to the training epochs for the A→W task. Here, (0.01, 0.001) represents (λ1, λ2) and
so on.

λ1 = 0.01 and λ2 = 0.001. It is apparent that as the value of λ1 and λ2 increases from the

starting combination, the accuracy also increases up to λ1 = 1 and λ2 = 0.1. However,

after that, the accuracy decreases sharply. The intuition is that very high attention

(i.e., the value of hyper-parameters) to EMIuk and EMIk causes greater updates in the

parameters of G and harms the stability of the network. This lack of stability later harms

the FSN and DAN. Thus, the performance decreases.

6.3.4 Visualising Learned Weights

In this section, we visualise the learned weights generated in different steps of the

weighting module and present a comparison between the weights distributions. Fig-

ure 6.7 shows that the final weights w for known target samples are consistently greater

than the primary weight d. Similarly, for unknown samples, w is smaller than d across
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(a) (b)

Figure 6.7: A pictorial illustration of learned weights of (a) known target samples and (b)
unknown target samples for the task A→W (Office-31), where d represents the weights generated
by discriminator D1, and w denotes the final instance-level weights assigned to target samples
by discriminator D2 for distinguishing known-unknown target samples and DA.

all epochs. The generated weights d from D1 struggles to reach near 1 and near 0 values

due to the leaky softmax layer in Cl2. The leaky-softmax assigns a high probability for

a logit that has a large probability for a known class. This helps in determining rough

domain similarity. However, the leaky-softmax tends to generate an element-sum of its

output smaller than 1. Due to this tendency, d lie in the mid-high and mid-low range.

On the other hand, D2 has no such constraint and is trained on the features of G, which

has more discriminative knowledge about known-unknown samples. Thus, the weights

w generated from D2 have high confidence. This facilitates D3 to better adapt known

samples with high w values and Cl1 to recognise unknown samples with low w values.

6.3.5 Ablation Study

We present the ablation study in a building block manner to justify the role of different

components in DAMI. The results of our ablation studies are reported in Table 6.7.

Table 6.7: Classification accuracy (%) of different variants of DAMI on Office-31 tasks (ResNet-
50).

Method
Accuracy (%)

A→W A→ D D→W W→ D D→ A W→ A Avg
OS OS? OS OS? OS OS? OS OS? OS OS? OS OS? OS OS?

DAN 80.1 72.3 82.3 76.9 79.1 75.0 89.2 84.5 81.2 76.9 82.1 78.1 82.3 77.2
DAN + CSN 91.1 90.1 92.5 92.0 96.9 95.7 95.5 94.3 88.7 87.9 89.1 91.5 92.8 91.9

DAN + CSN + MION 93.3 93.2 94.5 94.7 97.4 97.6 95.7 94.8 91.1 92.3 88.3 88.1 93.3 93.4
DAMI (DAN + CSN + MION + FSN) 96.3 98.6 98.2 100.0 100.0 100.0 98.7 99.9 95.7 97.8 93.4 95.8 97.0 98.6
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DAN: We start the ablation analysis with the base DAN. This variant has the main

feature discriminator F , classifier Cl1, and discriminator D3 in the structure. Due to

having no known-unknown separation module, DAN depends on the pseudo decision

of Cl1 for rejecting unknown target samples and suffers from a huge amount of negative

transfer.

DAN + CSN: To reduce negative transfer by separating known-unknown samples

before DA, we place Cl2 and D1. Though this variant outperforms the previous one, the

generated weights d harm the adversarial DA for the leaky effect of Cl2 (discussed in

section 6.3.4).

DAN + CSN + MION: This variant is implemented without the FSN. Though

MION gains the ability to generate well discriminative features, it still lacks at generating

suitable weights. In this variant, we use the highest output of G as instance-level soft

weights and observe the DAN struggles to differentiate known-unknown as the weights

are not smooth yet. Such roughness in the weights reflects in the performance of the task

W→ A compared to the previous variant (Table 6.7).

DAMI (DAN + CSN + MION + FSN): DAMI outperforms the variants mentioned

above. DAMI is capable of finely separating known-unknown target samples due

to integrating FSN. FSN evaluates pmi for verifying similarity/dissimilarity of target

samples and generates smooth weights through D2. To summarise, DAMI has access to

discerning knowledge of known and unknown samples, which assists better in the fine

separation of known-unknown target samples.

6.3.6 Robustness of learned features

To further analyse the robustness of DAMI, we compare the divergence between the

source and target domains before DA (raw input) and after DA (DAMI features). We

compare the Proxy A-distance (PAD) distances of DAMI representations and raw input.

The PAD distance is formulated as d̂A = 2(1− 2β), where β is the generalisation error

[199]. The PAD distance is similar toH-divergence (a measure of domains divergence

[199]). If we select A = Aη ∈ H, the A-distance and the H-divergence are similar [54].
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Here, Aη is the set represented by η and η denotes the function of the DA model. We

follow [54] to compute the PAD value using Amazon Reviews dataset. The dataset has

four domains (books, DVD disks, electronics, and kitchen appliances). Each domain

has reviews of a specific type of product. 5000-dimensional feature vectors of unigrams

and bigrams represent the reviews. A product is labelled ‘1’ if it has got up to 2 stars

and ‘0’ otherwise. The 3 stars were treated as ‘unknown’. We perform 12 DA tasks. We

used 2000 labelled sources and 2000 unlabelled target samples, among which 500 were

from unknown classes. We replace F with a fully connected network. F and G have

only one hidden layer with 1024 and 512 dimensions, respectively. Cl1, Cl2, D1, D2, and

D3 are implemented without hidden layers. Other implementation setups are kept the

same as discussed in Section 6.3.1. Figure 6.8 shows that the representations of DAMI

Figure 6.8: Comparison of Proxy A-distances of DAMI feature representations and raw input on
the dataset Amazon Reviews for the shared label space (known classes). Here, x-axis and y-axis
denotes the PAD value of DAMI features and raw input, respectively.

achieve much less PAD value than raw inputs for the known classes. This shows DAMI

performs improved DA.

6.4 Summary

In this chapter, we have proposed a new DA model for addressing the challenge of

handling negative transfer in OSDA. DAMI reduces negative transfers by correctly
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separating known from unknown target samples. The separation module has threecoarse-

to-fine steps. First, it explores domain confidence. Then it optimises I in between similar

classes and dissimilar classes simultaneously. Finally, it uses pmi score for fine separation.

After known-unknown target separation, DAMI aligns features of known target samples

to the source domain and recognises unknown target samples as ‘unknown’. It has been

evident from the comprehensive analysis on several benchmark datasets that DAMI is

robust to different levels of openness, large domain gaps, and outperforms contemporary

works.

The fourth contribution discussed in this chapter demonstrated that the proposed

weighting module associated with the mutual information and domain confidence

(Chapter 6) outperforms the proposed weighting module depending only on domain

confidence (Chapter 5). In the next chapter, we will present the fifth contribution of the

thesis.



Chapter 7

Attention Model for Fine-grained
Generalised Zero-Shot Learning

1In Chapters 3, 4, 5, and 6 we have discussed the first four contributions of this thesis.

We now turn our attention to the fifth contribution of this thesis in this chapter. This

contribution focuses on solving the limitations of existing GZSL approaches.

Embedding learning (EL) and feature synthesising (FS) are two of the popular cate-

gories of GZSL methods. EL or FS using global features cannot discriminate fine details

in the absence of local features. On the other hand, EL or FS methods exploiting local

features either neglect direct attribute guidance or global information. Consequently,

neither method performs well. In this chapter, we propose to explore global visual fea-

tures and direct attribute-supervised local visual features for both EL and FS categories

in an integrated manner for fine-grained GZSL. The proposed integrated network has an

EL sub-network and a FS sub-network. Consequently, the proposed integrated network

can be tested in two ways. We propose a novel two-step dense attention mechanism

to discover attribute-guided local visual features. We introduce new mutual learning

between the sub-networks to exploit mutually beneficial information for optimisation.

Moreover, we propose to compute source-target class similarity based on mutual infor-

mation and transfer-learn the target classes to reduce bias towards the source domain

during testing. We demonstrate that our proposed method outperforms contemporary

methods on benchmark datasets.

1Chapter 7 is adapted from: T. Shermin, S. W. Teng, F. Sohel, M. Murshed, and G. Lu, “Integrated
Generalised Zero-Shot Learning for Fine-Grained Classification,” Pattern Recognition, 2021.

127
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7.1 Problem Setting.

The GZSL problem setting has a source domain Ds with Ys label space and a target

domain Dt with Yt label space having Cs and Ct classes, respectively, where Ys ∩Yt = ∅.

The source and target classes are indexed as {1, . . . , Cs} and {Cs + 1, . . . , Cs + Ct}

respectively. A dataset of N labelled images are available in the source domain, Ds =

{(xi, yi) | xi ∈ X , yi ∈ Ys}Ni=1, X denotes the visual feature space. The target domain

classes have no training samples or features. The source class semantic vectors for c ∈ Ys

are As = {ac}Csc=1. The target class semantic vectors for c ∈ Yt are At = {ac}Ctc=Cs+1.

The semantic vector of class c is ac = [a1
c , . . . , a

A
c ], where aAc represents the score of the

presence of the Ath attribute in the class. Similar to [126], we assume attribute semantic

vectors {vi}Ai=1 are provided. Here, vi denotes the average GloVe [200] representation

of words in the ith attribute, e.g., ‘throat colour blue’. The goal of ZSL is to learn visual

classifiers of unseen classes only hzsl : X → Yt. The objective of GZSL is to train visual

classifiers of all source and target classes hgzsl : X → Ys ∪ Yt.

7.2 Overview

Conventional supervised deep learning classifiers require a large amount of labelled

training data and the training and testing data must be drawn from the same distribution.

Although ordinary object images are easily accessible, there are many object categories

with scarce visual data, such as endangered species of plants and animals [201]. To

address the issues, Zero-shot learning (ZSL) methods are studied. ZSL methods aim to

exploit the visual-semantic relationship of source (seen) classes to train a visual classifier

on source classes and test the classifier on target classes only. Though, the underlying

distribution of source and target domains is disjoint, the ZSL setting assumes that the

trained visual classifier knows whether a test sample belongs to a source or target class.

To alleviate such an unrealistic assumption, the ZSL setting is extended to a more realistic

setting called Generalised Zero-Shot Learning (GZSL) [202–204], where the classifier has

to classify test images from both source and target classes.
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Figure 7.1: Samples from CUB dataset showing only a few dissimilar attributes between the
source and target classes. Red and green indicators denote dissimilar and similar attributes,
respectively. Best viewed in colour.

The ultimate aim of this work is to improve GZSL for fine-grained recognition. Unlike

the coarse-grained datasets (classes, e.g., Animal, Table, and Bus, with no sub-ordinate

classes), classification of fine-grained datasets (with sub-ordinate classes, e.g., different

types of birds (Blue jay, Florida jay, and Green jay)) demands more local discriminative

properties. The region-based local features capture more fine distinctive information

and relevance to the semantic attributes than the global features (Figure 7.1). On the

other hand, global features hold the generic structure of the deep neural network’s

visual representation, which is vital for generalisation. Therefore, besides exploring

local details for improved fine-grained GZSL, we argue to preserve global details for

constructing a better visual GZSL classifier.

Embedding learning (EL) and feature synthesising (FS) methods are two popular

approaches for GZSL methods. Most existing EL [205] [121] and FS [144, 151] methods

only use global features for fine-grained GZSL tasks. Some EL methods [9, 121, 122]

focus only on the local features. However, these EL methods do not relate individual

attributes to the local features; they relate a combination of all attributes. Consequently,

they do not fully explore the discriminative local information linked to the attributes.

We aim to address the aforementioned limitations in both EL and FS methods. As

such, we propose an integrated network, which has an EL sub-network (Attribute

Guided Attention Network (AGAN)) and a FS sub-network (Adversarial Feature Gener-
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ation Network (AFGN)). In the proposed method, first, we divide a sample into local

regions. Then, we preserve the global representation of the local regions. After that,

we propose a two-step dense attention mechanism to explore the relation between the

semantic attributes and the local regions for discovering fine-discriminative informa-

tion. Next, we combine explored global and local information to construct a feature

embedding used by both sub-networks. Finally, we propose a mutual learning-based

optimisation so that both sub-networks can assist each other and learn better features

for the GZSL task.

The proposed two-step dense attention mechanism uses direct attribute supervision

to construct a visual feature embedding that holds attribute-weighted local visual informa-

tion. In particular, to assign the first-level of attention to the region features, we explore

two general questions, i.e., ‘Is the region related to any attribute?’ and ‘Which attribute

has the most relevance to the region?’. Thus, a region’s attention has information about

the presence of attributes and the most relevant attribute in the region. This will encour-

age only the most relevant attribute to a region to be attended and assist in learning fine

distinction. In the second-level, we infuse the confidence score of having that attribute

in the class so that the attention of a region containing an attribute that has a greater

class score is higher weighted than others. This knowledge will encourage a better

focus on common intra-class information, thereby facilitating improved class decisions.

