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Chapter 1

Introduction

Reversible grammars, grammars that can be used in parsing and generation,
were introduced as early as 1975. Kay [1975] argues that grammars should not
be seen as well-formedness conditions on strings of words, but as a relation
between sentences and structures. Kay argues that the theoretical appeal of
reversible grammars is even stronger than the practical advantages:

The practical advantages of a reversible grammar are obvious. A
computer program that engages in any kind of conversation must
both parse and generate and it would be economical to base both
processes on the same grammar. But, to me, the theoretical appeal
is stronger. It is plausible that we have something in our heads
that fills the function I am ascribing to grammar, though I am not
insensitive to the claims of those who deny this. But it is altogether
implausible that we have two such things, one for parsing and one
for generation, essentially unrelated to one another.

Kay [1984] revisits the topic of reversibility. Here, he specifies the require-
ments for such a reversible grammar more sharply — to allow any order of
processing, linguistic descriptions should be defined declaratively rather than
imperatively. Since Kay’s pioneering work, wide-coverage grammars have been
developed that are reversible in theory or in practice.

Since the mid-nineties, statistical methods have changed the field of natu-
ral language processing permanently. As a result, hand-written grammars were
augmented with statistical models to resolve ambiguity in parsing and to select
the most fluent sentence in generation. However, given that reversible gram-
mars were a topic of significant interest in the eighties, it is surprising that, to

1



2 CHAPTER 1. INTRODUCTION

our knowledge, no one attempted to extend hand-written reversible grammars
with a probabilistic model that could also be used in parsing and generation.

The overarching objective of this work is to show that it is possible to make
a system where a parser and a generator not only share one grammar and
lexicon, but also one statistical component for parse disambiguation and flu-
ency ranking. We only deem such such an attempt to be successful if (1) such
a reversible component performs as well as carefully developed parse disam-
biguation and fluency ranking components; and (2) such a component has a
certain amount of integration between the tasks, in that at least a part of the
model should be active in both directions.

However, to test this overarching objective, we require a parser and a gen-
erator. For Dutch, a wide-coverage grammar and parser are available in the
form of Alpino [van Noord, 2006]. In this work, we introduce our generator and
fluency ranker for the Alpino grammar. After a detailed evaluation of these
new components, we propose Reversible Stochastic Attribute-Value Grammar
(RSAVG), a formalism that combines reversible grammars with one model for
parse disambiguation and fluency ranking. We show that RSAVG performs as
well as the directional parsing and fluency ranking models, and as such ful-
fills the first requirement above. Finally, we will use feature selection methods
to prove that there is indeed integration between parse disambiguation and
fluency ranking, fulfilling the second requirement of a fully reversible system.

Contributions

In this thesis we make the following scientific contributions:

Semantic restriction We describe a new method for top-down guidance in
generation. This method unifies lexical items with the relevant portions of the
input to guide generation. As a result, unification will fail when filling slots in
grammar rules when such unifications would introduce semantics that are not
in correspondence with the input. As such, our method is more effective than
existing methods such as semantic filtering [Shieber, 1988].

Fluency ranking for Dutch We describe an effective fluency ranker for
Dutch, that selects the most fluent sentence from a set of competing sentences.
Our error analysis for this ranker shows that many of the remaining challenges
are related to weaknesses in the input representation, rather than to the fluency
ranker.
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Probability estimation in training data We provide an extensive analysis
of methods to estimate the probability of sentences, abstract representations,
and derivations in the training data. We show that the method that uses the
quality estimations of derivations indirectly perform the best. As an addi-
tional benefit, this method does not skew the training data in favor of parse
disambiguation or fluency ranking in reversible models.

Reversible Stochastic Attribute-Value Grammars We propose a new
formalism, that is an extension of Stochastic Attribute-Value grammars. This
formalism uses a single model and set of features to perform both parse dis-
ambiguation and fluency ranking. We show that this model performs as well
as models that are specifically trained for parse disambiguation and fluency
ranking. As a result, this formalism uses only one grammar and one model to
perform both parsing and generation.

Extensive evaluation of feature selection methods We propose a new
feature selection method, correlation selection, and modify the gain-informed
selection method proposed by Zhou et al. [2003] for tasks with arbitrary feature
values. We compare these and three other feature selection methods and show
their effectiveness for constructing parse disambiguation and fluency ranking
models. We show that the grafting method [Perkins et al., 2003], which uses the
gradients of features in its selection criterion, outperforms the other methods
consistently in both tasks.

Effective features in fluency ranking In the literature, fluency ranking
models are often constructed by automatically extracting a huge number of fea-
tures using templates, effectively treating feature-based models as black boxes.
We show that, by applying feature selection, only a small number of features is
required to rank sentences effectively by fluency. We also provide an analysis
of the most discriminative features and not only show that these features can
be understood, but that the fluency of a sentence can be described by a small
number of features that model word and part-of-speech trigram distributions,
topicalization, modifier adjoining, and ordering in the middle field.

Generalized iterative error mining We propose a new technique for find-
ing errors and shortcomings in wide-coverage grammars and lexicons, in order
to improve parsing and generation. This technique combines two earlier tech-
niques to find surface patterns (words and part-of-speech tags) to pinpoint the
sources of parsing errors as exactly as possible. We also propose an automatic,
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qualitative evaluation method, that can be used to compare error miners in
different configurations.

It should be emphasized that nearly all the scientific contributions outlined
above are applicable to most natural language parsing and generation systems.

Besides the scientific contributions, work on this thesis resulted in the de-
velopment of several software components. Here, we give a short description of
these components:

Generator and fluency ranker for Dutch The generator and fluency
ranker that are described in this thesis, are integrated in the Alpino natural
language processing system and can be used with minimal effort.1

Maximum entropy estimator with feature selection During this project,
we developed a new maximum entropy parameter estimator for ranking tasks,
named TinyEst2 to replace the venerable TADM parameter estimator.3 It uses
TADM’s data format, but adds three feature selection methods: selection using
an !1 regularizer, grafting, and grafting-light. Besides the additional features,
TinyEst is easier to install, since it is written in C99 without any external
dependencies.

Error miner We implemented a fast error miner4 that supports the error
mining techniques of Sagot and de la Clergerie [2006] and the error miner
described in Chapter 8. It also provides a graphical user interface to examine
features within their context.

Approximate randomization test package We developed a Haskell pack-
age5 for paired and unpaired approximate randomization tests (Section 4.6.4).
The package also provides command-line utilities for performing such tests.

Treebank viewer We developed Dact,6 a user-friendly tool for viewing,
querying, and analyzing large Alpino treebanks. Dact is now being used by

1http://www.let.rug.nl/vannoord/alp/Alpino/
2https://github.com/danieldk/tinyest
3http://tadm.sourceforge.net/
4https://github.com/rug-compling/errormining
5http://hackage.haskell.org/package/approx-rand-test
6https://github.com/rug-compling/dact
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a growing number of linguists and was used to obtain some of the corpus
statistics used in this thesis.

Chapter guide

Chapter 2 provides an introduction to the attribute-value grammar formalism
as it is used in the Alpino grammar. It also discusses dependency structure,
which is the abstract representation used by Alpino to describe the structure
of a sentence.

We introduce our generator for the Alpino grammar in Chapter 3. We first
describe abstract dependency structures, which form the input to the generator.
Then, we give an overview of the items and inference rules that are used in the
generator as well as its theorem prover. We introduce semantic restriction, a
very effective method for top-down guidance, that makes generation tractable.
Finally, we conclude the chapter with an evaluation of the coverage of the
generator.

In Chapter 4, we introduce our fluency ranking model. We first discuss
various aspects that influence fluency. Then, we describe n-gram language
models, which have traditionally been used with great success for fluency rank-
ing. However, there are many syntactic phenomena that cannot be captured
by an n-gram model. To integrate such characteristics, we use maximum en-
tropy models. After a general introduction to maximum entropy modeling, we
describe the features that we use in our fluency ranking model. We then in-
troduce our experimental setup and use this setup to evaluate our ranker. We
conclude the chapter with a detailed analysis of examples where the ranker did
not choose the best realization.

Reversible Stochastic Attribute-Value Grammars are introduced in Chap-
ter 5. This formalism combines reversible attribute-value grammar with one
component for both parse disambiguation and fluency ranking. Moreover, we
show that Reversible Stochastic Attribute-Value Grammars do not perform
significantly differently from directional models for parse disambiguation and
fluency ranking.

