1,125 research outputs found

    Wide-coverage deep statistical parsing using automatic dependency structure annotation

    Get PDF
    A number of researchers (Lin 1995; Carroll, Briscoe, and Sanfilippo 1998; Carroll et al. 2002; Clark and Hockenmaier 2002; King et al. 2003; Preiss 2003; Kaplan et al. 2004;Miyao and Tsujii 2004) have convincingly argued for the use of dependency (rather than CFG-tree) representations for parser evaluation. Preiss (2003) and Kaplan et al. (2004) conducted a number of experiments comparing ā€œdeepā€ hand-crafted wide-coverage with ā€œshallowā€ treebank- and machine-learning based parsers at the level of dependencies, using simple and automatic methods to convert tree output generated by the shallow parsers into dependencies. In this article, we revisit the experiments in Preiss (2003) and Kaplan et al. (2004), this time using the sophisticated automatic LFG f-structure annotation methodologies of Cahill et al. (2002b, 2004) and Burke (2006), with surprising results. We compare various PCFG and history-based parsers (based on Collins, 1999; Charniak, 2000; Bikel, 2002) to find a baseline parsing system that fits best into our automatic dependency structure annotation technique. This combined system of syntactic parser and dependency structure annotation is compared to two hand-crafted, deep constraint-based parsers (Carroll and Briscoe 2002; Riezler et al. 2002). We evaluate using dependency-based gold standards (DCU 105, PARC 700, CBS 500 and dependencies for WSJ Section 22) and use the Approximate Randomization Test (Noreen 1989) to test the statistical significance of the results. Our experiments show that machine-learning-based shallow grammars augmented with sophisticated automatic dependency annotation technology outperform hand-crafted, deep, widecoverage constraint grammars. Currently our best system achieves an f-score of 82.73% against the PARC 700 Dependency Bank (King et al. 2003), a statistically significant improvement of 2.18%over the most recent results of 80.55%for the hand-crafted LFG grammar and XLE parsing system of Riezler et al. (2002), and an f-score of 80.23% against the CBS 500 Dependency Bank (Carroll, Briscoe, and Sanfilippo 1998), a statistically significant 3.66% improvement over the 76.57% achieved by the hand-crafted RASP grammar and parsing system of Carroll and Briscoe (2002)

    Probabilistic Constraint Logic Programming

    Full text link
    This paper addresses two central problems for probabilistic processing models: parameter estimation from incomplete data and efficient retrieval of most probable analyses. These questions have been answered satisfactorily only for probabilistic regular and context-free models. We address these problems for a more expressive probabilistic constraint logic programming model. We present a log-linear probability model for probabilistic constraint logic programming. On top of this model we define an algorithm to estimate the parameters and to select the properties of log-linear models from incomplete data. This algorithm is an extension of the improved iterative scaling algorithm of Della-Pietra, Della-Pietra, and Lafferty (1995). Our algorithm applies to log-linear models in general and is accompanied with suitable approximation methods when applied to large data spaces. Furthermore, we present an approach for searching for most probable analyses of the probabilistic constraint logic programming model. This method can be applied to the ambiguity resolution problem in natural language processing applications.Comment: 35 pages, uses sfbart.cl

    Learning Language from a Large (Unannotated) Corpus

    Full text link
    A novel approach to the fully automated, unsupervised extraction of dependency grammars and associated syntax-to-semantic-relationship mappings from large text corpora is described. The suggested approach builds on the authors' prior work with the Link Grammar, RelEx and OpenCog systems, as well as on a number of prior papers and approaches from the statistical language learning literature. If successful, this approach would enable the mining of all the information needed to power a natural language comprehension and generation system, directly from a large, unannotated corpus.Comment: 29 pages, 5 figures, research proposa

    F-structure transfer-based statistical machine translation

    Get PDF
    In this paper, we describe a statistical deep syntactic transfer decoder that is trained fully automatically on parsed bilingual corpora. Deep syntactic transfer rules are induced automatically from the f-structures of a LFG parsed bitext corpus by automatically aligning local f-structures, and inducing all rules consistent with the node alignment. The transfer decoder outputs the n-best TL f-structures given a SL f-structure as input by applying large numbers of transfer rules and searching for the best output using a log-linear model to combine feature scores. The decoder includes a fully integrated dependency-based tri-gram language model. We include an experimental evaluation of the decoder using different parsing disambiguation resources for the German data to provide a comparison of how the system performs with different German training and test parses

    Syntactic Topic Models

    Full text link
    The syntactic topic model (STM) is a Bayesian nonparametric model of language that discovers latent distributions of words (topics) that are both semantically and syntactically coherent. The STM models dependency parsed corpora where sentences are grouped into documents. It assumes that each word is drawn from a latent topic chosen by combining document-level features and the local syntactic context. Each document has a distribution over latent topics, as in topic models, which provides the semantic consistency. Each element in the dependency parse tree also has a distribution over the topics of its children, as in latent-state syntax models, which provides the syntactic consistency. These distributions are convolved so that the topic of each word is likely under both its document and syntactic context. We derive a fast posterior inference algorithm based on variational methods. We report qualitative and quantitative studies on both synthetic data and hand-parsed documents. We show that the STM is a more predictive model of language than current models based only on syntax or only on topics

    Robust Subgraph Generation Improves Abstract Meaning Representation Parsing

    Full text link
    The Abstract Meaning Representation (AMR) is a representation for open-domain rich semantics, with potential use in fields like event extraction and machine translation. Node generation, typically done using a simple dictionary lookup, is currently an important limiting factor in AMR parsing. We propose a small set of actions that derive AMR subgraphs by transformations on spans of text, which allows for more robust learning of this stage. Our set of construction actions generalize better than the previous approach, and can be learned with a simple classifier. We improve on the previous state-of-the-art result for AMR parsing, boosting end-to-end performance by 3 F1_1 on both the LDC2013E117 and LDC2014T12 datasets.Comment: To appear in ACL 201
    • ā€¦
    corecore