The dense-attention mechanism is placed in AGAN. We design the connection between

AGAN and AFGN in such a way that they both can leverage the attribute-weighted

features constructed by the attention mechanism.

To reduce bias towards source classes, we explore mutual information-based source-

target class similarity and loosely learn target classes in AGAN. Mutual learning explores

mutually useful information between AGAN and AFGN. Thus, the source class bias in

AFGN is also partially smoothed out. Moreover, AFGN is flexible as it can be replaced

with any sophisticated FS network to learn attribute guided local features. Since the

proposed integrated network has both EL (AGAN) and FS sub-network (AFGN), the

proposed method can test in two ways, following the test sequence of both EL and FS

GZSL methods (Section 7.3.4). Thus, the proposed integrated network will contribute to
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the GZSL field in two different fine-grained classification methods.

The main contributions of this paper are as follows:

• We propose to integrate an embedding learning sub-network and a feature gen-

eration sub-network to an integrated network. We introduce mutual learning to

optimise both sub-networks. This is the first work to apply mutual learning in this

domain to the best of our knowledge. The integration also enables two different

ways of testing capability.

• We propose a novel two-step attention mechanism, which discovers fine distinc-

tive local visual information directly supervised by the attributes. In addition,

unlike existing fine-grained GZSL methods, we propose to preserve global visual

information for developing a better GZSL visual classifier.

• For fine-grained GZSL tasks, we introduce the exploration of attribute guided fine-

distinctive visual features in both embedding learning and feature synthesising

networks in a unified way.

• To reduce the bias towards source classes during testing, we propose to transfer-

learn a target class from the most similar source class based on the pointwise mutual

information (pmi) score.

• We present an extensive empirical evaluation on several fine-grained datasets to

demonstrate the superior state-of-the-art performance of the proposed method

compared to contemporary GZSL and ZSL methods.

7.3 Proposed Method

7.3.1 Proposed GZSL

The proposed method addresses the limitations of existing embedding learning and

feature synthesising methods that ignore individual attributes for guiding feature em-

bedding construction. The method shown in Figure 7.2 comprises two networks: 1)
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Figure 7.2: Block diagram of the proposed GZSL method. The red and purple blocks in dashed
lines represent the Attribute Guided Attention Network (AGAN) and the Adversarial Feature
Generation Network (AFGN), respectively. Best viewed in colour.

Attribute Guided Attention Network (AGAN); and 2) Adversarial Feature Generation

Network (AFGN). AGAN is the embedding learning part of the proposed method. The

attention mechanism is placed in AGAN. First, AGAN constructs feature embedding

using the attention mechanism and leverages the feature embedding for the GZSL task.

Then, the feature synthesising part, AFGN, uses the constructed feature embedding to

learn the generation of attribute-weighted visual features adversarially. Furthermore,

AGAN and AFGN are mutually optimised to improve each other’s performance, i.e.,

AGAN takes supervision from AFGN for optimising the constructed feature embedding,

and AFGN takes supervision from AGAN to generate visual features. This optimisation

is performed by minimising our designed losses.

7.3.1.1 Attribute Guided Attention Network

First, we select local visual regions and preserve region-wise global information. Then

we statistically bound the local regions to filter out irrelevant information. Then, the two-

step dense attention mechanism constructs an attribute-weighted features. In Figure 7.2,

the blue and green shaded parts on AGAN show the two levels of attention mechanism,
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respectively. Then AGAN constructs the feature embedding utilising the output of the

attention mechanism. The feature embedding holds global representation, redundancy-

free, and attribute-weighted local visual information (the probability of the most relevant

attribute to the visual regions and the likelihood of having that attribute in the class).

Finally, a classifier utilises the feature embedding to infer class decisions. To reduce the

source class bias while learning the classifier, we optimise a transfer learning loss.

Constructing Visual Regions For simplicity and consistency, in line with [206] and

[126], we divide an image I into r equal sized regions, I1, . . . , Ir. We use a CNN to

extract features for the r regions. For example, the feature vector of the ith region is

fi = fθ(Ii), where θ denotes parameters of the CNN. Note that the CNN is frozen.

Exploring Global Information To learn global discriminative features compatible

with the local region features, we apply region-wise global average pooling on the local

feature vectors F = {fi}ri=1. This operation provides us with a feature vector Fg ∈ Rr,

where Fgi represents the average global information of the ith local region feature fi.

Learning Relevant Information We want to reduce highly irrelevant information

from the extracted local feature space F = {fi}ri=1 by restricting the information propa-

gation from F to F ′. This will reduce the interruption of redundant information in the

attribute-weighted feature embedding.

As shown in Figure 7.2, F = {fi}ri=1 is the input to M and F ′ = {f ′i}ri=1 is the output

from M . Therefore, we aim to bind irrelevant information propagation from the inputs

of M to the outputs of M . To execute this, we have to place a information propagation

bound in M . We use Mutual information (I) to bound M network to filter irrelevant

information. Mutual information between two random variables F and F ′ can be related

to the marginal H(F ′) and conditional H(F ′|F ) entropy as I(F ;F ′) = H(F ′)−H(F ′|F ).

We want I(F ;F ′) to be less than an upper bound so that only relevant information in F

is passed to F ′ through M to help reduce noise. The upper bound is found empirically

and we train M to learn to hold I(F ;F ′) less than the bound.

Since the extracted feature space is high dimensional, the estimation of mutual

information may be difficult. Therefore, we adopt a variational upper bound of I [92] to
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compute I(F ;F ′) as,

I(F ′;F ) ≤ Ep(f)

[
DKL

[
pM (f ′|f)‖r(f ′)

]]
, (7.1)

where pM (f ′|f) is the conditional probability of the region features f ′, which holds

only important information conditioned on the extracted real region-features f . DKL

and r(f ′) denote the Kullback-Leibler divergence and variational approximation of

the marginal probability distribution of f ′, respectively. Note that we do not reduce

feature regions or filter out redundancy from global features [151], which may lose

important visual information and harm the image’s visual feature representation. We

remove redundancy from the feature regions to use only the relevant information within

a region.

First-level Dense Attention. Now, we aim to construct a dense connection i.e, every

attribute is to be connected to every visual region to explore the relevance between every

attribute and every visual region. Therefore, we form a matrix F ′′. The rows of F ′′

represent the bounded features of each region. The corresponding attribute semantic

vectors v are converted to V ′ matrix by using Q network, where the Ath row represents

the v′A
th attribute. BothM andQ are neural networks with non-linear activation function

ReLU.

F ′′ and V ′ are fused as J = F ′′ ⊗ V ′, where ⊗ denotes matrix multiplication, F ′′ ∈

Rr×m, r is the number of regions and m is the dimension of region features f ′. Similarly,

V ′ ∈ Rn×A, A denotes the number of attributes and n denotes the dimension of attribute

vectors v′, where m = n is ensured by M and Q networks. The matrix multiplication

ensures a dense connection between F ′′ and V ′ as the product contains information of

every attribute (columns) in every regional feature (rows). The output of the matrix

multiplication is J ∈ Rr×A and we denote the ith region as Ji, where Ji ∈ RA.

Existing attention-based GZSL works [9, 126, 207], have adopted soft attention [208]

to only predict. On the other hand, we propose to use soft attention to predict the most

relevant attribute to every region besides predicting the presence of attributes in the

regions. A conceptual view of assigning attention to a region is shown in Figure 7.3.
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Figure 7.3: A conceptual illustration of the first-level attention mechanism of the proposed
attribute-weighted visual feature embedding. Note that if a region has more than one attributes,
then the attention of the attribute having highest confidence is assigned to the region, e.g.,
attribute v3 (‘wing pattern stripped’) wins over v6 (‘belly colour white’). Thus, presence of
attribute and the most relevant attribute to a region is attended.

The K network takes J matrix and applies a soft-attention normalisation to set

different degrees of attention to the r regions. The attentions indicate the confidence of

the presence of attributes in a region. We learn individual soft-attentions for every one

of the r regions using {Ti}ri=1 neural networks, which encourages to learn to attend only

the most relevant attribute to a region. This definitive attention assignment facilitates

the embedding to hold fine distinctive information. The attention assignment in K and

{Ti}ri=1 networks are performed as follows,

PI = softmax(tanh(J>WB)WA),

ti = softmax(tanh(JiWTAi)WTBi), αi = λαPIiHti ,
(7.2)

where K is a neural network with learned parameters WA and WB and output PI ∈ Rr.

WTAi and WTBi are learned parameters of T thi network. The softmax outputs of Ti

is ti ∈ RA, which can be treated as soft attentions of the attributes on the ith feature

region. The attribute yielding the highest softmax probability is most likely to have

greater relevance to the ith feature region than others. Thus, we consider only the highest

softmax probability Hti . It also helps the attention module to focus and learn only one

attribute per visual region for better discriminative learning. Similarly, we compute

the soft attentions for each of the r regions using {Ti}ri=1. αi denotes the attention and

the parameter λα helps to avoid negligible attention. Note, to handle {Ti}ri=1 networks
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simultaneously, we use depth-wise (grouped) convolution; please see Section 7.4.3 for

more details.

We obtain the weighted feature regions by applying the inferred soft attention as

F̂ ′′i = αiF
′′
i . To preserve both noise-free and semantic guided visual information, we

combine the attribute-weighted region features with the redundancy-free region features

as follows,

F̃1i = F ′′i ⊕ F̂ ′′i, (7.3)

where, ⊕ denotes region-wise summation.

Second-level Dense Attention. To further infuse the probability of the presence of

an attribute in the class in F̃1i and boost the weighted feature regions for handling more

sophisticated cases, we apply another level of attention mechanism. This assists the

attention mechanism in learning to assign a higher weight to a region that may contain

an attribute which is more likely to be present in the class samples and helps in making

a better class decision.

First, we construct the visual-semantic matrix as J̃ = F̃1 ⊗ V ′, which has the similar

dimensional properties as J matrix. Then, we combine the class semantic vector a

as J ′ = J̃a, where a vector is multiplied to each row of J̃ matrix element-wise and

J ′ ∈ Rr×A. The second-level soft attention α̃ is computed by using J ′ matrix and K̃

network similar to the first part (PI) of (7.2), i.e., α̃ = softmax(tanh(J ′>W ′B)W ′A), where

W ′B and W ′A are learned parameters of K̃ network. The feature embedding F̃2 ∈ Rr×m is

constructed by summation of F̃1 and F̃ ′1 = α̃F̃1 as (7.3). Note that, since the information

of the most relevant attribute to a region is propagated into the second-level and beyond

through the embedding F̃1, we do not use {Ti}ri=1 neural networks in the second-level.

Besides, we empirically found that using {Ti}ri=1 in the second-level does not facilitate

the attention mechanism significantly.

Feature Embedding. To hold the global information in the feature embedding, we

apply a region-wise product between F̃2 and Fg, i.e., the feature vector Fg is element-wise

multiplied to all the column vectors of F̃2 matrix and the dimension of F̃2 is preserved
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as is. This operation infuses the region-based global information to F̃2. To retain all the

extracted information in the final embedding, we apply an average pooling over the

m-dimension of F̃2. Then, we concatenate the pooled features and form the final feature

embedding fs, where fs ∈ Rm.

AGAN-GZSL Task. Finally, fs is fed into the classifier h2, which is a neural network

with one hidden fully-connected layer and a softmax layer. The classifier takes fs as

input and produces |Cs + Ct|-dimensional output, where the first |Cs| indices represent

the source classes and the remaining indices represent the target classes. The class scores

are computed as p(si) = exp (si)/
∑

c∈|Cs| exp (sci ), where s = h2(fs), h2(fs) ∈ R|Cs+Ct|,

|Cs + Ct| is the total number of source and target classes.

7.3.1.2 Adversarial Feature Generation Network

In this section, we present the proposed AFGN, which utilises final feature embedding

fs from AGAN to learn to generate features that are highly related to the attributes for

fine-grained classification.

The AFGN can adopt any adversarial feature synthesising GZSL method. In this

work, we adopt a feature generation method f-WGAN [141], which has a visual feature

generatorG and a discriminatorD. The f-WGAN takes random Gaussian noise ε and the

class semantic vector a as inputs and learns to generate a visual feature x̃ ∈ X of class

y. The idea is to train G to generate features of the source class images xs conditioned

on asc so that during testing, the generator G can repurpose its learned knowledge to

generate target class features only from atc. In f-WGAN [141], the global features (i.e.,

xs) are used as the real features to guide G. On the contrary, we propose to utilise our

attribute-weighted features for the guidance. Not only our features are associated with

attribute attention, they also hold redundancy-free information. For converting the

semantic vectors to visual features, the usage of fs inferred from AGAN will assist the

AFGN to follow the underlying dependency between the semantic and visual feature

spaces. Therefore, we optimise,

LWGAN = E[D(fs, a)]− E[D(x̃, a)]− λE
[
(‖∇x̂D(x̂, a)‖2 − 1)2

]
, (7.4)



§7.3 Proposed Method 138

where x̃ = G(ε, a), λ denotes the penalty coefficient, and x̂ = ηfs + (1 − η)x̃ with

η ∼ U(0, 1). To further ensure the learned features hold discriminative properties

suitable for classification and less bias towards source classes, we use the h2 from AGAN

as follows,

Lcls = −Ex̃∼px̃(x̃)[logP (y | x̃; θ)], (7.5)

where y is the true class label of x̃ and P (y | x̃; θ) denotes the probability of x̃ being

predicted as y by h2.