In Chapter 6, we describe four feature selection methods and introduce
the correlation selection method. We then compare these five methods, and
show that the grafting method is the most effective selection method in fluency
ranking and parse disambiguation. We then use this method to isolate the
most discriminative features in fluency ranking models and provide an analysis
of these features.

We apply feature selection in Chapter 7 to find the most discriminative
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features in parse disambiguation, fluency ranking, and reversible models. We
propose a new methodology to estimate the contributions of classes of features.
We then use this method to show that reversible models are truly reversible,
and rely on features used in both directions, even more than directional models.

In Chapter 8 we apply feature selection to detect incorrect and incomplete
descriptions in attribute-value grammar, so-called error mining. Since the data
sets and feature space for this task are much larger, we cannot use the feature
selection methods that were described in Chapter 6. Instead, we describe two
methods from the literature that were specifically developed for error mining
and show their shortcomings. We then propose a new method that combines
the strengths of the former proposals. We evaluate the three error miners using
a new quantitative evaluation method.



Chapter 2

Attribute-Value Grammar
in Alpino

2.1 Introduction

Attribute-value grammar (AVG) has been studied extensively and is used in
various natural language processing systems. In this chapter, we give a short
description of the AVG formalism and then discuss the implementation of AVG
in Alpino. We refer to Shieber [1986] for a more extensive introduction to
attribute-value grammars in various guises.

2.2 Attribute-value grammar

2.2.1 Attribute-value structure

We base the following discussion of attribute-value structures on Carpenter
[1992] and Copestake [2000]. An attribute-value structure is a rooted directed
acyclic graph, where the edges are labeled using attributes and the vertices
using values. Figure 2.1 shows an example of an attribute value structure
that stores information about the music album Yod, such as its composer and
personnel.

Formally, an attribute-value structure is a tuple A = 〈Q,A, V, r, δ,α〉, where
the following hold:

• Q: a finite set of vertices

7
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..Yod . John Zorn.

Dave Douglas

..

trumpet

..

album

.

players

.

composer

.

saxophone

Figure 2.1: Rooted directed acyclic graph containing information about a music
album.

• A: a finite set of symbols, corresponding to attributes

• V : a finite set of symbols, corresponding to values

• r ∈ Q: the root vertex

• δ : A × Q → Q: a partial function that maps an attribute and a vertex
to another vertex

• α : F → V : a function that maps a vertex to a value, where F = {q ∈
Q | for all l ∈ A, δ(q, l) is undefined}

If Path = A∗ and ε is the empty path, we can extend the definition of δ
such that for a given path π ∈ Path, δ(π, r) returns the vertex that is obtained
by following π from the root vertex r. Formally:

• δ(ε, q) = q

• δ(f · π, q) = δ(π, δ(f, q)), where ‘.’ is concatenation.

Using the function δ, two additional constraints that apply to attribute-
value structures can be defined:

• Reachability: every vertex must be reachable from the root vertex r.
For every q ∈ Q there should be a path π such that δ(π, r) = q.
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• Acyclicity: no cycles should occur in the graph. For each state q ∈ Q
there should be no non-ε path π such that δ(π, q) = q.

For an attribute-value structure A, the path equivalence function ≡A⊆
Path × Path and the path value function PA : Path → V are defined such
that:

• π ≡A π′ iff δ(π, r) = δ(π′, r)

• PA(π) = σ iff α(δ(π, r)) = σ

When an attribute-value structure A′ contains all the information of A, A
is said to subsume A′ (A)A′). Formally, A)A′ iff:

• ∀π∈Path∀π′∈Path[ if π ≡A π′ then π ≡A′ π′]

• ∀π∈Path[ if PA(π) = σ then PA′(π) = σ]

Figure 2.2(a) shows an attribute-value structure that subsumes the struc-
ture in Figure 2.1. It is easy to see that this is the case: the paths of the
subsuming graph are all present in the subsumed graph, and evaluate to the
same value. Figure 2.2(b) shows a graph that does not subsume the structure
in Figure 2.1, since there are two violations of the requirements for subsump-
tion. If we name these graphs A and A′ respectively: (1) PA(album) = Yod ,
while PA′(album) = Alef and (2) players ·saxophone +≡A composer, while
players · saxophone ≡A′ composer.

.. John Zorn...

players

.

composer

.

saxophone

(a)

..Alef . John Zorn..

album

.

composer

(b)

Figure 2.2: Attribute-value structures that (a) subsume and (b) do not subsume
the structure in Figure 2.1.

An attribute-value structure Au is a unifier of the structures A and A′ iff:
A)Au and A′)Au.

If u(A,A′) is the set of all unifiers of A and A′, then Amgu is the most
general unifier of A and A′ iff:
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• Amgu ∈ u(A,A′)

• ∀Au∈u(A,A′)Amgu)Au

Amgu is also called the unification of A and A′ (Amgu = A,A′).

The attribute-value structure in Figure 2.4(a) is a unifier of the attribute-
value structures in Figure 2.1 and Figure 2.3. However, it is not the most
general unifier, since the attribute-value structure in Figure 2.4(b) is also a
unifier of these structures and 2.4(a) is subsumed by that structure. The struc-
ture in Figure 2.4(b), on the other hand, is the most general unifier, since it
subsumes all other unifiers.

..Yod .

Joey Baron

.

Greg Cohen

..

bass

.

drums

..

album

.

players

Figure 2.3: Another attribute-value graph that contains information about an
album.

Attribute-value matrices

An alternative, more compact, representation of attribute-value graphs are
attribute-value matrices. A matrix represents a vertex using a set of at-
tribute/value pairs. Reentrancies in the graph (multiple paths leading to the
same vertex), are expressed using coindexing — the first occurrence of a reen-
trant value is listed explicitly with an index number, subsequent occurrences
only have the index. Figure 2.5 shows the attribute-value matrices correspond-
ing to the graphs in Figure 2.1 and Figure 2.3.

Since the attribute-value matrix representation is much more compact, it
will be used in the remainder of this book.
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..Yod . John Zorn. DIW.

Joey Baron

.

Dave Douglas

.

Greg Cohen

..

drums

.

trumpet

.

bass

..

album

.

players

.

composer

.

label

.

saxophone

(a)

..Yod . John Zorn.

Joey Baron

.

Dave Douglas

.

Greg Cohen

..

drums

.

trumpet

.

bass

..

album

.

players

.

composer

.

saxophone

(b)

Figure 2.4: Attribute-value structures that are (a) a unifier (b) the most general
unifier of the structures in Figure 2.1 and Figure 2.3.

2.2.2 Attribute-value grammar

A computational grammar is a mapping between sentences and syntactic struc-
ture or semantics. One popular category of computational grammars is phrase
structure grammar. Phrase structure grammar uses production rules to define
syntactic categories in terms of other categories or morphemes. Production
rules have the form X → Y, where X and Y are sequences of categories or
morphemes. Such a rule states that X can be rewritten as Y.

One commonly-used type of phrase structure grammars is context-free gram-
mar (CFG). A context-free grammar is a grammar consisting of rules of the
form V → w where V is a category label and w any number of category labels
and morphemes. Such grammars are context-free because the left-hand side
can only consist of one category. The rule S → NP VP is an example of a CFG
rule. This rule states that a sentence (S ) can be rewritten to a noun phrase
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album Yod

composer 1 John Zorn

players

[
saxophone 1

trumpet Dave Douglas

]





(a)





album Yod

players

[
bass Greg Cohen

drums Joey Baron

]




(b)

Figure 2.5: Two attribute attribute-value structures.

(NP) followed by a verb phrase (VP). Or more colloquially: a sentence consists
of a noun phrase followed by a verb phrase.

An attribute-value grammar is a grammar that resembles a context-free
grammar; however its categories are not simply labels, but attribute-value
structures. We will first define a simplified version of attribute-value grammar,
Gs, that follows naturally from the treatment of attribute-value structures in
the previous section.

The simplified attribute-value grammar is a tuple Gs = 〈N,Σ, S, P 〉 where
the following hold:

• N : the set of syntactic categories, represented as attribute-value struc-
tures.

• Σ: the set of morphemes.

• S: the category corresponding to a sentence.

• P : a set of production rules of the form N → (N |Σ)∗

Gs can be used to structure categories more conveniently than a CFG with
category labels. For instance, the CFG rule S → NP VP could be expanded
to ensure that there is agreement between the verb in the VP and the NP. For
instance, the production rule in Figure 2.6 is a variant of this rule that ensures
that the NP and VP are both in first person plural.

The limitations of Gs become apparent quickly. Since the categories in
productions are isolated, it is not possible to state that (sub-)structures of
categories should unify. Taking the rule in Figure 2.6 as an example, a grammar
in Gs would have to enumerate S → VP NP rules for all possible combinations
of the person and number attributes.

