25 research outputs found

    Finite automata games: basic concepts.

    Get PDF
    In this chapter we review the basic concepts on automata games, including best response, inference, equilibrium and complex system dynamics. We describe how the concept of Nash equilibrium is used to analyze the properties of automata systems and discuss its limitations. We explain why we think the topics of automata inference, the modeling of evolving automata, and the analysis of the relationship between emotions and reason, are interesting areas for further research

    Generalizing Agent Plans and Behaviors with Automated Staged Observation in The Real-Time Strategy Game Starcraft

    Get PDF
    In this thesis we investigate the processes involved in learning to play a game. It was inspired by two observations about how human players learn to play. First, learning the domain is intertwined with goal pursuit. Second, games are designed to ramp up in complexity, walking players through a gradual cycle of acquiring, refining, and generalizing knowledge about the domain. This approach does not rely on traces of expert play. We created an integrated planning, learning and execution system that uses StarCraft as its domain. The planning module creates command/event groupings based on the data received. Observations of unit behavior are collected during execution and returned to the learning module which tests the generalization hypothesizes. The planner uses those test results to generate events that will pursue the goal and facilitate learning the domain. We demonstrate that this approach can efficiently learn the subtle traits of commands through multiple scenarios

    Trusting Intentions Towards Robots in Healthcare: A Theoretical Framework

    Get PDF
    Within the next decade, robots (intelligent agents that are able to perform tasks normally requiring human intelligence) may become more popular when delivering healthcare services to patients. The use of robots in this way may be daunting for some members of the public, who may not understand this technology and deem it untrustworthy. Others may be excited to use and trust robots to support their healthcare needs. It is argued that (1) context plays an integral role in Information Systems (IS) research and (2) technology demonstrating anthropomorphic or system-like features impact the extent to which an individual trusts the technology. Yet, there is little research which integrates these two concepts within one study in healthcare. To address this gap, we develop a theoretical framework that considers trusting intentions towards robots based on the interaction of humans and robots within the contextual landscape of delivering healthcare services. This article presents a theory-based approach to developing effective trustworthy intelligent agents at the intersection of IS and Healthcare

    Asimovian Adaptive Agents

    Full text link
    The goal of this research is to develop agents that are adaptive and predictable and timely. At first blush, these three requirements seem contradictory. For example, adaptation risks introducing undesirable side effects, thereby making agents' behavior less predictable. Furthermore, although formal verification can assist in ensuring behavioral predictability, it is known to be time-consuming. Our solution to the challenge of satisfying all three requirements is the following. Agents have finite-state automaton plans, which are adapted online via evolutionary learning (perturbation) operators. To ensure that critical behavioral constraints are always satisfied, agents' plans are first formally verified. They are then reverified after every adaptation. If reverification concludes that constraints are violated, the plans are repaired. The main objective of this paper is to improve the efficiency of reverification after learning, so that agents have a sufficiently rapid response time. We present two solutions: positive results that certain learning operators are a priori guaranteed to preserve useful classes of behavioral assurance constraints (which implies that no reverification is needed for these operators), and efficient incremental reverification algorithms for those learning operators that have negative a priori results

    Agent-based simulation: an application to the new electricity trading arrangements of England and Wales.

    Get PDF
    This paper presents a large-scale application of multiagent evolutionary modeling to the proposed new electricity trading arrangements (NETA) in the U.K. This is a detailed plant-by-plant model with an active specification of the demand side of the market. NETA involves a bilateral forward market followed by a balancing mechanism and then an imbalance settlement process. This agent-based simulation model was able to provide pricing and strategic insights, ahead of NETA's actual introduction

    Interpretable Sequence Classification via Discrete Optimization

    Full text link
    Sequence classification is the task of predicting a class label given a sequence of observations. In many applications such as healthcare monitoring or intrusion detection, early classification is crucial to prompt intervention. In this work, we learn sequence classifiers that favour early classification from an evolving observation trace. While many state-of-the-art sequence classifiers are neural networks, and in particular LSTMs, our classifiers take the form of finite state automata and are learned via discrete optimization. Our automata-based classifiers are interpretable---supporting explanation, counterfactual reasoning, and human-in-the-loop modification---and have strong empirical performance. Experiments over a suite of goal recognition and behaviour classification datasets show our learned automata-based classifiers to have comparable test performance to LSTM-based classifiers, with the added advantage of being interpretable

    Existence of Multiagent Equilibria with Limited Agents

    Full text link
    Multiagent learning is a necessary yet challenging problem as multiagent systems become more prevalent and environments become more dynamic. Much of the groundbreaking work in this area draws on notable results from game theory, in particular, the concept of Nash equilibria. Learners that directly learn an equilibrium obviously rely on their existence. Learners that instead seek to play optimally with respect to the other players also depend upon equilibria since equilibria are fixed points for learning. From another perspective, agents with limitations are real and common. These may be undesired physical limitations as well as self-imposed rational limitations, such as abstraction and approximation techniques, used to make learning tractable. This article explores the interactions of these two important concepts: equilibria and limitations in learning. We introduce the question of whether equilibria continue to exist when agents have limitations. We look at the general effects limitations can have on agent behavior, and define a natural extension of equilibria that accounts for these limitations. Using this formalization, we make three major contributions: (i) a counterexample for the general existence of equilibria with limitations, (ii) sufficient conditions on limitations that preserve their existence, (iii) three general classes of games and limitations that satisfy these conditions. We then present empirical results from a specific multiagent learning algorithm applied to a specific instance of limited agents. These results demonstrate that learning with limitations is feasible, when the conditions outlined by our theoretical analysis hold

    Toward data-driven solutions to interactive dynamic influence diagrams

    Get PDF
    With the availability of significant amount of data, data-driven decision making becomes an alternative way for solving complex multiagent decision problems. Instead of using domain knowledge to explicitly build decision models, the data-driven approach learns decisions (probably optimal ones) from available data. This removes the knowledge bottleneck in the traditional knowledge-driven decision making, which requires a strong support from domain experts. In this paper, we study data-driven decision making in the context of interactive dynamic influence diagrams (I-DIDs)—a general framework for multiagent sequential decision making under uncertainty. We propose a data-driven framework to solve the I-DIDs model and focus on learning the behavior of other agents in problem domains. The challenge is on learning a complete policy tree that will be embedded in the I-DIDs models due to limited data. We propose two new methods to develop complete policy trees for the other agents in the I-DIDs. The first method uses a simple clustering process, while the second one employs sophisticated statistical checks. We analyze the proposed algorithms in a theoretical way and experiment them over two problem domains
    corecore