7.3.2 Optimisation

In this section, we present the loss optimisation details of the proposed method.

7.3.2.1 Mutual Learning

Since both AGAN and AFGN use the attribute-weighted feature embedding fs to learn

their tasks, we utilise both networks to assist one-another through mutual learning. We

define the mutual learning losses for AGAN and AFGN networks as follows,

Lm1 =
1

2
||fs − x̃||22,Lm2 =

1

2
||x̃− fs||22, (7.6)

where, x̃ = G(ε, a). By optimising Lm1, AGAN utilises the construction power of G in

AFGN to facilitate its embedding learning. On the other hand, AFGN uses the learned

embedding in AGAN to improve its construction ability by optimising Lm2..

For mutual training we need to optimise both Lm1 and Lm2 in every training iteration.

In every iteration we first optimise Lm1 and then Lm2 (Algorithm 2). To optimise Lm1

(7.6), first, we feed a batch of samples to AGAN to get fs, then we pass the same batch

through G in AFGN (in eval mode) to get x̃, and finally, compute Lm1. Similarly, to

optimise Lm2 (7.6), first, we feed a batch of samples to AFGN to get x̃, then we pass the

same batch through AGAN (in eval mode) to get fs, and compute Lm2.
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7.3.2.2 Loss optimisation in AGAN

For the source classes, we optimise the standard cross-entropy loss as,

Lce =
1

ns

ns∑
i=1

L(h2(fsi), yi), (7.7)

where yi is the true class label of fsi and ns denotes the number of samples.

To smooth out bias towards source classes, we hope to loosely learn a target class from

the knowledge of its closest source class. Thus, we propose to optimise the following

loss over the target class indices in h2 in one-vs-rest fashion,

Lu =
ns∑
i=1

Cs+Ct∑
j=Cs+1

pmiij logP (y = j|fsi)− (1− pmiij) log(1− P (y = j|fsi)). (7.8)

Here, pmiij is the similarity measure between the class of ith source sample and jth

target class and P (y = j|fsi) means the probability of jth index given the feature of its

closest source class.

To measure class similarity, we adopt pointwise mutual information (pmi). In

information theory, pmi measures association and co-occurrence between two events of

two discrete random variables. In the fine-grained GZSL setup, the target classes share

many attributes with the source classes. Therefore, the random variables of the class

semantic vectors of source classes asc will pose significant statistical dependence with

that of target classes atc. This implies that the target classes will produce higher pmi for

similar source classes in the class semantic vector space. We convert ac of the source and

target classes to probability distributions by applying a softmax function.

Let, ZAs and ZAt represent the converted probability distributions of the source and

target classes. The pmi between two individual events ZiAs and ZjAt of the two discrete

random variables ZAs and ZAt can be computed as,

pmi(ZiAs ;Z
j
At) = log

P (ZiAs , Z
j
At)

P (ZiAs)P (ZjAt)
. (7.9)
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We construct the joint probability distribution as Jn = ZAt · ZAs> (tensor Jn has a

dimension of Ct × Cs), and ZAt and ZAs matrices hold the dimension of Ct × atc and

Cs × asc. The marginals are computed from the summation of rows and columns of Jn.

The final objective for the AGAN network becomes,

Lce + λpLu + λm1Lm1

s.t. Ep(f)

[
DKL

[
pM (f ′ | f)‖r(f ′)

]]
≤ γ,

(7.10)

where λp and λm1 are a hyper-parameters to weight the losses for target classes and

mutual learning respectively, and γ is the MI bound.

7.3.2.3 Loss optimisation in AFGN

The final objective of AFGN is as follows,

min
G

max
D
LWGAN + λclsLcls + λm2Lm2. (7.11)

Here, λcls and λm2 are hyper-parameters for weighting the contribution of Lcls in the

optimisation and mutual learning respectively. We train AGAN and AFGN in an end-to-

end fashion. During each iteration, first, we sample a mini-batch from (xsi , y
s
i )
ns
i=1 and

Gaussian noise ε. Then we update the learnable components of AGAN by (7.10). Finally,

we update the learnable components of AFGN by (7.11).

7.3.3 Training Phase

The training procedure of the proposed method is summarised in Algorithm 2, where e

denotes the number of steps to train discriminator D. We have used 5 steps. Please note

that in our experiments, we extract CNN region features firi=1 for training images prior

to training the proposed method.
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Algorithm 2 Training Procedure
Input: Ds; asc; v; atc; AGAN components; ε; AFGN components.
Output: Trained AGAN and G from AFGN.

1: while not converged do
2: Sample mini-batch from extracted CNN region features, asc, and ε;
3: Compute Fg by region-wise avg. pooling;
4: Compute I(F ;F ′) between inputs (firi=1) and outputs (f ′i

r
i=1) of M (7.1);

5: Form F ′′ matrix using f ′i
r
i=1;

6: Convert viAi=1 to V ′ matrix using Q;
7: Perform matrix multiplication between F ′′ and V ′ to get J ;
8: Compute soft attentions through K and Tiri=1 networks by using (7.2);
9: Compute F̃1 by (7.3);

10: Perform matrix multiplication between F̃1 and V ′ to get J̃ ;
11: Perform element-wise product between J̃ and a to get J ′;
12: Compute α̃ through K̃ network similar to first part of (7.2);
13: Compute F̃2 by summation of F̃1 and α̃F̃1 similar to (7.3);
14: Perform avg. pooling and concatenation on F̃2 to get fs;
15: Feed fs to h2 for class probabilities;
16: Use asc and ε to get x̃ from G;
17: Compute losses by (7.7)–(7.10) and Lm1 (7.6);
18: Update learnable components of AGAN;
19: Sample mini-batch, ε, asc, and compute fs from AGAN;
20: for e steps do
21: Update D by (7.4);
22: end for
23: Sample mini-batch, ε, asc, and compute fs from AGAN;
24: Update G by (7.4)–(7.6);
25: end while

7.3.4 Testing Phase

Once the AGAN is trained, we formulate the classification score of a test instance as

PGZSL (xi) = maxi {si}Cti=1 and PZSL (xi) = maxi {si}Cti=Cs+1. For AFGN, we use the

trained generator G and re-sampled ε to generate multiple synthetic features for every

source and target class. Then, we learn a separate supervised classifier, which produces

|Cs + Ct| and |Ct| dimensional outputs for GZSL and ZSL. We define the classification

loss as LhAFGN = −Ex′∼p′ [logP (y | x′; θhAFGN )], where x′, y, and p′ denote samples of

the newly formed training dataset, the true class label of x′, and distribution of the new

training dataset respectively. P (y | x′; θhAFGN ) represents the probability of x′ being
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recognised as y.

7.4 Experimental Studies

In this section, we describe the datasets, evaluation protocol, implementation details, ex-

perimental outcomes, hyper-parameter settings, ablative analysis, and learned attention

visualisation.

7.4.1 Datasets

In line with fine-grained GZSL method [126], we conduct our experiments on three

popular fine-grained datasets, Caltech-UCSD Birds-200-2011 (CUB) [209], SUN Attribute

(SUN) [210], and Animals with Attributes 2 (AWA2) [211]. We further extend our

experiments to Animals with Attributes 1 (AWA1) [108] dataset, which is a version of

AWA2 dataset. We follow [201], to split the total classes into source and target classes on

each dataset.

CUB contains a total of 11,788 images of 200 classes of fine-grained bird species,

among them, 150 are selected as source classes, and the remaining 50 classes are treated

as the target or unseen classes. SUN is composed of 14,340 images with 717 categories

of scenes. This dataset is widely used for fine-grained scene recognition and GZSL. The

number of source and target classes used for GZSL are 645 and 72, respectively. AWA1

consists of 30,475 images of 50 different sub-ordinate classes of animals. For GZSL, 40

classes are used as source, and 10 are used as target classes. AWA2 has 40 source and 10

target classes comprising 37,322 images in total.

7.4.2 Evaluation Metrics

We evaluate the performance of our method by per-class Top-1 accuracy. For the source

domain, we will evaluate the Top-1 accuracy on source classes denoted as S. For the

target domain, the Top-1 accuracy on the target classes is represented as T . For evaluating

the total performance of GZSL, we compute the harmonic mean in line with [201] as,

H = (2× S × T )/(S + T ).
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7.4.3 Implementation Details

In our experiments, we extract a feature map of size 7× 7× 2048 from the last convo-

lutional block of pre-trained ResNet-101 and use it as a set of features from 7× 7 local

regions. It is worth mentioning that the pre-trained ResNet-101 model is only used for

feature extraction and not fine-tuned in the training procedure. In AGAN, the networks

M , Q, and h2 are fully-connected neural networks with no hidden layers. The networks

K and K̃ have only one hidden layer.

Grouped Convolution Attention We replace {Ti}ri=1 fully-connected neural net-

works with grouped 1D convolutional block. Everyone of the r Ti networks has two

linear layers, one is followed by tanh function and the other has a softmax function after

it. We replace the linear layers, as shown in Figure 7.4. We use a kernel size of 1 in the

convolutional block to mimic the linear or fully-connected neural layers. The input of

the convolution block has b × (A ∗ r) × 1-dimension, where b, A, r, and ∗ denote the

batch size, number of attributes, number of regions, and multiplication respectively. In

Figure 7.4, h denotes the size of the hidden layer of Ti. Note that in the first conv layer,

ri
th group will be connected to only A input channels and in the second conv layer rith

group will be connected to h input channels (hidden layer neurons). Thus, the weights

of different groups in the convolution block are not shared, which supports our goal to

learn separate attentions for r regions parallelly. After the second conv layer we obtain

an output of b × (A ∗ r) × 1-dimension which is reshaped to b × r × A-dimension for

applying softmax over the A attributes of r regions.

Figure 7.4: Grouped convolution pseudo-code.

In AFGN, since the generator has to produce fully-connected features from condi-

tional input, we maintain a full fully-connected structure of the generator for efficiency,
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i.e., the generator has only one hidden fully-connected layer. The discriminator has no

hidden layers in the structure.

The threshold γ for MI bound in the region features is cross-validated between

[0.01, 0.05]. The attribute semantic vectors v for all datasets are extracted from Wikipedia

articles trained GloVe model [200]. The attention balancing hyper-parameter λα is set

to 10. Adam solver with β1 = 0.5, β2 = 0.999 and learning rate 0.0001 is used for

optimisation. The suitable hyper-parameters setting across all datasets is as follows,

λp ∈ [0.1, 0.2, 0.3, 0.4], λm1 = 0.1, λcls = 0.1, and λm2 = 0.2.

Computation time The proposed method is trained using an NVIDIA Quadro P5000

GPU for 100 epochs with a batch size of 32. Each epoch takes approximately 50 seconds

to execute. Thus, the total training time is approximately 5000 seconds. We compute the

inference or testing time of AGAN in two ways: 1) include CNN (ResNet-101) feature

extraction in the process and 2) exclude the CNN (ResNet-101) feature extraction from

the process. For Case 1, the inference time for a sample is approximately 0.81 seconds

and for Case 2, it is approximately 0.01 seconds. For AFGN, the inference time for a

sample is approximately 0.006 seconds.

7.4.4 Results and Analysis

In this section, we analyse the evaluation of the proposed and contemporary GZSL

methods. The ZSL results of LATEM [137], DEM [212], and SGMAL [122] are adopted

from SGMAL [122], GZSL results of LATEM [137] and DEM [212] are taken from ASPN

[146], and the results of other compared methods are obtained from their corresponding

published articles. For a fair comparison, we compare both AGAN and AFGN with

only inductive methods and synthesise 400 features per class for comparing AFGN’s

performance. In Tables 7.1 and 7.2, 4 and � denote embedding learning and feature

synthesising methods, respectively, and ‘-’ represents that the results are not reported.

7.4.4.1 Generalised Zero-Shot Learning

Table 7.1 shows that both AGAN and AFGN achieves more Harmonic mean H com-

pared to contemporary methods. H the main indicator of how well a GZSL method
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Table 7.1: Performance comparison. T and S are the Top-1 accuracies tested on target classes and
source classes, respectively, in GZSL. H is the harmonic mean of T and S.