A related problem is that Gs does not allow for syntactic information to
percolate across categories. For instance, in the rule VP → V NP we would
like the VP to have the syntactic properties of its head, V.

Attribute-value grammar becomes particularly powerful if we allow sub-
structures of the attribute-value structures of a production rule to be unified.



2.2. ATTRIBUTE-VALUE GRAMMAR 13

[
cat s

]
→





cat np

head




agr

[
person 1

number pl

]

case nom













cat vp

head



agr
[
person 1

number pl

]







Figure 2.6: A rule for S → NP VP in Gs.

To that end, we define attribute-value grammar G = 〈N,Σ, S, P, γ〉 where the
following hold

• 〈N,Σ, S, P 〉 is a Gs.

• γ : P → {π N≡N ′ π′}: a partial function that returns a set of path
equivalences, where π N≡N ′ π′ iff δ(π, rN ) = δ(π′, rN ′)

By exploiting path equivalences, the production rule in Figure 2.6 can be
generalized to that in Figure 2.7. Here, the agr paths of the right-hand side
attribute-value structures are unified, guaranteeing agreement between the NP
and VP.

[
cat s

]
→





cat np

head

[
agr 1

case nom

]







cat vp

head
[
agr 1

]




Figure 2.7: A rule for S→ NP VP in G. The category VP inherits the syntactic
properties of its verb.

G also allows for percolation of information. For example, consider the
rule VP → V NP in Figure 2.8. Here, the syntactic information in the head
attribute of the V category is unified with that attribute of the VP category.
This makes the VP inherit syntactic properties of its head.

From a theoretical perspective, G does not add anything new to the attribute-
value structures described in the previous section. Every category in a gram-
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[
cat vp

head 1

]
→

[
cat v

head 1

] 


cat np

head
[
case acc

]




Figure 2.8: A rule for VP → V NP in G.

mar rule is a normal attribute-value structure. Path equivalences just make
attribute-value structures share nodes in their graphs. For instance, the gram-
mar rule in Figure 2.8 corresponds to the attribute-value structure in Figure 2.9.
The syntactic categories of the rule correspond to substructures within that
structure.

..vp .v.. np.

acc

.

VP

..

cat

.

head

.

−→

.

V

..

head

.

cat

..

case

.

NP

..

head

.

cat

....

Figure 2.9: Attribute-value structures of the rule in Figure 2.8 as graphs.

The language of the grammar, L(G), is the subset of Σ∗ that can be formed
by successively rewriting S, such that no syntactic categories (N) remain. A
sequence of morphemes w ∈ Σ∗ is a valid sentence in G if w ∈ L(G). If
x ⇒∗

G y means that x can be rewritten to y in a finite number of steps in
G, and {x ⇒∗

G y} is the set of all possible ways to rewrite x to y, then the
attribute-value structures of a sentence w are: {S|S ⇒∗

G w}. Each attribute-
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value structure represents a different syntactic analysis of w.

2.2.3 Derivation

As was briefly mentioned before, rewrite rules of the form N → (N |Σ)∗ in
attribute-value grammar can be used to rewrite N on the left-hand side as
(N |Σ)∗. Such a rewriting step is used in a top-down derivation. A top-down
derivation attempts to prove that e.g. a given sentence is valid according to a
grammar by successively rewriting category S (see definition of G), such that
the sentence is obtained.

Alternatively, we can see rewrite rules of the form N → (N |Σ)∗ as a state-
ment that if we have a sequence (N |Σ)∗, we can deduce the left-hand side N .
Such a deduction step is used in bottom-up derivation. A bottom-up derivation
attempts to prove S using successive derivations, starting with words. Fig-
ure 2.10 shows a bottom-up derivation using the rule in Figure 2.8 and lexical
attribute-value structures for zie ‘see’, the singular first-person inflection of
zien) and the name Jan.

zie Jan





cat v

head 1



agr
[
person 1

number sg

]











cat np

head



agr
[
person 3

number sg

]







[
cat vp

head 1

]

Figure 2.10: Derivation of the category VP from the words zie and Jan.

Other strategies for derivation are possible. For instance, left-corner parsers
combine bottom-up and top-down derivation [Matsumoto et al., 1983].

A derivation is a tree-like data structure, where each node contains a de-
duced category with the list of its antecedents as its daughters. Of course, such
a structure is only somewhat tree-like, since there may be reentrancies in the
structures of categories.

While a natural language parser or generator creates derivations to prove
the sentences or deduce S, they are usually too large to obtain a quick overview
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of its general structure. For this reason, it is often useful to obtain a derivation
tree. A derivation tree is a tree that abbreviates every derivation step by
showing the identifiers of the grammar rules that were used in the derivation.
For instance, the derivation tree in Figure 2.11 corresponds to the derivation
in Figure 2.10.

vp v np

v zie

zie

np jan

Jan

Figure 2.11: A derivation tree corresponding to the derivation in Figure 2.10

Derivation trees have another attractive property: if each grammar rule
has an identifier that is unique, the derivation can be reconstructed trivially by
recursively applying the grammar rules. This property is exploited in packing
(Section 3.4) to reconstruct derivations from a sparse representation of deriva-
tion trees.

In this section, we have only discussed the construction of derivations in
the abstract. We will return to this subject in Chapter 3, where we discuss a
proof procedure that uses bottom-up derivation steps extensively.

2.3 Abstract representations

In the previous section, we gave a glimpse of how derivation can be used to prove
that a sentence is valid in the language that a grammar describes. A particular
derivation gives a detailed syntactic description of that sentence. However,
derivations are usually too specific to the grammar for further processing in a
natural language processing pipeline. For instance, it may be useful for other
components to know what the subject of a particular verb is, but not how the
grammar deduces that certain words constitute the subject. To accommodate
processing in a pipeline, a grammar could construct a more abstract description
of a sentence or discourse.

Abstract descriptions can be rooted in syntax, semantics, or both. Exam-
ples of formalisms rooted in semantics are flat semantics [Phillips, 1993, Tru-
jillo, 1995], Quasi-Logical Form [Alshawi, 1990], Minimal Recursion Semantics
[Copestake et al., 2005], and Discourse Representation Structure [Kamp and
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Reyle, 1993, Bos, 2008]. Commonly-used formalisms rooted in syntax are de-
pendency graphs [Tesnière, 1959, Mel’čuk, 1988] and LFG f-structure [Kaplan
and Bresnan, 1982].

An abstract representation can be stored in syntactic categories using an
attribute, where more complex representations are composed through unifica-
tion. A simple example is shown in Figure 2.12. This attribute-value structure
represents the singular third-person inflection of the verb ‘to love’. A predi-
cate describing its semantics is stored in the sem attribute. The arguments
of the ‘love’ predicate are variable, but reentrant with the sem values of the
attributes representing the subject (subj) and object (obj). When a grammar
rule unifies the subject or object of the verb, the relevant information becomes
available in the sem attribute of the verb.





cat v

head



agr 1

[
person 3

number sg

]



subj





cat np

head

[
agr 1

case nom

]

sem 2





obj

[
cat np

sem 3

]

sem




pred love

arg1 2

arg2 3









Figure 2.12: An attribute-value structure for the singular third-person inflec-
tion of the verb ‘to love’. The sem attribute contains a semantic representation
of the verb.

2.4 AVG in the Alpino system

In this work, we investigate reversible natural language processing systems in
the context of the Alpino grammar and lexicon for Dutch [van Noord, 2006].
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The following sections give an elementary description of the Alpino system.
Although we believe that the contributions in this thesis are applicable to most
systems that use an attribute-value grammar, we used the Alpino system to
implement and perform experiments with generation and reversibility.

2.4.1 Representation of Attribute-Value Structures

Definite clause grammar

The core of the Alpino system, such as its grammar and lexicon, is written in
Prolog. Prolog is a programming language that is rooted in first-order logic.
Prolog specifies a program in terms of relations between predicates. It relies
extensively on the unification of terms. For example, consider the definition of
the ancestor relation in Prolog:

%% Facts
parent(jack,john).
parent(carl,jack).

%% Rules
ancestor(X,Y) :-
parent(X,Y).

ancestor(X,Y) :-
parent(X,Z),
ancestor(Z,Y).