Approach Model
GZSL

CUB SUN AWA1 AWA2
T S H T S H T S H T S H

4

LATEM [137] (2016) 15.2 57.3 24.0 - - - 7.3 71.7 13.3 11.5 77.3 20.0
DEM [212] (2017) 19.6 57.9 29.2 - - - 32.8 84.7 47.3 30.5 86.4 45.1
DCN [139] (2018) 28.4 60.7 38.7 25.5 37.0 30.2 25.5 84.2 39.1 - - -

AREN [121] (2019) 38.9 78.7 52.1 19.0 38.8 25.5 - - - 15.6 92.9 26.7
CRnet [213] (2019) 45.5 56.8 50.5 34.1 36.5 35.3 58.1 74.7 65.4 - - -
TCN [113] (2019) 52.6 52.0 52.3 31.2 37.3 34.0 49.4 76.5 60.0 61.2 65.8 63.4

DVBE [214] (2020) 53.2 60.2 56.5 45.0 37.2 40.7 - - - 63.6 70.8 67.0
DAZLE [126] (2020) 56.7 59.6 58.1 52.3 24.3 33.2 - - - 60.3 75.7 67.1

VSG-CNN [203] (2020) 52.6 62.1 57.0 30.3 31.6 30.9 - - - 60.4 75.1 67.0
APN [140] (2020) 65.3 69.3 67.2 41.9 34.0 37.6 - - - 56.5 78.0 65.5

AGAN (Ours) 67.9 71.5 69.7 40.9 42.9 41.8 65.1 83.2 73.0 64.1 80.3 71.3

�

SE-GZSL [143] (2018) 41.5 53.3 46.7 40.9 30.5 34.9 56.3 67.8 61.5 58.3 68.1 62.8
f-CLSWGAN [141] (2018) 43.7 57.7 49.7 42.6 36.6 39.4 57.9 61.4 59.6 - - -

f-VAEGAN-D2 [144] (2019) 48.4 60.1 53.6 45.1 38.0 41.3 - - - 57.6 70.6 63.5
LisGAN [152] (2019) 46.5 57.9 51.6 42.9 37.8 40.2 52.6 76.3 62.3 - - -

GMN [142] (2019) 56.1 54.3 55.2 53.2 33.0 40.7 61.1 71.3 65.8 - - -
RFF-GZSL (softmax) [151] (2020) 52.6 56.6 54.6 45.7 38.6 41.9 59.8 75.1 66.5 - - -

TF-VAEGAN [215] (2020) 52.8 64.7 58.1 45.6 40.7 43.0 59.8 75.1 66.6 - - -
ASPN [146] (2020) 50.7 61.5 55.6 - - - 58.0 85.7 69.2 46.2 87.0 60.4
E-PGN [216] (2020) 52.0 61.1 56.2 - - - 62.1 83.4 71.2 52.6 83.5 64.6

APN [140] + f-VAEGAN-D2 [144] (2020) 65.7 74.9 70.0 49.4 39.2 43.7 - - - 62.2 69.5 65.6
AFGN (Ours) 69.8 77.1 73.2 53.1 45.9 49.2 67.5 83.8 74.7 68.1 82.9 74.7

Table 7.2: Performance comparison of ZSL tasks.

Approach Model CUB SUN AWA1 Approach Model CUB SUN AWA1

4

LATEM [137] 49.4 - 78.4

�

SE-GZSL [143] 60.3 64.5 83.8
DEM [212] 51.8 - 80.3 cycle-CLSWGAN [145] 58.6 59.9 66.8

S2GA (2-attention layer) [9] 68.9 - - LisGAN [152] 58.8 61.7 70.6
S2GA (3-attention layer) [9] 68.5 - - GMN [142] 64.3 63.6 71.9

SGMAL [122] 70.5 - 83.5 f-CLSWGAN [141] 57.3 60.8 68.2
TCN [113] 59.5 61.5 70.3 SABR [217] 65.2 62.8 -

DAZLE [126] 67.8 - - f-VAEGAN [144] 72.9 65.6 -
APN [140] 72.0 61.6 68.4 APN [140] +f-VAEGAN-D2 [144] 73.8 65.7 71.7

AGAN (Our) 74.9 66.5 88.7 AFGN (our) 78.5 69.8 89.1

performs. AGAN and AFGN also significantly outperform the contemporary meth-

ods for the majority of the GZSL tasks. Unlike embedding learning methods, feature

synthesising methods leverage supervised training on synthesised data during testing

and outperform embedding learning methods. Similarly, AFGN outperforms AGAN.

AGAN outperforms all the compared embedding learning methods, which either use

local or global feature embedding. This indicates that the proposed method’s feature
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embedding holds finer discriminative information required for fine-grained tasks. The

improved performance of AGAN also proves that both global and local information

plays a vital role in fine-grained GZSL.

APN [140] is the closest competitor, which has a global feature learning module

(BaseMod) along-with a local feature learning module (ProtoMod). AGAN outperforms

APN significantly. AFGN increases the accuracy of GZSL by a large margin compared

to APN + f-VAEGAN-D2 [144]. This means the proposed method is more effective for

GZSL tasks.Considering fine-grained attention-based GZSL methods, DAZLE [126] is the

closest competitor, which leverages only local region-based features. However, DAZLE

restricts the embedding space to the number of selective attributes. In comparison,

we preserve all local region features highlighted by the most relevant attributes to the

regions and the global information corresponding to the local regions. The improved

performance of AGAN and AFGN verifies the effectiveness of our feature embedding.

Concerning irrelevant information removing GZSL methods, RFF-GZSL [151] filters

out redundant information from global features. On the other hand, the proposed

method preserves global information on an average to hold the generic trend of deep

classifier features and removes redundancy from local regions to reduce the interruption

of irrelevant information. The higher performance of AGAN and AFGN validates that

the proposed feature embedding holds better distinctive and necessary information.

Compared to other methods, AGAN reduces the source domain bias by optimising the

target loss Lu and makes better knowledge transfer from source to target classes. AFGN

follows the same trend as it uses the discriminative knowledge of h2. We present some

qualitative results of AGAN and AFGN on the CUB dataset’s GZSL task in Figure 7.5.

The samples shown in the figure are selected from the test set. The results show both

AGAN and AFGN have minimal misclassifications.

7.4.4.2 Zero-Shot Learning

The performance on ZSL tasks (CUB, SUN, AWA1) of different methods is shown in

Table 7.2. As expected, the results show that the target class accuracy of all ZSL methods
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(a) AGAN GZSL results. (b) AFGN GZSL results.

Figure 7.5: Qualitative results on GZSL task of the CUB dataset. Images with red boxes show
misclassifications by AGAN and AFGN.

is higher than the GZSL tasks. The proposed AGAN and AFGN perform better than

contemporary methods. The improved performance of the networks for ZSL tasks shows

that the trained networks gain the ability to generalise well to unseen target classes even

in the conventional ZSL setup, which is encouraged by the optimisation of Lu based on

the pmi similarity.

7.4.4.3 Hyper-parameters Analysis

For studying the trend of GZSL accuracy of AGAN and AFGN in different hyper-

parameters (λP , λm1, λm2, and λcls) settings, we plot the graphs shown in Figure 7.6.

Figures 7.6a and 7.6b show the performance of AGAN and AFGN with various λP

setups respectively. In case of both the networks, we observe that the source accuracy



§7.4 Experimental Studies 148

(a) (b) (c)

(d) (e)

Figure 7.6: Effect of varying the hyper-parameters in the GZSL performance on the CUB dataset.

depicts a sharp decreasing pattern after λP = 0.2 while the target accuracy starts to

surpass the source accuracy a little after that point. This means the networks gradually

lose the capability to recognise the source domain samples correctly. The harmonic

mean H achieves the optimal performance at λP = 0.2 and decreases soon after that.

Thus, we find the value of λP = 0.2 optimal for the task. Note that for other datasets we

cross-validate λP in the range [0.001, 0.01, 0.1, 0.2, 0.3, 0.4].

The effect of different settings of the hyper-parameters weighting the mutual loss

λm1 in AGAN and λm2 in AFGN are shown in Figures 7.6c and 7.6d respectively. We

observe that the optimal performance in AGAN is achieved when λm1 = 0.1, and the

source and target classes performances are harmed when the value of λm1 is greater

than that. On the other hand, the AFGN network has low accuracies for fewer values of

λm2 and achieves optimal performance when λm2 is 0.2. This means the AFGN is more

facilitated by mutual learning compared to AGAN.

Figure 7.6e illustrates the performance of AFGN in different settings of λcls. Note

that AFGN has a very low source and target accuracy for near-zero values of λcls,

which indicates the importance of the discriminative feedback of h2 in the network. We
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demonstrate that the performance increases for greater values of λcls, however, decreases

slightly after λcls = 0.1. Therefore, we set the value of λcls to 0.1 for optimal performance

in AFGN.

7.4.4.4 I Bound Analysis

Figure 7.7 shows the change in performances of AGAN and AFGN on different values

of γ. Both networks show low accuracy near zero I bound, which indicates interruption

of redundant information in the features.

(a) (b)

Figure 7.7: Performance comparison for different I bounds γ of AGAN (a) and AFGN (b) on
GZSL task of the CUB dataset.

Note that the performance of both networks depicts an increasing trend with the

increasing values of γ. However, after γ = 0.05, the performance starts to decrease,

which means the necessary information flow is harmed. Both the networks achieve

optimal performance when the I bound is γ = 0.05. Note that for some datasets we

observe better performance at γ = 0.01, therefore we mentioned earlier γ ∈ [0.01, 0.05].

7.4.4.5 Ablation Study

To highlight the impact of different vital components on the performance of the proposed

method, we perform an ablative analysis by removing those components from AGAN

and AFGN. The results of the ablative analysis are shown in Table 7.3.

First, we omit the I bound from the proposed method and study its importance. The

variants AGAN w/o γ and AFGN w/o γ show the performance without the I bound.
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Approach T S H Approach T S H
AGAN w/o γ 48.7 56.8 52.4 AFGN w/o γ 50.5 59.1 54.4

AGAN (fs w/o Lu) 20.1 72.5 31.4 AFGN (fs w/o Lu) 25.2 78.9 38.1
AGAN (fs w/ F̃1) 58.1 61.9 59.9 AFGN (fs w/ F̃1) 60.9 70.1 65.1

- - - - AFGN w/o Lcls 47.8 58.1 52.4
AGAN w/o Fg 59.9 65.3 62.4 AFGN w/o Fg 62.4 68.7 65.3

AGAN w/o Lm1 59.2 65.2 62.0 AFGN w/o Lm2 57.9 66.1 61.7
AGAN w/o m 59.1 64.4 61.6 AFGN w/o m 61.1 71.3 65.8

AGAN 67.9 71.5 69.7 AFGN 69.8 77.1 73.2

Table 7.3: Ablative analysis for GZSL on the CUB dataset.

The accuracy of AGAN decreases drastically without the I bound. AFGN without the I

bound shows a similar trend of inferior results. The existence of irrelevant information

in the local regions while constructing the feature embedding harms AGAN and AFGN

for fine-grained GZSL recognition. Thus, the I bound is crucial for the proposed method.

Second, we omit the target loss optimisation represented by the variants fs w/o Lu
as feature embedding without the target loss. We observe that both AGAN and AFGN

variants show high S accuracy and very low T accuracy. This indicates that without

Lu, AGAN and AFGN struggle to generalise to target classes, which demonstrates the

importance of the target loss based on pmi similarity.

Third, we omit the second step attention. The variants of AGAN and AFGN where

the feature embedding is formed with only one-step dense attention (fs w/ F̃1) show

a large decrease in performance. This justifies that only one level of dense attention

mechanism is not sufficient enough to yield satisfactory performance.

Fourth, we remove Lcls from AFGN optimisation and observe that the performance

of AFGN decreases as the discriminative property of the generated features is not

monitored during training.

Fifth, for analysing the influence of global features in the proposed method, we

omit Fg from the two variants AGAN w/o Fg and AFGN w/o Fg. We observe that the

performance of both networks decreases to a large extent. This demonstrates the impact

of the global features besides local features in the performance of GZSL tasks.

Sixth, to investigate whether AGAN or AFGN is more facilitated by the mutual

training, we omit Lm1 from AGAN in one variant (AGAN w/o Lm1) and Lm2 from
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AFGN in the other variant (AFGN w/o Lm2). AGAN and AFGN are trained jointly in

both variants. The results indicate that AFGN is more facilitated than AGAN by mutual

learning.

Finally, to study the impact of mutual learning in the proposed method, we remove

mutual training, i.e., first, we train AGAN separately and then use the feature embedding

from AGAN to train AFGN. These two variants are denoted by AGAN w/o m and

AFGN w/o m. The degrading performance of the two variants shows the impact of the

interaction between AGAN and AFGN during optimisation.

7.4.4.6 Analysing Number of Generated Features

To analyse the effect of the number of generated features per class during testing, we

plot the graphs in Figures 7.8a, 7.8b and 7.8c.

The graphs (Figures 7.8a and 7.8b) show the performance comparison of CUB and

SUN datasets with respect to a various number of generated features per class for GZSL.