The two rules in this fragment can be read as “X is an ancestor of Y when X
is the parent of Y, or if X is the parent of Z and Z is an ancestor of Y ”. Within
a rule, all instances of variables (X, Y, and Z ) with the same name are unified.
Since unification is commutative and associative, this program is ‘reversible’ in
the sense that the query ancestor(A,john) will unify A with every ancestor
of john, and ancestor(carl,D) will unify D with all descendants of carl.

In a similar vein, we can construct simple grammars in Prolog. Consider
the following Prolog definition of a verb phrase:

vp(P0,P2) :- v(P0,P1), np(P1,P2).
vp(P0,P2) :- vp(P0,P1), pp(P1,P2).

This fragment can be read as “A VP consists of a V followed by an NP, or a
VP consists of a VP followed by a PP”. Each syntactic category is represented
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by a Prolog term having two arguments that encode positions. Adding positions
is necessary to ensure that the constituents are consecutive.

Since adding arguments for positions is a bit clumsy, most Prolog imple-
mentations provide the definite clause grammar (DCG) arrow. If the DCG
arrow is provided, the following fragment is rewritten by the Prolog interpreter
to the fragment (with positions) above:

vp --> v, np.
vp --> vp, pp.

One interesting aspect of this definition of verb phrases is how easily ambi-
guity is encoded (under the assumption that the pp can also attach to the np
in the vp) - we simply add a rule headed by a term with the same term functor
and cardinality.

Of course, in a practical grammar, more constraints ought to be applied to a
category. For instance, if we want to have agreement in number of a determiner
and a noun in a noun phrase, we could write a rule that uses category terms
with an argument:

np(Num) --> det(Num), n(Num).

Since all instances of the variable Num in this rule are unified, it is guaranteed
that the number of the determiner agrees with that of the noun. Additionally,
this information is unified with the argument of the np category, making this
information available to rules that have an np on the right side of the arrow.
This information could, for instance, be used to assure that the main verb of
the sentence has the same number as the NP:

s --> np(Num), vp(Num).

However, when modeling more and more syntactic phenomena, the number
of arguments steadily increases. Since the meaning of such arguments is only
defined by convention, the grammar writer has to keep track of what arguments
are used for what syntactic information. This is both tedious and error-prone.

Attribute-value structures as Prolog terms

Although definite clause grammar may be too inconvenient to write complex
grammars, it clearly bears resemblance to attribute-value grammar: a DCG
consists of rewrite rules, relies on unification, and can express relations between
categories (through the re-occurrence of a variable).
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It turns out that an attribute-value structure can also be represented as a
Prolog term, by storing values as term arguments. However, one restriction
applies. Since the number of arguments of a Prolog term are fixed, a vertex in
an attribute-value structure should have a predetermined set of attributes that
are allowed on outgoing edges.

Most combinations of attributes will occur frequently. For instance, every
attribute-value structure that represents a specific syntactic category will have
the same set of attributes. Consequently, it makes sense to make the vertices
in an attribute-value graph typed, where the type of a vertex specifies what
attributes are allowed on outgoing edges. To this end, we give a new definition
of attribute-value structures. Atyped is a tuple 〈Q,A, T, V, r, θ, δ,α〉, where the
following hold:

• Q: a finite set of vertices

• r ∈ Q: the root vertex

• A: a finite set of symbols, corresponding to attributes

• T : a finite set of types

• τ : Q→ T : a function that maps a vertex to a type

• θ : T → {A}: a function that maps a type to a set of attributes

• δ : R × Q → Q: a partial function that maps an attribute and a vertex
(q) to another vertex, where R = θ(τ(q)).

• V : a finite set of symbols, corresponding to values

• α : F → V : a function that maps a vertex to a value, where F = {q ∈
Q : for all l ∈ A, δ(q, l) is undefined}

Note that Atyped only provides partial typing - the set of attributes of
outgoing edges is limited by the type of a vertex, but an edge can lead to a
vertex of any type. We refer to Carpenter [1992] for an extensive treatment of
fully-typed attribute-value structures. Alpino uses partially typed attribute-
value structures, because type specifications of Atyped can be translated into
Prolog fairly easily, as we will see soon. The implementation of full typing
is more involved, since it requires type inference, as discussed by [Carpenter,
1992]. In the development of Alpino, the use of partial typing has never posed
serious problems.

The attribute-value structures in Atyped can be represented using Prolog
terms: a vertex q corresponds to a term, the term functor is τ(q), the number
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of term arguments is n = |θ(τ(q))|, and if the attributes θ(τ(q)) are numbered
a1..n then the mth argument of the term is δ(am, q).

Consider the structures in Figure 2.13. Each structure is augmented by an
atom indicating its type. The type of both structures (or more specifically, their
root vertices) is np. Both structures also have a substructure with the type
agr. The first structure can be represented with the term np(agr(3,sg,de), )
and the second with np(agr(3,sg, ),nom).

np



agr

agr




per 3

num sg

det de









np




agr

agr

[
per 3

num sg

]

case nom





Figure 2.13: Simple feature structures of an NP (a) with and (b) without a
specific case.

All that is required now, is a mapping from attributes and types to argu-
ments. Such a mapping can be expressed conveniently in Prolog. For instance,
for the np and agr types, the mapping can be defined as follows:

%% attr(Attr,Struct,Value)
attr(agr,np(Agr,_),Agr).
attr(case,np(_,Case),Case).
attr(per,agr(Per,_,_),Per).
attr(num,agr(_,Num,_),Num).
attr(det,agr(_,_,Det),Det).

Each attr/3 fact above unifies a given attribute within an attribute-value
structure of the type np or agr with the third argument of attr/3. The
mapping exploits the fact that the term corresponding to a vertex can be
destructured in-place.

Alpino provides a type system to specify Gtyped attribute-value structures.
A type-compiler constructs (among other things) the aforementioned mappings
from types and attributes to arguments.

Alpino also provides the operators in Table 2.1. These operators form a
domain-specific language for constructing attribute-value structures. With this
language, grammar rules can be defined using Prolog rules. The following
definition of the rule NP → Det N makes use of these operators to construct
a structure of the type np from structures of the types det and n.



22 CHAPTER 2. ATTRIBUTE-VALUE GRAMMAR IN ALPINO

Operator Meaning
Path => Type Evaluates Path and assigns Type to the result.
PathA <=> PathB Evaluates PathA and PathB and unifies the results.

Table 2.1: Operators for defining and modifying attribute-value structures in
the Alpino system.

grammar_rule(np_det_n,NP,[Det,N]) :-
NP => np,
Det => det,
N => n,
N:agr <=> NP:agr,
Det:agr <=> N:agr.

The effective structure of the right-hand-side of this rule is shown in Fig-
ure 2.14.

grammar rule

(
np det n, np

[
agr 1

]
,

〈

det

[
agr 1

]
,

n

[
agr 1

] 〉)

Figure 2.14: Structure of the rule np → det n.

Delayed constraints

Most syntactic restrictions in the Alpino system are encoded directly in attribute-
value structures of words or grammar rules. However, in some cases this is not
possible. For instance, consider the adjunct vandaag in the dependent clause

(1) a. omdat
because

Jan
Jan

stijlvol
stylishly

probeert
tries

te
to

winnen
win

The modifier stijlvol is collected by a category headed by the control verb
probeert. However, it can be read as a modifier of probeert (the attempt is
stylish) or winnen (the winning is stylish). Since the transfer of modifiers is
not deterministic and the number of modifiers is not known beforehand, the
‘ownership’ of the adjunct cannot be specified directly in the attribute value
structure of the head probeert.

In such cases, Alpino uses delayed constraints [van Noord and Bouma, 1994].
A delayed constraint is a (Prolog) goal that is blocked until a variable becomes
instantiated. This mechanism can be used to state things such as: “if the list
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We doen dat met plezier .

hd/su hd/obj1

hd/mod

hd/obj1

Figure 2.15: Head-dependent relations in the sentence We doen dat met plezier.
‘We do that with pleasure.’ The arcs point towards the dependents.

of modifiers of a syntactic head is final, then the modifiers are divided non-
deterministically between the control verb and the embedded verb phrase”.
Section 2.4.4 discusses the treatment of modifiers in more detail.

2.4.2 Dependency Structure

The Alpino system uses dependency graphs as its abstract representation. A
dependency graph is a directed acyclic graph that describes the grammatical
relations (arcs) between words (nodes) in a sentence. In such a relation, one
word acts as the head, the other as the dependent. The relation indicates the
type of head and dependent. Each word has one or more heads and zero or
more dependents. Each word is also associated with a part-of-speech tag and
its begin and end positions in the parsed (or generated) sentence.

For instance, the Dutch sentence We doen dat met plezier. can be described
by the nodes and arcs in Figure 2.15.