In general, we demonstrate that with the increasing number of features per class, the

H increases. For CUB dataset, S and T significantly increase till 400, and after that the

(a) CUB (b) SUN (c) ZSL

Figure 7.8: (a) and (b) Increasing the number of synthesised features wrt GZSL performance in
CUB and SUN datasets. (c) Increasing the number of synthesised features wrt ZSL performance
in CUB, SUN, and AWA1 datasets.

increment is marginal. For SUN dataset, S marginally decreases after 200; however, T

increases with the increasing number of features per class. Notice that after 400, the

value of H plateaus as both S and T depict no significant change. We demonstrate

that AFGN can generalise well to unseen target classes besides seen source classes. For
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ZSL (Figure 7.8(c)), the performance of all the datasets significantly increases with the

increasing number of synthesised features per class. More number of features per class

helps the final classifier learn better and generalise more to unseen target classes. Similar

to GZSL tasks, we observe that the increment in performance is marginal after 400. The

improved generalisation to target classes in GZSL and ZSL tasks validates that AFGN

reduces source domain bias.

7.4.4.7 Analysing Two-level of Attentions

The first row of Figure 7.9 presents some examples of the class ‘Mallard’ from the CUB

dataset. To study the learned attention, we visualise the learned attention maps for an

Figure 7.9: Samples from ‘Mallard’ class of CUB dataset (first row). Visualisation of the learned
attention maps (second row), where first, second, and third columns show the original images,
images after applying one-step attention (α), and two-step attention (α and α̃), respectively. Best
viewed in colour.

image of the class ‘Mallard’ in the second row of Figure 7.9. We visualise the output of

the first level of attention in the second column of the second row, which shows that the

local regions linked to the attributes are assigned more weights than the other regions.

This assists in focusing better on the possible distinctive attributed regions. The third

column of the second row shows the visualisation of second-level attention. Compared

to the output of one-level attention, two-level attention shows more weight assignment

on the regions having intra-class common attributes to assist in better class decisions. In

particular, notice that the region shown in green circles in the third column achieve more
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attention compared to that of the second column as the attributes ‘forehead colour green’

and ‘breast colour grey’ have a greater score of presence in the samples of the class.

On the other hand, the region shown in orange circle in the third column receives less

attention than the second column as the attribute ‘leg colour orange’ has less visibility

in the samples of the class. This visualisation verifies the importance of our two-step

attention mechanism to learn better attribute-weighted features for fine-grained GZSL.

7.5 Summary

Existing EL and FS GZSL methods use either local or global details to accomplish fine-

grained classification. However, in this chapter, we have argued that both global and

local details are crucial. Local features are necessary to capture fine distinctive infor-

mation related to the semantic attributes, and global features are required to preserve

generic visual feature representation structure. To utilise local and global features in EL

and FS approaches, we have proposed to integrate an EL network (AGAN) and a FS

network (AFGN) into a unified GZSL network. In the proposed GZSL network, we have

introduced a new two-step dense attention mechanism to discover local details linked to

the attributes. The global details are preserved region-wise. We have then introduced a

mutual learning optimisation between the two networks to exploit mutually beneficial

information. To reduce bias towards the source domain, we have transfer learned the

target classes depending on their shared information with the source classes. The inte-

gration avails two-way testing capability. We have presented a thorough evaluation of

the proposed method on benchmark datasets for GZSL and ZSL tasks and demonstrate

that it outperforms contemporary works. The improved performance of the proposed

method evinced that both global and local information are essential for fine-grained

classification. Although the network has many hyper-parameters, a saddle point can

be easily found with a moderate hyper-parameter tuning or cross-validation. Once the

saddle point is located, it works for a wide range of tasks. This chapter has presented

our fifth contribution. In the following chapter, we will discuss the final contribution of

this thesis, i.e., to improve bidirectional GZSL and reduce bias.



Chapter 8

Bidirectional Mapping Coupled
GAN for Generalised Zero-Shot
Learning

1 In the previous chapter, we discussed the proposed attribute weighted attention

mechanism to improve embedding learning and generative ZSL. In this chapter, we

present the sixth contribution of this thesis, i.e., to improve bidirectional mapping for

strong coupling between visual and semantic space and reduce source classes bias to

improve GZSL.

Bidirectional mapping-based GZSL methods rely on the quality of synthesised fea-

tures to recognise source and target data. Therefore, learning a joint distribution of

source-target classes and preserving domain distinctive information is crucial for these

methods. However, existing methods only learn the underlying distribution of source

data, although target class semantics are available in the GZSL problem setting. Most

methods neglect retaining domain (source-target) distinction and use the learned dis-

tribution to recognise source and target data. Consequently, they do not perform well.

In this chapter, we utilise the available target class semantics alongside source class

semantics and learn joint distribution through a strong visual-semantic coupling. We

propose a bidirectional mapping coupled generative adversarial network (BMCoGAN)

by using the principle of coupled generative adversarial network. We further integrate

1Chapter 8 is adapted from: T. Shermin, S. W. Teng, F. Sohel, M. Murshed, and G. Lu, “Bidirectional
Mapping Coupled GAN for Generalised Zero-Shot Learning,” Revision submitted to IEEE Transactions on
Image Processing, 2021 [arXiv: 2012.15054].
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a Wasserstein generative adversarial optimisation to supervise the joint distribution

learning. We design a loss optimisation for retaining source-target distinctive informa-

tion in the synthesised features and reducing bias towards source classes, which pushes

synthesised source features towards real source features and pulls synthesised target

features away from real source features. We evaluate BMCoGAN on benchmark datasets

and demonstrate its superior performance against contemporary methods.

8.1 Overview

Feature synthesising or generative ZSL approaches only rely on the class semantics

for adversarially generating visual features [141, 143, 145, 147, 151, 152]. The generative

methods capture the visual distribution only via a unidirectional alignment from the

class semantics to the visual feature. This leads to weak visual-semantic coupling, which

is vital for zero-shot tasks [10, 132, 153], and harms the performance. To handle this

issue and improve performance, recent methods [10, 132, 154–157] use the bidirectional

mapping between visual and semantic domains.

For GZSL, during testing, the bidirectional mapping models have to recognise both

source and target classes. Thus, integrating the knowledge of the joint distribution of

source-target classes will enhance the GZSL recognition performance. However, existing

models ignore learning source-target classes joint distribution [10, 132, 154–157]. In

addition, preserving source-target discriminative information in the model is necessary

for improved classification and limiting bias towards source classes during testing.

However, except for a few existing bidirectional mapping methods [156, 157], they

[10, 132, 153–155] ignore the challenge of reducing bias towards source classes while

performing zero-shot recognition (for more details see Section 2.7).

In this chapter, we propose a new generative bidirectional mapping GZSL method to

address the above-mentioned issues. We refer to our proposed method as Bidirectional

Mapping Coupled Generative Adversarial Network (BMCoGAN). Our ultimate aim

is to learn two broad tasks: 1) learn the joint distribution of source-target classes by

establishing strong coupling between the semantic-visual spaces through bidirectional



§8.1 Overview 156

mapping; and 2) preserve source-target discriminative characteristics in the generated

feature space. Task 1 will enhance source-target data classification performance, and

Task 2 will mitigate bias towards source classes.

As we follow the inductive setting, we do not have access to target image data.

However, the GZSL problem setting states the availability of target class semantics

[10, 151]. Therefore, we aim to learn the joint distribution using source and target class

semantics. The Coupled GAN (CoGAN) [218] has a generative and weight sharing

structure. So, it can learn dual-domain joint distribution with just samples drawn from

the marginal distributions by restricting the network capacity. Therefore, to learn Task

1, we utilise the concept of CoGAN [218] to learn the joint distribution of source-target

classes in our proposed bidirectional mapping method. We partially adopt the weight

sharing properties of CoGAN in BMCoGAN to learn the joint distribution and integrate

the bidirectional mapping property in the model by introducing regressors (Figure 8.3).

To the best of our knowledge, ours is the first attempt to utilise the principle of CoGAN

for GZSL recognition.

There are significant fundamental and architectural differences between CoGAN

and the proposed BMCoGAN. In CoGAN, the joint distribution is learned in a one direc-

tional generative adversarial way for domain adaptation tasks. In particular, CoGAN

learns to generate fake images of two domains from noise and adversarially distin-

guishes between the real and fake images of those two domains. On the other hand, the

proposed BMCoGAN learns the joint distribution of the source and target classes for

GZSL in a bidirectional way. For source and target classes, BMCoGAN generates visual

features from class semantics, reconstructs class semantics back from generated visual

features, and adversarially assesses reconstructed class semantics against the real class

semantics. In BMCoGAN, we simultaneously learn the joint distribution and establish

strong coupling between the visual and semantic space through bidirectional mapping.

Note that the strong coupling between the class semantics and the synthetic visual

features is crucial for improved GZSL performance as the target classes do not have

available visual features. Through this bidirectional mapping and adversarial semantic

assessment, BMCoGAN learns to generate synthetic visual features for the target classes.
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For source classes, in addition to bidirectional mapping and semantic assessment, visual

feature generation is adversarially supervised by available training images. To preserve

discrimination between source and target classes (Task 2), we propose to push generated

source visual features towards real source visual features and pull generated target

visual features away from real source visual features. This mitigates the bias towards

source classes. For details on the structural differentiation of CoGAN and BMCoGAN

please see Section 8.3.1.

The main contributions are as follows:

• We propose a generative adversarial GZSL network, which learns source-target

classes joint-distribution through bidirectional mapping and generates better

source-target discriminative features.

• To capture the joint distribution of source and target set of classes, we propose to

use the joint distribution learning concept of CoGAN in the proposed BMCoGAN

for GZSL tasks. In particular, we relate the visual-semantic spaces by imposing

bidirectional mapping in the principle of CoGAN and modify the weight sharing

properties of CoGAN. We also support the joint distribution learning with a

supervisory Wasserstein generative adversarial optimisation.

• Unlike existing methods, in addition to distance-based optimisation for bidirec-

tional mapping, the proposed BMCoGAN adversarially ensures that the underly-

ing distribution of the synthesised class semantics is aligned with the real semantics

for both source and target classes.

• To reduce bias towards source classes, we encourage the proposed method to

maintain more similarity between real source and synthesised source features than

real source and synthesised target features. This helps in retaining the required

discrimination between the features of source and target classes.

• We present an extensive empirical evaluation of BMCoGAN on several datasets to

demonstrate its superior performance compared to contemporary GZSL methods.
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8.2 Coupled Generative Adversarial Networks

The Coupled Generative Adversarial Networks (CoGAN) [218] can learn the joint

distribution of two domains. In CoGAN, there are two GANs with shared layers to

handle high-level semantic features and separate layers to deal with low-level features

for different domains. CoGAN also has two discriminators with shared layers, as shown

in Figure 8.1.

Figure 8.1: Block diagram of CoGAN.

This setting allows CoGAN to capture the joint distribution and generate images of

multiple domains. Therefore, CoGAN is used for performing domain adaptation tasks.

CoGAN can learn the joint distribution without relying on the correspondence between

data samples in the two domains. The minimax objective function for CoGAN is as

follows,

max
g1,g2

min
d1,d2
L ≡ Ef1∼pf1 [log d1 (f1)]

+Ez∼pz [log (1− d1 (g1(z)))]

+ Ef2∼pf2 [log d2 (f2)]

+Ez∼pz [log (1− d2 (g2(z)))] .

(8.1)

Here, GANi consists of generator gi and discriminator di, and i = 1, 2. f1 and f2 denote

two samples from different domains, and ε represents the Gaussian noise distribution.

The CoGAN optimisation is subjected to two constraints as follows,
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θ
gj1

= θ
gj2

1 ≤ j ≤ sg

θ
d
l1−k
1

= θ
d
l2−k
2

0 ≤ k ≤ sd − 1
where θ

gji
denotes the parameter of the jth layer

from the top of the generator gi, θdli−ki

represents the parameter of the (k + 1)th layer

from the final layer of the discriminator di, li denotes the number of layers in di. In

the following section, we discuss how the concept of CoGAN for learning the joint

distribution is used in the proposed BMCoGAN for GZSL tasks and highlight the

architectural differences between CoGAN and BMCoGAN.

8.3 Proposed Method

In this section, we formally present our proposed method. We follow the GZSL setting

described in Section 7.1.

Figure 8.2: A conceptual overview of the proposed method. (a) To learn a joint distribution
of source and target classes, we learn to construct visual features from class semantics and
reconstruct class semantics back from the generated visual features. This bidirectional mapping
ensures a strong relation between semantic-visual space. This compensates for the absence of
supervision from target real features during synthetic target feature generation. (b) To retain
source-target discrimination in the feature generation procedure, we encourage the real source
features to attract the generated source features and repel the generated target features. (c) The
combination of (a) and (b) constructs the final model.
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Figure 8.3: Block diagram of our proposed BMCoGAN. The BMCoGAN has a full weight shared
coupled generator G, a source classes regressor Rs, an target classes regressor Ru, partial weight
sharing coupled discriminators Ds and Du, a feature discriminator D, and a pre-trained classifier
C. The generator G takes noise z as input conditioned on the class semantics as and at. G
generates synthetic visual features and the regressors reconstructs the features back to class
semantics. The coupled discriminators adversarially assess the real ans synthetic class semantics.
The joint distribution is learned by the bidirectional mapping performed by G, Ru, Rs, Ds, and
Du. The distinctive characteristics required for classification is imposed in the synthetic features
by the adversarial discriminator D and classifier C. The source-target discrimination is learned
by our designed loss using D.