In Alpino, dependency graphs also specify the categories of constituents.
For instance, the phrase met plezier in Figure 2.15 would be annotated with
the category pp. A detailed description of Alpino dependency graphs, including
the categories and dependency relations that are used, is provided in van Noord
et al. [2011].

Given that Alpino dependency graphs contain words, part-of-speech tags,
syntactic categories of constituents, and grammatical dependency relations be-
tween heads and dependents, it is a purely syntactic representation.

Previous work shows that dependency graphs are well-fit to use in language
processing applications. For instance, the following three studies describe sys-
tems that work with Alpino dependency graphs:

• Bouma et al. [2006] used Alpino in a question answering system for Dutch.
The Alpino system was used for question analysis and for extracting facts
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from huge newspaper corpora.

• Marsi and Krahmer [2005] propose a generalized sentence fusion and gen-
eration algorithm that they use to combine related sentences to generate
paraphrases. Paraphrases are formed by applying union fusion or inter-
section fusion. Union fusion combines all the information that is available,
while intersection fusion only retains the information provided by all sen-
tences. Their fusion and generation algorithm uses aligned dependency
graphs.

• Atteveldt [2008] uses dependency structures to extract source-quote and
object-subject relations from newspaper texts for the automatic extrac-
tion of semantic networks.

Since a dependency graph is a directed acyclic graph, it can be stored in
attribute-value structure. In fact, Alpino’s dependency graphs are constructed
as substructures in the attribute-value structures of categories. To this end,
Alpino uses attribute-value structures of the type dt. Each category has a
dt attribute, that has the dependency structure for that category as its value.
Attribute-value structures of the type dt store information about the head of the
dependency structure, such as its stem, inflection, and tag. They also contain
attributes for dependents of the head, such as su, obj1, obj2, mod, det (for
respectively storing the subject, direct object, secondary object, modifiers, and
determiners). The value of such an attribute is either the dependency structure
of the dependent, or a list of dependency structures if there can be multiple
dependents of the same type (e.g. modifiers). A special atomic value is used to
represent the lack of a dependent of a particular type. For instance, if a verb
does not have a direct object, then the value of the attribute obj1 will be the
atom nil.

Consider, for example, the dependency structure in Figure 2.16 for the sen-
tence De adviezen beklijven ‘The advice persists’. The word adviezen (‘advice’
in plural), represented by the stem advies has one dependent, de ‘the’ with the
relation det (determiner). The word beklijven ‘to persist’ is represented by the
stem beklijf, and takes the dependency structure associated with advies as its
subject. The categories of constituents are also available in the dependency
structure as the value of the cat attribute. For instance, the category of de
adviezen is np. In this structure we only list the attributes which have a value
different from the special value nil.

Dependency structure is formed when a parser or generator unifies the
attribute-value structures of the right-hand side of a rule. For instance, when
the noun phrase de adviezen is found to be the subject of beklijven, the depen-
dency structure of de adviezen is unified as the value of the su attribute of the
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dt





hd
[
lex beklijf

]

cat smain

su

dt





hd
[
lex advies

]

cat np

det 〈
dt

[
hd

[
lex de

]]
〉









Figure 2.16: Dependency structure for De adviezen beklijven. The begin and
end positions are omitted in this an later examples for brevity.

dependency structure of beklijven. This property is specified in the attribute-
value structure of beklijven, shown in Figure 2.17 — the values of subj ·dt and
dt · su are reentrant.

v





vform fin

subj 1

np




agr pl

dt 3

case nom





sc 〈 1 〉
cmods 〈〉
mods 2

dt

dt





hd

[
lex beklijf

surf beklijven

]

su 3

mod 2









Figure 2.17: Attribute-value structure of the verb beklijven. The dependency
structure of the subject is reentrant in the dependency structure of beklijven.

Since dependency structure is formed as a ‘side-effect’ of creating a deriva-
tion, the topmost category of such a derivation contains the dependency struc-
ture that comprises the sentence.
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2.4.3 Lexicon

The Alpino grammar is strongly lexicalized, meaning that it relies on detailed
syntactic information in the descriptions of a word. If a word is unknown to the
lexicon, Alpino attempts to deduce the type of unknown words (and thus their
syntactic properties) through a set of heuristics. In this section, the Alpino
lexicon is described in more detail.

Representation

In attribute-value grammars, words are also represented by attribute-value
structures. In Alpino, the attribute-value structures of a word typically have a
large number of attributes to store detailed syntactic information. For instance,
the lexical verb type (v) has about thirty attributes, which specify, amongst
other things, characteristics that are expected of the subject, direct object, and
indirect object (when applicable).

Consider the word verft, the present-tense second/third person inflection of
verven ‘to paint’, which can be transitive and intransitive. One of the possi-
ble attribute-value structures of the transitive reading of verft is shown in a
simplified fashion in Figure 2.18. As we see here, the attribute-value structure
already specifies the characteristics of the subject that it can be combined with
- the subject should be singular and nominative. It also selects for one com-
plement (direct object) that is in the accusative case. Since the attribute-value
structure of a word specifies such combinatory information, grammar rules can
be relatively simple.

Another interesting aspect of the attribute-value structure in Figure 2.18 is
that it already contains a partially specified structure for its dependency graph.
The su and obj1 attributes in the dependency structure of verft are unified with
the dt attributes of the attribute-value of the subject and the direct object. So,
once a subject or direct object is unified by a grammar rule, their dependency
graphs immediately become a subgraph in the dependency graph of verft.

One could construct a dictionary for a system that uses an AVG as a direct
mapping between words and attribute-value structures. Effectively, this would
make the lexicon a set of grammar rules of the form N → Σ. However, such
a lexicon would be unwieldy — if an attribute is added to e.g. the lexical
verb type, all entries storing verbs would have to be modified. Also, many
properties are shared by e.g. finite verbs, so it would be more convenient
to define such a property once to reuse it. In Alpino each word is mapped
to one or more compact tags instead. Such tags consist of a simple part-of-
speech tag (such as verb or noun) and additional syntactic information. For
instance, the word verft is mapped to the tags verb(hebben,sg3,intransitive) and
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case acc
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[
lex verft

]

su 1

obj1 2









Figure 2.18: Simplified attribute-value structure for verft.

verb(hebben,sg3,transitive), the intransitive and transitive readings of verft. In
turn, tags are mapped to one or more attribute-value structures when used
in conjunction with the attribute-value grammar (we call such attribute-value
structures lexical attribute-value structures from now on).

Static lexicon

The Alpino lexicon contains static many-to-many mappings from words to
tag/stem pairs. At the time of writing, the lexicon contained approximately
180,000 individual mappings, as well as 190,000 mappings for named entities.
This lexicon is stored as a finite state automaton for compactness and efficiency
[Daciuk, 2000].

There are some combinations of words that have a syntactic structure that
cannot be derived with grammar rules. For instance, consider the phrase hele-
maal niemand (lit: ‘at all nobody’, ‘nobody at all’), which functions as a
pronoun. In this phrase, helemaal is an intensifier for the pronoun niemand.
However, since helemaal cannot be applied to most other pronouns, its use
with pronouns cannot be generalized to a grammar rule.

Such combinations of words are represented as lexical entries with a more
detailed dependency structure. For instance, the entry for ‘helemaal niemand’
has a dependency structure where niemand is the head and helemaal a mod-
ifier. Since these entries have a non-trivial dependency structure, they are
appropriately called with dt structures.
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Productive lexicon

Some types of words, such as compounds, named entities, and ordinal numbers,
are not good candidates to be enumerated in a static lexicon. For instance, an
infinite number of ordinals or compounds can be formed by combining num-
bers or words. For this reason, the Alpino lexicon has a small definite clause
grammar to analyze such words.

Another component applies heuristics to deduce the possible tags and stems
of unknown words. For instance, this component can deduce that Rijksuniver-
siteit Groningen ‘University of Groningen’ is the name of an organization. Par-
ticular cues that this is such a named entity are: (1) both words are capitalized
and (2) the word universiteit is an indicator of an organization name.

These components are together called the productive lexicon.

2.4.4 Grammar

Structure

The Alpino grammar consists of approximately 850 construction-specific rules
that exploit the detailed syntactic information in lexical attribute-value struc-
tures. Rules use general principles that are shared between different rules. For
instance, one principle percolates the dependency structure of the projected
head on the left-hand side of the rule.

A grammar rule is a Prolog rule that is headed by a term of the following
form:

grammar_rule(Identifier,LHS,RHS)

For instance:

grammar_rule(np_det_n,NP,[Det,N])

The first term argument is an atom that uniquely identifies the rule, the
second argument is the left-hand side of the rule, and the third argument is a
list of right-hand side slots.