8.3.1 Proposed GZSL

As mentioned earlier, the proposed BMCoGAN addresses two broad tasks: 1) Learning

joint distribution through bidirectional mapping and 2) Learning to preserve discrimina-

tive information in synthesised features.

Figure 8.2a shows an illustration of the concept for Task 1. For both source and

target classes, our aim is to learn the underlying semantic and visual distributions. We

plan to construct visual features of both classes using the available class semantics. The

quality of constructed source class visual features can be evaluated by the available

real features. However, for target classes, we do not have access to real visual features.

Therefore, to evaluate, we utilise bidirectional mapping. This means we reconstruct the

class semantics back from the generated features and then compare real semantics with
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reconstructed semantics. This bidirectional mapping not only helps to supervise target

feature learning, also establishes a strong coupling between semantic and visual spaces.

To fulfill our goal of learning the joint distribution, besides the target classes, we extend

the bidirectional mapping to the source classes.

For Task 2, compared to the constructed target features, we encourage the constructed

source features to remain closer to the real source feature space. As shown in Figure 8.2b,

this objective is fulfilled by pushing the constructed source features towards the real

source features and pulling the constructed target features away from the real source

features. The ultimate concept of the proposed model (Figure 8.2c) is a combination of

both Tasks.

Architecture Overview. The proposed BMCoGAN is illustrated in Figure 8.3. In

CoGAN, the generators share only the bottom layers so that the GANs learn to deal with

high-level concepts in the same manner. This also helps in learning the joint distribution

of data samples. Unlike CoGAN, in BMCoGAN, we propose to use a fully shared

generator for source-target classes. So, the main component of BMCoGAN, the shared

generator G modifies the first constraint of CoGAN. We demonstrate that the fully

shared generator is optimal than partially weight shared generators for GZSL tasks in

the ablative section.

Moreover, contrary to CoGAN, our shared generator G is conditioned on the class

semantic vectors for generating visual features. The shared generator helps to learn to

handle low to high-level features for source-target classes in a similar manner, which is

crucial for our problem setting and encourages the joint distribution learning paradigm.

The generator G plays an important role in accomplishing Tasks 1 and 2. To introduce

bidirectional mapping within the CoGAN structure, we place two separate regressors

(Rs and Ru). The regressors map visual features to their corresponding class semantic

vectors. Unlike CoGAN, we introduce coupled discriminators (Ds andDu) with only one

shared layer in BMCoGAN. The coupled discriminators learn to distinguish between

the real and reconstructed class semantic vectors. The generator and the regressors

combinedly generate class semantic vectors through bidirectional mapping and try to

deceive the coupled discriminators. On the other hand, the coupled discriminators
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try to recognise real and generated class semantic vectors adversarially. The purpose

of the partially shared architecture of the coupled discriminators is to simultaneously

synchronise with the shared G to learn joint distribution and to learn discriminative

attributes of source-target class semantics. The synchronisation is ensured by the final

shared layer of the coupled discriminators. The separate layer learns discriminative

information of source-target class semantics. This helps G to roughly hold source-target

discrimination in the learned feature space. The final weight-shared layer also reduces

the number of parameters in the network.

The proposed method also has a feature discriminator D, which learns to separate

real and generated visual features for the source classes. The generator G and dis-

criminator D interacts with each other adversarially. We adopt Wasserstein generative

adversarial optimisation for this supervision.

To learn source-target discriminative information for handling bias towards source

classes, the generator G and the discriminator D learn to attract source classes generated

features to real source classes features and repels target classes generated features away

from real source classes features. The classifier C is placed to assess and enrich the

discriminative characteristics in the generated features. The proposed model provides a

unified framework to learn the joint distribution of source-target classes simultaneously

and retain source-target distinctive information and can be trained in an end-to-end

fashion.

8.3.1.1 Learning joint distribution using bidirectional mapping

We want to utilise the class semantic vectors of both source and target classes and

generate synthetic visual features. We follow [141] to construct the conditional Generator

G : Z×A → X that uses random Gaussian noise z ∈ Z and class semantic vector ac ∈ A,

and generates visual feature x ∈ X of class c. Now, the feature Generator G can generate

source and target classes visual features conditioned on their class semantic vectors.

On the other hand, the regressors have to perform the reverse task of constructing the

class semantic vectors from the generated visual features. We aim to train the regressors
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to generate class semantic vectors as similar as possible to the real class semantic vectors.

This will ensure strong coupling between semantic→ visual and visual→ semantic. The

semantic and visual spaces are better related through this bidirectional mapping. Note

that we place separate regressors for the source and target classes to encourage solid

source-target bidirectional mapping. We train the regressors with supervised loss as

follows,

LReg = ||a− ã||22. (8.2)

We compute LsReg and LtReg for Rs and Ru, respectively.

The ultimate aim of this task is to learn the joint distribution of source and target

classes. We optimise the shared generator G to learn the joint distribution by adversar-

ially interacting with coupled discriminators Ds and Du. The generator G generates

source-target features such that the generated class semantics from the features are indis-

tinguishable to the real class semantics. The regressors generate class semantics using

the generated features of G. On the other hand, the coupled discriminators distinguish

the generated class semantics from the available real class semantics for source and

target classes. The adversarial optimisation between the generator and the coupled

discriminators is as follows,

min
G

max
Ds,Du

LG1 = Eas∼p(as)[logDs(a
s)] + Eãs∼p(ãs)[log(1−Ds(ã

s))]

+ Eat∼p(at)[logDu(at)] + Eãt∼p(ãt [log(1−Du(ãt))].

(8.3)

Here, ã denotes the constructed class semantics by the regressors. This adversarial

optimisation encourages joint distribution learning.

To impose the knowledge of the true underlying visual distribution in the generated

visual space, we further adversarially supervise the generator with the real source

features. To be specific, we train the discriminator D to distinguish between a real

feature xs and a synthetic feature x̃s conditioned on as. Simultaneously the feature

generator is trained to produce synthetic features indistinguishable to the real features.
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The adversarial supervision is performed by using Wasserstein distance as follows,

min
G

max
D
LG2 =Ep(xs)[D(xs)]− Ep(x̃s)[D(x̃s)]−

βEp(x̂s)

[
(‖∇x̂D(x̂s)‖2 − 1)2

]
,

(8.4)

where x̃s = G(z, as) and x̂s = αx+(1−α)x̃s with α ∼ U(0, 1). β is the penalty coefficient.

Wasserstein distance is calculated using the first two terms. The gradient penalty is

computed by the final term i.e., the gradient of the discriminator D is forced to maintain

a unit norm along the straight line between real and generated source visual feature

pairs. Note that unlike [141], we do not integrate the class semantics to D.

8.3.1.2 Learning to preserve discriminative information in synthesised features

To preserve a distinction between the generated features of source classes from that of

the target classes, we explicitly design an optimisation function, which encourages the

generator G to generate source visual features closer to real source visual features and

generate target visual features away from real source visual features. This phenomenon

will help maintain a suitable gap between generated source and target features for better

classification and reduce the bias towards source classes. We optimise the following loss

for holding discrimination,

Ld = ||D(xs)−D(x̃s)||22 − ||D(xs)−D(x̃t)||22. (8.5)

We hypothesise that during testing, using the trained discriminator D will help to

retain the source-target distinctive information in the synthesised features. Thus, along

with the Generator G, we extend the discriminative learning to the discriminator D. In

particular, we optimise both G and D with the above loss with the hope to utilise the

partial layers of D in test time feature synthesis.

To further support the discrimination among source and target classes in the feature
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learning procedure, we constrain the early layers of the discriminator D as follows,

L(D,C) = Ep(xs,ys)
[
EpD(k|xs)

[
LC
(
k, y, y′

)]]
(8.6)

where, LC (k, y, y′) = max
(

0,∆ + ‖k − Cy‖22 −
∥∥k − Cy′

∥∥2

2

)
[219], k is the early layer

output of D for the source classes, y and y′ are the true class label of xs and random

class label other than y, respectively. The Cy denotes the yth source class center of deep

features. The distributions of source classes are grouped according to their labels by the

center loss. This in turn facilitates the learned feature space to maintain distance among

source and target classes by concentrating the source classes near their corresponding

centers.

Finally, to make the generated features well suited for learning a discriminative

target classifier, in line with [141], we utilise the decision of a source classes trained

Classifier C as,

Lcls = −Ex̃s∼psyn [logP (y | x̃s; θ)], (8.7)

where y is the true class label of x̃ and P (y | x̃; θ) denotes the probability of x̃ being

predicted as y conditioned on its semantic descriptor a.

Our ultimate objective becomes,

min
G,Rs,Ru

max
Ds,Du

λ1LG1 + LsReg + LtReg,

min
G

max
D

λ2LG2 + λclsLcls + λdLd + λcenL(D,C).

(8.8)

Here, λ1, λ2, λd, λcls and λcen are hyper-parameters for weighting the losses. More detail

on setting the hyper-parameters will be discussed in the results section. The training

procedure of BMCoGAN is outlined in Algorithm 3, where where e denotes the number

of steps to train discriminators Ds, Du, and D. We have used 5 steps..

Testing Phase The test phase of BMCoGAN is shown in Figure 8.4. During the test

phase our aim is to train a final visual classifier for both source and target classes and use
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Algorithm 3 Training Procedure
Input: labelled source dataset Ys; source class semantic vectors As; target class semantic
vectors At; generator G; regressors Rs and Ru; coupled discriminators Ds and Du;
discriminator D; source classifier C pre-trained on Ys.
Output: Trained generator G and discriminator D.

1: while not converged do
2: Sample mini-batch from (xsi , y

s
i )
ns
i=1 and their corresponding class semantic vec-

tors As;
3: Sample mini-batch of class semantic vectors from At;
4: Update Rs and Ru by (8.2);
5: for e steps do
6: Update Ds, and Du by (8.3);
7: Update D by (8.4) + (8.5) + (8.6);
8: end for
9: Sample mini-batch from (xsi , y

s
i )
ns
i=1 and their corresponding class semantic vec-

tors As;
10: Sample mini-batch of class semantic vectors from At;
11: Update Rs and Ru by (8.3);
12: Update G by (8.3) + (8.4) + (8.5) + (8.7);
13: end while
14: return Trained G and D.

Figure 8.4: Testing sequence of our proposed GZSL method.

the classifier for GZSL task. We exploit two kinds of classifiers: softmax and k-nearest

neighbor (k-NN) as the final classifier.For final GZSL task, we use the trained softmax or

k-NN classifier.

We need visual features of both source and target classes to train the final classifier.

We have access to test features of the source classes xstest. Note that the test features

of the source classes are split from the source class test set. However, we do not have

access to visual features of target classes. So, we generate multiple synthetic features

xttest for every target class by using the trained generator G, class semantics at, and noise
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z (re-sampling). We have trained the discriminator D to learn the discriminative features

of the source and target classes during training phase. We want to use this distinctive

knowledge in the final GZSL classification to reduce source bias. Therefore, we pass

both xstest and xttest through the discriminator D and obtain the final features xstr and xttr,

respectively. Note that only the early layer of the discriminator D is used to preserve

the feature dimensions, i.e., xttest and xstest will have dimensions similar to the extracted

features from the pre-trained ResNet-101. Once we have the final features of the source

xstr and target xttr classes, we train the final classifier separately.

After receiving final features, the softmax classifier (h) produces |Cs+Ct| dimensional

class probability through log softmax function, i.e., |Cs| for source classes and |Ct| for

target classes. We define the classification loss as follows,

Lh = −Extr∼ptr [logP (y | xtr; θh)] (8.9)

where, xtr, y, and ptr denote the final features of the source and target classes, the

ground-truth of xtr, and distribution of the final features, respectively. P (y | xtr; θh)

denotes the probability of the final features (xtr being recognised as y. For the k-NN

classifier, we only evaluate using 1-NN classifier.

8.4 Experimental Studies

In this section, we describe the implementation details, discuss our experimental out-

comes (classification results, hyper-parameters setups, and number of synthesised fea-

tures per target class) and present a detailed ablation study. Note that we follow the

same evaluation metrics and datasets discussed in Sections 7.4.2 and 7.4.1, respectively.

8.4.1 Implementation Details

We extract 2048 dimensional features from pre-trained ResNet-101 for all source classes

for our experiments. Since the generator has to produce fully-connected features from
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conditional input, we maintain a total fully-connected structure of the generator for

efficiency i.e., the generator has one hidden fully-connected layer of dimension 4096.

The fully-connected structure of the generator also helps in learning the joint distribution

of the source-target classes. Both the Regressors have a hidden layer with 1024 fully-

connected neurons. The coupled discriminators reduce the class semantic vectors to

256 dimension through separated fully-connected layers and then share the final fully-

connected layer.

We observed that the discriminatorD co-operates more in the discriminative learning

and supervision when it has only one hidden layer. We have used 1024-dimensional fully-

connected hidden layer for the discriminator D in our experiments. We follow [220] for

improved Wasserstein GAN training. Adam solver with β1 = 0.5 and β2 = 0.999 is used

for optimisation. A learning rate of 0.0001 is used for the generator, the discriminator

D, and the center loss (8.6), and 0.0002 is used for the regressors and the coupled

discriminators. For our final objective, we find setting λ1 = 2, λ2 = 0.8, λd = 1,

λcls = 0.2, and λcen = 0.1 optimal.