The Prolog rules construct attribute-value structures. Consequently, calling
a rule with variable second and third arguments will construct the attribute-
value structures of the left-hand side and right-hand side. The parser and gener-
ator do not work directly with the hand-written rules, since this representation
does not allow for first argument indexing (Section 3.2.5) and reconstructing
the attribute-value structure upon each use of a rule would be inefficient. In-
stead, a compiled version of the grammar is used, that stores rules as Prolog
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facts that have the constructed attribute-value structures in their second and
third arguments. The compilation procedure is straightforward: each rule is
called to construct the left-hand and right-hand sides; these are then stored
together with the rule identifier.

Derivations

The derivation of categories using attribute-value grammar rules was discussed
in Section 2.2.3. In this section, we give some examples of derivations that
were made using the Alpino grammar. Since the complete derivations that
Alpino produces are too large to be printed here on paper, we will instead give
an example of a derivation tree of a sentence and attribute-value structures of
some categories.

Figure 2.19 shows the derivation tree of (the most likely analysis of) the
sentence We doen dat met plezier. ‘We do that with pleasure.’ The interior
nodes (except those dominating leaf nodes) of the derivation tree show the
rules that were used in the derivation. For instance, one particular subtree was
constructed using the grammar rule vp arg v(np) by filling its right hand slots
with categories constructed using the np pron weak and vp mod v rules. The
leaf nodes of the tree are words, the immediately dominating nodes are the
tags of words in that particular analysis.

This derivation tree has two types of epsilon leaf nodes. The first, opt-
punct(e) is used to fill right-hand side slots with a special optpunct category.
This category is used when a constituent can contain non-obligatory punctua-
tion. The optpunct(e) item fills such slots when there is no punctuation in that
position. The other epsilon node, vgap, plays a role in verb-second word order
handling. In Dutch, the position of the finite verb is different in main clauses
(second position) and subordinate clauses (final position). The usual analysis
is that in main clauses, the finite verb has been moved from the final position
to the second position [Koster, 1975]. As proposed in Shieber et al. [1990], the
Alpino grammar creates an empty verb (the vgap) to fill the ‘original’ position
of the finite verb. This empty verb is created when the finite verb is analyzed
and contains the relevant constraints that are imposed by the verb.

Figure 2.21 shows the category that was derived in the last derivation step
(if bottom-up derivation is used), using the application of the top start rule.1

Since (nearly) all rules have path equivalences between the left-hand and
right-hand sides of a rule, information can percolate through the derivation.
This means that when the np n item dominating plezier in Figure 2.19 was
unified with the third daughter of pp p arg(np), the relevant information is also

1Attributes having the value nil or the empty list as their value are removed for brevity.
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part of the attribute-value structure of met. This can be seen in Figure 2.20,
in the list that is the value of sc. Also, the dependency structure of the noun
phrase is the value of the pobj1 attribute of the dependency structure of the
preposition. To summarize: every unification of a right-hand side category not
only carries over information to the left-hand side, but also to the head of the
rule and potentially other categories.

In Figure 2.20 we also see a feature of Alpino’s type system that has not
been discussed before. The type system provides a special mechanism to spec-
ify conjunctions, disjunctions and negations of atomic values. For instance, in
Alpino, NP -internal agreement is specified to be the cross-product of {sg, pl}
(number), {de, het} (gender), and {def,indef,measdef} (definiteness). A spec-
ification such as de&def;pl&het&def says that agreement should either be de
(feminine/masculine) and def (definite), or pl (plural) and het (neuter) and
def. The cross-product specification is compiled to a term, so that conjunction
and disjunction can be ‘checked’ via unification [Mellish, 1988].

Modifiers

Within the grammar some dependents, such as modifiers, require special treat-
ment. This is necessary, because modifiers can be used in a phrasal category
where the syntactic head of the phrase is not the head of the modifiers in
dependency structure. For example, consider the dependent clause

(2) a. omdat
because

hij
he

met
with

plezier
pleasure

een
a

taart
cake

heeft
has

gebakken
baked

The (simplified) derivation tree of this phrase is shown in Figure 2.22. The rule
identifiers are replaced by syntactic categories for clarity.

The prepositional phrase met plezier is a modifier of gebakken. However,
gebakken is combined with the auxiliary verb heeft to form a new category,
vproj, that is headed by the auxiliary verb. Consequently, the modifier met
plezier is ‘collected’ by the syntactic head heeft. As we will discuss in more
detail later, heeft hands over the collected modifiers to gebakken.

One of the consequences of the collection of modifiers by the syntactic head
is that the modifiers that are eventually collected by a head are not necessarily
modifiers of that head in the dependency structure. In the example above, heeft
will have met plezier in its list of collected modifiers. However, its modifier list
in the dependency structure will be empty, since heeft will give the modifier to
gebakken.

There is another issue that makes the treatment of modifiers intricate. Since
unification cannot mutate values, it is not possible to simply expand an existing
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Figure 2.19: Derivation tree for the sentence We doen dat met plezier.
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Figure 2.20: Attribute-value structure of met in the derivation in Figure 2.19.
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Figure 2.21: Attribute-value structure of the top start node in the derivation
in Figure 2.19.
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sbar

comp

omdat

vp

vproj

np
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pp

met plezier

vproj

np

een taart
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v

heeft
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Figure 2.22: Derivation tree of omdat hij met plezier een taart heeft gebakken
‘because he with pleasure a cake has baked’. Category types are used as node
labels.

modifier collection list. Of course, a grammar rule that uses a modifier could
create a new collection list, having the modifier as its head and the previously
collected modifiers as its tail. For instance, consider the phrase

(3) a. De
the

mooie
beautiful

snelle
fast

groene
green

auto
car.

The derivation tree for this phrase is shown in Figure 2.23 (again, category types
are used as node labels). Following that approach to modifier collection, the
lists of modifiers of a given noun (n) category consists of the modifiers collected
in the derivation of that category: 1:n has an empty modifier collection list,
2:n has a singleton list with groene, 3:n has a list with snelle and groene, etc.
Unfortunately, without extra work, the eventual list of collected modifiers is
only available in 4:n and np. This poses a problem for lexically-driven systems
such as Alpino, since it makes it impossible to define relations on modifiers in
lexical attribute-value structures [van Noord and Bouma, 1994].

We will first discuss how Alpino makes the list of modifiers visible in lexical
attribute-value structures. We will then look at an example where the list of
modifiers is used in a lexical attribute-value structure.
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np

det

de

4:n

a

mooie

3:n

a

snelle

2:n

a

groene

1:n

auto

Figure 2.23: Derivation tree for the phrase de mooie snelle groene auto ‘the
beautiful fast green car’. Rule identifiers are replaced by category types.

There are two methods that can be used to make modifiers visible to lexical
attribute-value structures:

1. Prolog lists are a recursive data structure: a list is a tuple of a value and
a list; or the empty list. A list is expandable if the list in the last tuple is
variable, since that variable can be unified with another list. This can be
used for modifier collection — as long as the tail of the collection list is
variable, modifiers can be added to the list. At the maximal projection,
the variable is unified with the empty list, to finalize the modifier list.

2. Rather than using one attribute that collects modifiers, two attributes
are used. The value of the first attribute is a list with modifiers that
have been collected up to that point in the derivation. The value of the
second attribute is the list of all modifiers that have been collected by the
head and is reentrant in every derived category with the same head. This
value is variable until a derivation is constructed that corresponds to a
maximal projection. In that derivation, the second attribute is unified
with the first attribute to make the final list of modifiers available to the
head.

Alpino follows the second approach, since it works naturally with delayed
constraints. On each head, a delayed constraint is put on the list of collected
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modifiers, which is variable until maximal projection is reached. In Alpino, cat-
egories that can collect modifiers have two attributes, cmod and mod. cmod is
used to collect modifiers and mod is the list of all modifiers that were collected
at the maximal projection. Figure 2.24 gives an impression of how these two
attributes work for the derivation in Figure 2.23.2

np

[
cmod 1

mod 1

]

de

n



cmod 1

〈
mooie, snelle, groene

〉

mod 1





mooie

n



cmod
〈
snelle, groene

〉

mod 1





snelle

n



cmod
〈
groene

〉

mod 1





groene auto

Figure 2.24: Collection of modifiers in the noun phrase de mooie snelle groene
auto ‘the beautiful fast green car’. Modifiers are collected in the cmod at-
tribute.

2In reality, the lists contain the dependency structures of the modifiers.



2.5. CONCLUSION 37

As we can see in this example, the cmod attribute always contains the
modifiers that were collected up to that point in the derivation. Since the mod
attribute is unified with cmod when no additional modifiers can be collected,
the final list of modifiers is available to each grammar rule in the derivation,
including the lexical attribute-value structure for auto. In this case, that lexical
attribute-value structure would only exploit this mechanism to define the list
of modifiers in the dependency structure — it is unified with the dt · mod
attribute.

The earlier example (Figure 2.22), however, uses the mod attribute more so-
phisticatedly. Remember that in this case the syntactic head collected the mod-
ifiers for their actual head in the dependency structure. The lexical attribute-
value structure for auxiliary verbs (such as heb) specifies that the modifiers
that the auxiliary verb collects are handed over to the verb cluster (vc) of the
auxiliary verb. This is achieved by adding a delayed constraint on the value
of the mod attribute of heb. When mod is not variable anymore, the lists of
modifiers collected by heb and those collected by gebakken are concatenated
and unified with the mod attribute in of gebakken.

The use of delayed constraints and two modifier lists in Alpino provides
an effective mechanism for handling modifiers. However, it requires special
attention in generation, as we will see in Section 3.3.3

2.5 Conclusion

This chapter provided an overview of the attribute-value grammar formalism,
and its implementation in the Alpino system. The next chapter describes how
derivations are constructed in generation using the grammar and lexicon that
are described in this chapter.
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Chapter 3

Chart Generation

The previous chapter provided an introduction to attribute-value grammar and
how AVG is implemented in the Alpino system. Such a computational grammar
can be used to derive whether a sentence is syntactically correct, and if so, to
obtain an abstract representation of that sentence. Vice versa, a grammar can
be used to derive sentences that realize a given abstract representation. These
two tasks are called parsing and generation respectively.

In less abstract terms, the role of a parser in a language processing pipeline
is to provide syntactic or semantic analyses that can be used by other com-
ponents to extract and use the information encoded in a text. A generator,
on the other hand, is used to produce natural language text that conveys the
information that should be presented to a human. Generators are used in many
different applications, such as paraphrasing, data summarization, and machine
translation.

Reiter and Dale [1997] describes six sub-tasks that a complete natural lan-
guage generation component should be able to perform:

• Content determination decides what information should be communi-
cated in the text. Reiter and Dale [1997] envisions that this task creates
messages that contain this information.

• Discourse planning settles the structure and order of the messages that
should be communicated.

• Sentence aggregation groups messages together in sentences.

• Lexicalization decides on the words and phrases that are used to express
the concepts and relations in a message.

39
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• Referring expression generation selects words or phrases to identify
entities.

• Linguistic realization applies a grammar to make a sentence or text
that is syntactically, morphologically, and orthographically correct.

In this work, we focus on the last sub-task, linguistic realization. Our
motivation to focus on realization, as opposed to any of the other subtasks,
is twofold: (1) linguistic realization is the most fundamental task in natural
language generation; and (2) no component to perform this task was available
for a wide-coverage grammar for Dutch.

We believe that linguistic realization is the most fundamental of these six
sub-tasks, because no natural language generation application can function
without a rudimentary sentence realizer. The other sub-tasks of a generation
component merely output structured information, while realization produces
actual sentences. At the same time, there are applications in generation, that
can be performed without any of the other sub-tasks, such as: sentence para-
phrasing, sentence compression, and machine translation.

In this chapter, we will introduce a sentence realizer for the Alpino gram-
mar, which was described in the previous chapter. This realizer uses the same
grammar and lexicon as that used in the Alpino parser, as well as an abstract
representation based on dependency structure (Section 2.4.2). This puts the
Alpino system firmly in the tradition of reversible unification grammars [Kay,
1984].

The use of reversible unification grammars for generation has been criticized
in the past. This criticism is twofold. First, it has been argued that it is
difficult to use a grammar that has been written for parsing initially efficiently
and correctly for generation [Russell et al., 1990]. Cited concerns include non-
termination and the requirement to purge the search space too aggressively.
Second, there are concerns that the abstract representation of such systems are
too linguistic to be useful in generation [Busemann, 1996]. We will address the
concerns that are embedded in the first criticism in Section 3.5, where we show
that generation using a reversible unification grammar can be performant using,
among other things, our approach to goal-driven generation (Section 3.3.2).
We discuss the criticism of our abstract representation in Section 3.1, where we
introduce this representation. However, we would like to emphasise that our
contributions in this work are applicable to nearly all attribute-value grammars,
regardless of their reversibility or their input representation.

In this chapter, we will first introduce the abstract representation that is the
input to the generator in Section 3.1. In Section 3.2 we describe generation as
a deduction procedure and provide a theorem prover to deduce sentences from
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an abstract dependency structure. The remainder of that section discusses
some practical issues, such as how the generator finds all possible morphemes
and corresponding attribute-value structures given the input, and elementary
optimizations to the theorem prover.

In its most basic form, the generator creates all derivations that are pos-
sible given the lexical attribute-value structures that are part of the input to
the generator. Unfortunately, this makes generation intractable for anything
but trivial inputs. However, since we are only interested in derivations that
realize (a part of) the input, the generator can be made much more goal-driven.
The chart generators described by Shieber [1988], Kay [1996], and Carroll and
Oepen [2005] improve performance substantially through top-down guidance
provided by the input. In Section 3.3, we propose another method for top-
down guidance that is efficient and practical.

3.1 Abstract dependency structures

Section 2.3 discussed the use of dependency structure as the abstract represen-
tation of sentences in Alpino. These dependency structures are, however, not
directly usable as the input of generation, since they specify the word order
and contain inflected words. The dependency structures that are the input
to generation differ from those that are the output of parsing in the following
aspects:

• They do not contain information about word or constituent adjacency.
In parsing, words are annotated by their sentence position to uniquely
identify the word in the sentence. In generation, this information would
not be used, since it is the task of the generator and fluency ranker to
find realizations of the dependency structure that are grammatical and
fluent.

• Words are represented by their stem and lexical information. In contrast
to parsing, the inflected word is omitted, since it will be constructed by
the generator. For instance, if the input specifies that the verb with the
stem loop ‘walk’ should be used as third person, singular and present
tense, the generator will construct the inflection loopt.

If more than one inflection can be constructed using the lexical informa-
tion that is available, the generator will do so. For example, if the input
specifies that the verb with the stem schuil ‘shelter’ should be used as
third person, singular, and past tense, the generator will construct the
inflections school and schuilde.
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The lexical information for a word can also be underspecified. For in-
stance, if the tense of a verb is removed, the generator will attempt to
realize sentences in the present and past tense.

• Separable particles are not specified as dependents of a verb. Some Dutch
verbs have particles that can be connected to or separated from that verb.
For example, the particle weg in the verb weggooien is separable. Alpino
dependency structures specify the particle in the lexical information of
the verb. If the particle is separated from the verb, it is also a separate
dependent of the verb, so that every word that occurred in a sentence
has a relation in the dependency structure.

The choice of whether a particle should be separate or connected to the
verb is usually a matter of fluency. Therefore, such choices should be
made by the fluency ranking component (Chapter 4), rather than putting
it on the plate of the component that creates the input of the generator.

Since separable particles are not specified in the input of generation, the
generator is allowed to realize variants that have the particle connected
to a verb as well as those where the particle is separated. Consequently,
the question Zou ik dat mogen weggooien? ‘May I throw that away?’ can
also be realized as Zou ik dat weg mogen gooien?.

• Punctuation is not specified in the dependency structure. For historical
reasons, in parsing, nodes representing punctuation are attached to the
top category of the dependency structures. As such, they provide no hints
to the generator on how the punctuation should be used and whether the
use of punctuation is optional.

Since the specification of punctuation in dependency structures would
not provide any useful information to the generator, we leave it to the
generator to introduce punctuation.

We call the resulting structures abstract dependency structures.
Abstract dependency structures are a linguistically rich input, since they

specify the grammatical relations between lexical attribute-value structures
in the input. Nonetheless, we believe that the use of abstract dependency
structures is justified for different reasons:

• We believe that abstract dependency structure provides enough abstrac-
tion for generation tasks such as paraphrasing and machine translation.
For instance, Marsi and Krahmer [2005] describes a system that uses
Alpino dependency structures to merge information of multiple sentences
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and to generate a new ‘fused’ sentence. Another example is the Paco-
MT translation system, which generates target language sentences from
Alpino dependency structures using statistical generation [Vandeghinste,
2009].