8.4.2 Results and Analysis

We compare BMCoGAN with state-of-the-art methods on generalised zero-shot learning,

and the results are shown in Table 8.1. The results of LATEM [137], DEM [212], and

SGMAL [122] are adopted from SGMAL [122] and the results of other compared methods

are obtained from their corresponding published articles. We compare the performance

with only inductive methods for a fair comparison, which do not use target images

during training. The results with 400 synthesised features per class are shown in Table 8.1.

Though we present results from embedding learning and feature synthesising methods

in Table 8.1, for comparison, our main focus is on the bidirectional methods. We perform

GZSL tasks with the proposed BMCoGAN using both 1-NN and softmax classifier. The

Harmonic mean (H) is the main indicator of how well a GZSL method performs.

Table 8.1 shows that BMCoGAN with softmax classifier outperforms all the contem-

porary bidirectional mapping GZSL methods significantly in terms of the Harmonic
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Table 8.1: Performance comparison. T and S are the Top-1 accuracies tested on target classes
and source classes, respectively, in GZSL. H is the harmonic mean of T and S. 4, �, and ��
denote embedding learning, generative, and bidirectional mapping methods, respectively, and ‘-’
represents that the results were not reported.

Approach Model
GZSL

CUB SUN AWA1 AWA2
T S H T S H T S H T S H

4

DCN [139] (2018) 28.4 60.7 38.7 25.5 37.0 30.2 25.5 84.2 39.1 - - -
CRnet [213] (2019) 45.5 56.8 50.5 34.1 36.5 35.3 58.1 74.7 65.4 - - -
TCN [113] (2019) 52.6 52.0 52.3 31.2 37.3 34.0 49.4 76.5 60.0 61.2 65.8 63.4

DVBE [214] (2020) 53.2 60.2 56.5 45.0 37.2 40.7 - - - 63.6 70.8 67.0
DAZLE [126] (2020) 56.7 59.6 58.1 52.3 24.3 33.2 - - - 60.3 75.7 67.1

VSG-CNN [203] (2020) 52.6 62.1 57.0 30.3 31.6 30.9 - - - 60.4 75.1 67.0

�

SE-GZSL [143] (2018) 41.5 53.3 46.7 40.9 30.5 34.9 56.3 67.8 61.5 58.3 68.1 62.8
f-CLSWGAN [141] (2018) 43.7 57.7 49.7 42.6 36.6 39.4 57.9 61.4 59.6 - - -

cycle-CLSWGAN [145] (2018) 45.7 61.0 52.3 49.4 33.6 40.0 56.9 64.0 60.2 - - -
CADA-VAE [147] (2019) 51.6 53.5 52.4 47.2 35.7 40.6 57.3 72.8 64.1 55.8 75.0 63.9

f-VAEGAN-D2 [144] (2019) 48.4 60.1 53.6 45.1 38.0 41.3 - - - 57.6 70.6 63.5
LisGAN [152] (2019) 46.5 57.9 51.6 42.9 37.8 40.2 52.6 76.3 62.3 - - -

GMN [142] (2019) 56.1 54.3 55.2 53.2 33.0 40.7 61.1 71.3 65.8 - - -
RZSL-CVCP [221] (2019) 47.4 47.6 47.5 36.6 42.8 39.3 62.7 77.0 69.1 56.4 81.4 66.7

RFF-GZSL (softmax) [151] (2020) 52.6 56.6 54.6 45.7 38.6 41.9 59.8 75.1 66.5 - - -
LsrGAN [222] (2020) 48.1 59.1 53.0 44.8 37.7 40.9 54.6 74.6 63.0 - - -

TF-VAEGAN [215] (2020) 52.8 64.7 58.1 45.6 40.7 43.0 59.8 75.1 66.6 - - -
TI-GZSL(Res) [223] (2020) 44.8 42.2 43.5 31.5 20.3 24.7 61.5 67.7 64.4 72.1 63.9 67.7

ASPN [146] (2020) 50.7 61.5 55.6 - - - 58.0 85.7 69.2 46.2 87.0 60.4

��

DASCN [10] (2019) 45.9 59.0 51.6 42.4 38.5 40.3 59.3 68.0 63.4 - - -
GDAN [132] (2019) 39.3 66.7 49.5 38.1 89.9 53.4 - - - 32.1 67.5 43.5
RBGN [154] (2020) 47.0 54.3 50.4 46.0 37.2 41.2 57.5 67.1 61.9 57.2 71.4 63.6

GZSL-AVSI [153] (2020) 61.2 57.7 59.4 - - - 60.5 71.9 65.7 59.4 74.2 66.0
ISE-GAN [157] (2020) 52.4 55.4 53.8 51.3 34.7 41.4 58.7 74.4 65.6 55.9 79.3 65.5

SE-GAN+SM [157] (2020) 48.4 57.6 52.6 44.7 37.0 40.5 53.9 68.3 60.3 55.1 61.9 58.3
IBZSL [156] (2020) 52.2 56.2 54.1 43.8 37.8 40.6 - - - 56.0 80.0 65.9

cFlow-ZSL [155] (2020) 50.8 54.9 52.8 46.7 39.5 42.8 57.1 68.1 62.1 56.7 74.8 64.5
BMCoGAN (softmax) 57.9 66.1 61.7 52.9 43.7 47.8 61.5 78.2 68.8 61.9 76.9 68.5

BMCoGAN (1-NN) 64.6 73.5 68.7 58.1 52.4 55.1 66.1 86.1 74.7 66.9 81.3 73.4

mean H . This variant also achieves better T accuracy than the bidirectional and contem-

porary embedding learning and feature synthesising methods for most tasks. BMCo-

GAN with 1-NN classifier achieves better H accuracy than all compared bidirectional

and other methods for all tasks. This variant also outperforms the majority of contem-

porary methods in both T and S accuracy for all four datasets. We observe that the

1-NN classifier variant of BMCoGAN performs better than the softmax classifier variant,

which means the learned feature space is more suitable for nearest neighbour classifier.

Note that, in general, BMCoGAN maintains a good balance between the S and

T accuracies. That is, besides achieving higher T accuracy than other bidirectional
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mapping methods, it does not show a significant drop in S accuracy such as [153]

(CUB). This means the proposed method can generate well discriminative features for

improved classification. Both versions of BMCoGAN achieve improved performance

than ISE-GAN [157] and IBZSL [156], and verify better discriminative learning, which

reduces bias towards source classes.

8.4.3 Analysing Number of Generated Features

(a) CUB (b) SUN

(c) CUB (d) SUN

Figure 8.5: (a) and (b) Increasing the number of synthesised features wrt GZSL performance in
CUB and SUN datasets using softmax classifier. (c) and (d) Increasing the number of synthesised
features wrt ZSL performance in CUB and SUN datasets using 1-NN classifier.

For analysing the effect of the number of generated features per class during testing,

we plot the graphs in Figure 8.5. The graphs show the performance comparison of CUB

and SUN datasets for various generated features per class. In general, we demonstrate

that with the increasing number of features per class, the harmonic mean H of both

datasets increases.

For the softmax version, in the CUB dataset, S and T significantly increase till

400, and after that, the increment is marginal (Figure 8.5a). For the SUN dataset, S
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decreases after 400; however, T increases with the increasing number of features per

class (Figure 8.5b). Notice that after 400, the value of harmonic mean plateaus as both S

and T show no significant changes.

To demonstrate the trend of GZSL performance of 1-NN variant of BMCoGAN on a

different number of generated features per class, we plot the graph shown in Figures 8.5c

and 8.5d. The CUB dataset shows consistently increasing performance wrt an increasing

number of synthesised features per class. On the other hand, the SUN dataset shows

plateaued H accuracy with slightly increasing S and decreasing T accuracies. Overall,

we observe that synthesising 400 to 600 features per class is suitable for BMCoGAN,

depending on the dataset.

8.4.4 Hyper-parameters Analysis

For studying the trend of GZSL accuracy of BMCoGAN in different hyper-parameters

(λ1, λ2, λcls, and λcen) settings, we plot the graphs shown in Figure 8.6 for CUB dataset.

We present the analysis of the hyper-parameters setting for the softmax classifier variant

of the proposed method.

The hyper-parameter λ1 weights the contribution of bidirectional adversarial learn-

ing in the overall optimisation and joint distribution learning. Figure 8.6a shows the

performance of BMCoGAN with various λ1 setups. We observe that source accuracy

increases with the increase of λ1 till λ1 = 2 and decreases after that. On the other hand,

the increment rate of target accuracy plateaus after λ1 = 2. However, it does not show

a decreasing pattern. Though the gap between source and target accuracy decreases

after λ1 = 2, the H accuracy decreases. Thus, we find the value of λ1 = 0.2 optimal as

the H accuracy is optimal at that value. Overall, the graph indicates that a significant

contribution of LG1 reflects better GZSL recognition and verifies the robustness of the

proposed BMCoGAN network for learning better source-target joint distribution.

The supervisory WGAN optimisation is weighted by λ2. As shown in Figure 8.6b,

the source accuracy shows an increasing pattern with higher λ2 values. However, the

target accuracy depicts a sharp decrement after λ2 = 0.8. It is worth noting that the
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(a) (b)

(c) (d)

Figure 8.6: Effect of varying the hyper-parameters in the GZSL performance on the CUB dataset.

target accuracy slightly surpasses the source accuracy at a significantly low λ2 value.

However, with the increasing contribution of LG2, the network becomes more biased

towards source classes. The network shows optimal H accuracy at λ2 = 0.8. The

optimum supervision of LG2 is important to maintain a proper balance between S and

T accuracies in the network.

To study the effect of discriminative loss Ld, we plot the graph shown in Figure 8.6c.

We observe that the target accuracy is significantly low, and the gap between source

and target accuracy is huge at near-zero λd value. This means the source classes are

dominating the classification performance. However, the high bias towards source

classes reduces with the increasing value of λd, and the gap between source and target

accuracies also reduces. This evaluates the network is capable of preserving source-target

distinctive information with an optimal contribution of Ld.

Figures 8.6d and 8.6e show a similar trend. The source accuracy depicts an increasing

pattern, while the target accuracy decreases after a certain point. We demonstrate that

up to a certain value, λcls and λcen serve their purpose of supporting the discrimination
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by preserving distinctive source classes information in the network. Therefore, we set

the value of λcls and λcen to 0.2 and 0.1, respectively for the optimal H accuracy.

8.4.5 Ablative Analysis

To justify the role of different components and optimisation in BMCoGAN separately,

we present the ablative analysis in Table 8.2. We perform the ablative analysis by

deducting vital components from BMCoGAN and introducing alternative components

in BMCoGAN, and justify their impact on the performances.

Table 8.2: Ablative analysis for GZSL on the CUB dataset.

CUB
Approach U S H

BMCoGAN w/o LG2 48.3 44.2 46.1
BMCoGAN w/o Ld 38.7 51.9 44.3

BMCoGAN w/o Lcls 45.8 50.7 48.1
BMCoGAN w/o Lcen 44.8 50.8 47.6

BMCoGAN w/ R 53.4 64.1 58.2
BMCoGAN w/ sep. Ds and Du 56.1 65.2 60.3
BMCoGAN w/ sep. Gs and Gu 45.1 54.9 49.5

BMCoGAN w/o D (test) 52.1 65.2 57.9
BMCoGAN 57.9 66.1 61.7

The variant BMCoGAN w/o LG2 represents optimising the BMCoGAN without

the WGAN loss or supervision for the source visual features. We observe that both

source and target accuracies significantly decrease, which means the supervision from

real visual features is crucial for learning to generate visual features. Compared with

target accuracy, the source accuracy drastically decreases. This indicates the network

loses the capacity to learn the true underlying distribution of the source classes without

supervision.

BMCoGAN w/oLd denotes the variant without the optimisation for retaining source-

target discriminative information in the synthesised features. The performance of this

variant shows that without Ld optimisation, the learned visual distribution is dominated
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by the source classes. This creates towards source classes. This justifies the importance

of Ld in the network.

We demonstrate that the variants without Lcls and Lcen also show a significant drop

in performance especially, for source classes. This proves that these losses help the

network learn distinctive knowledge about the source classes, confine the generated

source features to their corresponding centers, and eventually reduce bias towards

source classes.

BMCoGAN w/R is the variant in which we replace separate regressors with a shared

regressor R. The reduced performance indicates that learning separate bidirectional

mapping for source-target classes enhances joint distribution learning and GZSL recog-

nition. The variant with separate class semantic discriminators is denoted as BMCoGAN

w/ sep. Ds and Du. The slight decrement in the performance indicates that separate

discriminators do not harm the network to a great extent, like other variants. However,

the coupled discriminators encourage improved performance and reduce the number of

parameters in the network.

BMCoGAN w/ sep. Gs and Gu, this variant has coupled generators for source-target

classes similar to CoGAN [218]. We observe that the performance drastically decreases.

This means, only learning the underlying high-level concept in a similar way for source-

target classes is not sufficient for the GZSL recognition task. Thus, the proposed structure

of the shared generator is optimal for the task.

To verify the contribution of partial layers of D in retaining the source-target discrim-

ination, we test the network without passing generated target features through early

layers of D in the variant BMCoGAN w/o D. We notice that not only the performance of

GZSL decrease, the gap between source and target accuracy significantly increases. This

proves increased bias towards source classes and less discrimination in the generated

visual features.
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8.5 Summary

In this chapter, we have proposed a new bidirectional mapping generative model for the

GZSL tasks. In particular, we have proposed to incorporate the concept of bidirectional

mapping into the coupled generative adversarial network for learning source-target joint

distribution and design a loss optimisation for preserving source-target discrimination.

We have presented and discussed the evaluation of our proposed methods on different

benchmark datasets and the performance comparison with existing GZSL methods.

We have demonstrated that the proposed method outperforms contemporary methods.

In addition, we have provided detailed ablative analysis to discuss the importance of

different components in the proposed network.

In this chapter we have presented the final contribution of this thesis. In the following

chapter, we will highlight and summarise insights from the approaches proposed in this

thesis, and provide future research directions.



Chapter 9

Conclusion

This chapter will highlight our contributions in the three areas of transfer learning

(sequential transfer learning, DA, and GZSL), summarise our findings, and discuss

future research directions.

9.1 Synopsis

In this thesis, we have studied the issue of automatically learning transferable feature

representations for performing improved image classification across different domains.

In Chapter 1, we introduced the motivations and research objectives of this thesis.

Chapter 2 provided a brief discussion on the basics and a comprehensive overview of

the transfer learning areas related to the thesis.

As the first and second contributions, Chapters 3 and 4 presented approaches that

use high-level (category-specific) CNN parameters and features for sequential transfer

learning. Specifically, Chapter 3 presented a novel parameter fine-tuning approach and

a new developmental transfer learning approach. Chapters 4 presented a new feature

representation transfer approach. All the proposed approaches fall under the supervised

learning category and use the category-specific high-level features/parameters of a CNN

trained on a large-scale, diverse dataset (ImageNet). The feature representation transfer

approach was adopted to perform comprehensive analyses of the factors affecting

transfer learning using high-level features and the importance of high-level features

in transfer learning. We evaluated the proposed methods on eight diverse benchmark

176
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datasets and reported superior results compared to the contemporary approaches. These

contributions have addressed the first two research objectives stated in Chapter 1.

To present the third and fourth contributions, Chapters 5 and 6 discussed open

set adversarial DA approaches that overcome the divergence between domains by

reducing negative transfers. These approaches follow unsupervised settings as the target

domain is fully unlabelled. More specifically, Chapter 5 presented the novel approach

that reduces negative transfers by using a multi-classifier structure that introduces

an adaptive weighting module. The weighting module assesses domain confidence

to differentiate between known-unknown target samples and facilitates adversarial

adaptation. The new approach proposed in Chapter 6 takes another step forward and

evaluates mutual information along with domain confidence to distinguish between

known-unknown target samples. We evaluated both the proposed methods on four

benchmark datasets and showed they outperform the contemporary works. Chapters 5

and 6 have addressed the third research objective stated in Chapter 1.

To present the fifth and sixth contributions, in Chapters 7 and 8, we studied the

problems of zero-shot learning and bias towards the source domain. Chapter 7 pre-

sented a novel approach to discovering the local visual details linked to the semantics

besides the global details through a dense attention mechanism to improve zero-shot

learning. The approach proposed in Chapter 8 is a bidirectional mapping method to

improve generative zero-shot learning. For reducing bias towards the source domain,

the first proposed GZSL model computes source-target class similarity based on mutual

information and transfer-learn the target classes. The second one optimises a new loss

to learn and preserve domain discriminative information. We evaluated the proposed

methods on four benchmark ZSL datasets and demonstrated their superior performance

compared to other approaches. The fifth and sixth contributions have addressed the last

two research objectives stated in Chapter 1.
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9.2 Main Findings and Insights

Throughout the thesis, we have presented multiple novel approaches for three transfer

learning scenarios. We have evaluated the proposed approaches across diverse domains

and datasets and demonstrated their superior performance compared to contemporary

works. We now discuss how our proposed approaches addressed the research objectives

in Chapter 1 and provide a summary of our contributions and findings.

1. Improve the parameter fine-tuning approach using category-specific features

of CNNs It is widely accepted that the classification layer of a pre-trained CNN

holds category-specific features. Thus, the classification layer is discarded before

performing any type of parameter fine-tuning. Our goal was to investigate the

influence of the classification layer in parameter fine-tuning. We know that Ima-

geNet consists of a massive amount of labelled images of natural and human-made

objects. In Section 3.2, we observed that even the classification layer of CNNs

trained on large-scale datasets such as ImageNet has plenty of neighbouring fea-

tures with the target domains containing images of natural and artificial objects.

This encouraged us to include the classification layer in parameter fine-tuning (Sec-

tion 3.3.1). We demonstrated that the proposed fine-tuning approach outperforms

contemporary fine-tuning setups (Section 3.4.2). The improved performance moti-

vated us to fulfil the next goal, i.e. use the classification layer for developmental

transfer learning (Section 3.3.2). The proposed incremental fine-tuning scheme has

shown that freezing the early conv. layers boost performance. In Section 3.4.4, we

demonstrated the proposed depth augmented networks’ superior performance

and observed single-layer depth augmentation having 2048-neurons outperform

other combinations. Double-layer augmentation only marginally improves over

single-layer augmentation. Finally, we have investigated the best-fit normalisation

(Section 3.4.5), learned feature quality (Section 3.4.7), and learn rate (Section 3.4.8)

for the proposed models. We found the proposed depth augmentation is facilitated

by normalisation, the learned features are well segregated, and the learning rate of

the layers depends on the target datasets.
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2. Comprehensively analyse suitable conditions for a feature representation trans-

fer approach using the category-specific features Feature representation transfer

is a popular sequential transfer learning approach, which uses the pre-trained

CNN features off-the-shelf to learn other domains or datasets. Similar to traditional

parameter fine-tuning, the classification layer features are considered too specific

to the source categories and not utilised for transferring knowledge. However,

we have proposed to use the classification layer features off-the-shelf for transfer

learning (Section 4.2.1). We have constructed feature embedding using the CNN

extracted features for source and target datasets and used the embedding to mea-

sure the k-nearest neighbour similarity between the datasets (Section 4.2.2). We

found that the classification layer features generalise better for target datasets with

more similarity (Section 4.3.1) to the source dataset and outperforms traditional

transfer learning (Section 4.3.3). To investigate the best classifier, we have exploited

two variants of SVMs and MLP and demonstrated that MLP outperforms others

(Section 4.3.3). We have observed the influence of similarity between source-target

datasets, fine-grained target datasets, coarse target datasets, and the number of

target samples and classes in transfer learning with the classification layer features

(Section 4.3.4). We verify the importance of classification layer features in transfer

learning by employing a mutual information-based feature selection algorithm

(Section 4.3.5).

3. Reduce negative transfer in OSDA OSDA is an unsupervised transductive trans-

fer learning approach. This approach aims to be able to correctly classify known

classes across domains and recognise unknown classes as ‘unknown’. The DA task

is directly linked to the unknown class separation part. Incorrect known-unknown

separation fuels incorrect adaptation. In some cases, the DA model’s performance

lags behind the non-DA model for the same task. This phenomenon is referred

to as negative transfer. Negative transfers occur because of faulty known and

unknown target sample separation. Our goal was to reduce negative transfers

by designing robust known-unknown separation modules and improve the per-

formance of OSDA. To achieve this goal, our contribution was two-fold. First,
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we proposed a novel architecture to improve an existing model (Chapter 5) and

then we proposed another new architecture (Chapter 6). In both proposed models,

we first focus on improved known-unknown separation and then on adversarial

DA. The first proposed model is an improvement of an existing adversarial DA

model. The existing model relies on a fixed threshold to separate known from

unknown. However, we proposed an adaptive weighting module that improves

the known-unknown separation by utilising underlying domain characteristics

(Section 5.3.2). In this model, we handled negative transfers by introducing an

adaptive weighting module (Section 5.3.2). The module utilises multiple classifiers

to explore the domain confidence, i.e. probability of similarity between target sam-

ples and source classes. The module evaluates fundamental domain information

based on distinctive label information for assigning identifiable weights to the

known and unknown target samples. We have demonstrated that our weighting

module encourages better separation between known-unknown target samples

and reduce negative transfers compared to other approaches (Section 5.4).

In the quest for mitigating negative transfers from OSDA, we have proposed

another new adversarial DA model with a weighting module based on underlying

domain characteristics and mutual information between domains (Section 6.2). In

this model, we tackled negative transfers by introducing a three-step coarse-to-fine

known-unknown target sample separation weighting module. Mutual information

between domains and underlying domain similarity lies at the core of the proposed

module (Section 6.2). Coarse separation based on domain confidence takes place

in the first step. Then, shared information between source and target samples

are utilised towards a better separation. Finally, pointwise mutual information is

used for fine separation. Our extensive empirical evaluation demonstrated that

the proposed module reduces negative transfers to a large extent and facilitate DA

(Section 6.3).

4. Improving GZSL Zero-shot learning is a promising transfer learning approach for

target tasks with no available visual training data in the target domain. GZSL is the
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advanced variant of ZSL, which requires the final classifier to classify both source

and target classes. The objective that we set was to improve GZSL performance by

introducing novel architectures. The first sub-objective was to improve GZSL for

fine-grained recognition. Fine-grained datasets demand more local discriminative

properties. Thus, we have proposed a new two-step dense attention mechanism

in Section 7.3, which discovers fine distinctive local visual information directly

supervised by the semantic attributes. In addition, we have preserved global infor-

mation not to harm the usual visual feature representation structure. We have also

proposed integrating an embedding learning sub-network and a feature generation

sub-network into an integrated network and introducing mutual learning between

the sub-networks. We have thoroughly discussed in Section 7.4 that compared to

contemporary works, the proposed model improves GZSL and ZSL performance

by attending regions that relate to semantic attributes. The second sub-objective

was to improve bidirectional mapping GZSL. The generative GZSL approaches

learn to construct visual features from class semantics, which encourages weak

visual-semantic coupling. Strong visual-semantic coupling is crucial for GZSL,

and bidirectional mapping between visual and semantic space can ensure that. We

have proposed a new bidirectional mapping approach by extending CoGAN in

Section 8.3.1. The proposed model simultaneously learns joint domain distribution

and discriminative domain information. We have evaluated the proposed model

on benchmark datasets and demonstrated that it outperforms contemporary works

(Section 8.4).

5. Reduce source domain bias for GZSL As the target domain in GZSL does not

have any visual training data, the trained classifier tends to show bias towards

the source domain classes. Our goal was to reduce this bias and balance the

source and target domain prediction during testing. To smooth out bias towards

source classes in the first proposed model, we have loosely learned target classes

from the knowledge of the closest source classes (Section 7.3). To measure class

similarity, we have used pointwise mutual information. In Section 7.4, we have

shown that the proposed approach relaxes the bias towards the source domain.
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In the second model, we have designed a new loss optimisation to reduce the

bias (Section 8.3.1). The designed loss forces the real source features to attract

synthesised source features but repel synthesised target features. This assisted

in retaining the required discrimination between both domains and reduce bias.

In Section 8.4, we have demonstrated that the proposed model shows improved

performance on source and target classes during the test. The results evince a

reduction in the bias towards the source domain.

9.3 Future works

In this section, we will briefly discuss the future research directions for each of the

respective contribution areas of transfer learning of this thesis.

Sequential transfer learning The first and second contributions of this thesis introduced

new parameter fine-tuning, developmental transfer learning, and feature representation

transfer approaches using the classification layer of CNNs pre-trained on the ImageNet

dataset. Our study revealed many essential insights about the classification layer features.

This study will assist the researchers in investigating further the trends of classifica-

tion layer features of other large-scale source datasets in transfer learning. Using more

domain-specific source datasets may provide new insights. Besides, CNN structures

other than AlexNet and VGGNet may be explored to investigate sequential transfer

learning schemes presented in the thesis.

OSDA The third and fourth contributions were to design models to reduce negative

transfers and improve OSDA. The proposed known-unknown separation modules still

partially rely on a classifier trained on the source dataset for domain confidence. This

creates room for improvement. To further reduce negative transfers, the source trained

classifiers may be improved by infusing out-of-source-distribution knowledge.

GZSL Finally, this thesis proposed two new GZSL models in the fifth and sixth contri-

butions. The objective was to reduce bias towards the source domain during testing

and improve performance. The contributions open new avenues for research. For exam-

ple, researchers may implement the proposed dense attention mechanism in medical
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imagery for disease analysis and anomaly detection, integrate a more sophisticated

feature synthesising network in the first proposed model to investigate the change in

performance, and improve bidirectional mapping through other types of GANs.
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