These tasks require the system to choose a word order that is considered
fluent and do not fundamentally alter grammatical relations.

• In other applications, it may be useful to have less linguistically-rich
input. However, as described in the generator architecture that was pro-
posed by Reiter and Dale [1997] and discussed in the previous section,
sentence realization is only a sub-task in a complete generation system.
In such an architecture, the realizer is provided with input that is already
linguistically rich, since lexicalization and referring expression generation
is already performed by other sub-tasks within the system.

• Dependency structures are the output of the Alpino parser. If the gen-
erator used a different representation as its input, applications that use
the parser and generator, such as paraphrasing and machine translation,
would be required to translate between representations.

• As discussed in Section 2.4.2, dependency structures are constructed as a
side-effect of the application of grammar rules. However, the grammar it-
self is a unification-based phrase structure grammar. Consequently, there
is no trivial mapping from abstract dependency structure to a phrase
structure tree. In other words, our task is not significantly simpler than
if we used an attribute-value grammar with another abstract representa-
tion.

• No other wide-coverage unification grammars are available for Dutch and
modifying the Alpino grammar to use another representation would be
an enormous task.

3.2 Algorithm

3.2.1 Generation as deduction

Parsing and generation can be viewed as deductive processes that respectively
prove that a sentence can be analyzed with abstract structure and that a par-
ticular sentence is a realization of an abstract structure [Pereira and Warren,
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1983, Shieber, 1988, Shieber et al., 1995]. Shieber et al. [1995] describe a sys-
tem for generating parsers in this vein, where specific parsers are encoded by
specifying their axioms, inference rules, and goals.

We will give a description of our bottom-up chart generator [de Kok and
van Noord, 2010], which was strongly influenced by Shieber [1988] and Kay
[1996], using the notation of Shieber et al. [1995].

Notation In this section, we use α, β, and γ for sequences of zero or more
syntactic categories. Capital letters are used for one syntactic category. A→ α
is a grammar rule that rewrites the category A to a sequence of zero or more
categories α. Inference rules are written in the following form:

A1 · · ·An

B
(3.1)

This rule states that the consequent B can be inferred from the antecedents
A1 · · ·An.

Items Theorems and partially proven theorems are represented as items. In
our generator, an item is a grammar rule where zero or more slots are consumed.
A dot represents what slots have been consumed - slots left of the dot are
consumed, slots right of the dot are not. Items have the following form:

[A→ α • β] (3.2)

Following Pereira and Warren [1983], we call items that have the dot in
a non-final position active and items that have the dot in the final position
passive. Active items have the following form:

[A→ α •Bβ] (3.3)

Passive items have the following form:

[A→ γ•] (3.4)

Grammar rules, with the exception of ε-rules (such as the optional punc-
tuation discussed in Section 2.4.4), are active items that have the dot in the
initial position:

[A→ •γ] (3.5)

Epsilon rules are passive items of the following form:

[A→ •] (3.6)
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Axioms In our generator, axioms are attribute-value structures that rep-
resent words and grammar rules. The lexical attribute-value structures are
constructed from the dependency structure that is the input of generation (Sec-
tion 2.4.3) in all possible ways. The axioms corresponding to lexical items have
the following form:

[A→ w•] (3.7)

The axioms corresponding to grammar rules have the following form:

[A→ •γ] (3.8)

Goal The goal of generation is to find at least one passive item, where the
right-hand side syntactic category is an attribute-value structure of the type
top cat. top cat is the type used in Alpino for attribute-value structures that
represent a sentence. Additionally, the dependency structure in this attribute-
value structure should be subsumed by the dependency structure D that is the
input to generation. The goal of generation is:

[S → top cat

[
dt D′

]
•], D)D′

Inference rule The generator uses one inference rule, completion:

[A→ α •Bβ] [B → γ•]
[φ(A→ αB • β)] φ = mgu(B,B′) (3.9)

where mgu(B,B′) is the most general unifier of B and B′ (Section 2.2.1). This
inference rule moves the dot in an active item by unifying the slot right of the
dot with a passive item.

When a new item is created using the inference rule, its construction history
is recorded.

Example Suppose that we have the following items:

[NP → •Det N ]

[Det→ de•]
[N → man•] (3.10)
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The first (active) item is an axiom corresponding to a grammar rule, the
second and third (passive) items are lexical items for the words de ‘the’ and
man ‘man’. Using these axioms NP can be proven:

[NP → •Det N ] [Det′ → de•]
[σ(NP → Det •N)]

σ = mgu(Det,Det′) (3.11)

[NP → Det •N ] [N ′ → man•]
[σ(NP → Det N•)] σ = mgu(N,N ′) (3.12)

In this state, an NP with certain characteristics was proven.

3.2.2 Theorem prover

The theorem prover attempts to prove all possible items (theorems) using the
initial axioms. The state of the prover is stored in two data structures:

1. Chart: the chart stores items that were obtained through the application
of inference rules.

2. Agenda: the agenda is a queue of new items, which the prover uses to
make new inferences.

The flow of items through the prover is simple: new items are first added
to the agenda. Once an item is processed, it is removed from the agenda and
added to the chart. During the processing of an item on the agenda, the prover
attempts to create new items in all possible ways using that item, items on the
chart, and the inference rule. Once the agenda is empty, the chart contains all
possible inferences that could be made, given the axioms.

The algorithm of the theorem prover is outlined in Algorithm 1. In chart
generation, the agenda is initialized by putting all axioms (grammar rules,
epsilon rules, and lexical items) on the agenda. In practice, the grammar rules
are put on the chart immediately, since there are initially no passive items on
the chart that they could interact with.

The chart contains function has a special role. If an item is already on
the chart, it is not useful to add it again, since it will interact exactly in the
same manner as the existing item. However, the item might have been de-
rived differently and thus represent a different phrase. A sophisticated version
of chart contains will modify the existing chart item and add a ‘derivation
history’. This is discussed in more detail in Section 3.4.
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Algorithm 1 The theorem prover

agenda← axiom items
chart← initial chart
while ¬is empty(agenda) do

item← head(agenda)
if ¬chart contains(item) then

append(agenda, inferences(item))
put on chart(item)

end if
remove head(agenda)

end while

return chart retrieve unifies( top cat

[
dt D

]
)

3.2.3 The complexity of chart generation

Since the theorem prover tries all possible interactions between items, and
continues until no more interactions are possible, it is guaranteed to find all
items that can be deduced with the axioms and inference rules.

Since words can be ordered arbitrarily in some cases, the time complexity
of chart generation is O(n!), where n is the number of passive items on the
initial agenda. The worst-case scenario can be observed when a word has
multiple modifiers. If a word has n modifiers, n! orderings are often allowed by
the grammar. For instance, the following phrases can be generated from the
dependency structure in Figure 3.1:

(1) a. de chique warme gele trui
b. de warme chique gele trui
c. de chique gele warme trui
d. de gele chique warme trui
e. de gele warme chique trui
f. de warme gele chique trui

Another construct where n! orderings are sometimes problematic are con-
junctions. For example, the conjunction noten, rozijnen, en gember ‘nuts,
raisins, and ginger’ can be realized as:

(2) a. gember , noten en rozijnen

b. noten , gember en rozijnen
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dt





hd
[
lex trui

]

det

〈

dt

[
hd

[
lex de

]]〉

mod

〈

dt

[
hd

[
lex chic

]]
,
dt

[
hd

[
lex geel

]]
,
dt

[
hd

[
lex warm

]]〉





Figure 3.1: Attribute-value structure for de warme chique gele trui ‘the warm
chic yellow pullover’.

c. noten , rozijnen en gember

d. rozijnen , noten en gember

e. gember , rozijnen en noten

f. rozijnen , gember en noten

The liberty that the grammar and input specification provide in ordering mod-
ifiers and conjuncts, is the source of this complexity. Any generation algorithm
will suffer from such permissiveness. That said, in practice sentences contain
plenty of material that is subject to stricter ordering constraints. So, normally,
there is not a factorial number of realizations. Chart generation also eliminates
a lot of potential complexity by constructing partial derivations only once and
its memory use can be reduced easily through packing (Section 3.4).

3.2.4 Lexical items

As described in Section 3.1 the input to generation in Alpino does not contain
word inflections, and may contain only partial lexical information. However,
during generation, the initial agenda is populated with passive items having
attribute-value structures with detailed subcategorization information.

A (passive) lexical item is constructed from lexical information in the de-
pendency structure in the following manner: first the given stem is looked up in
the dictionary. This gives a set of possible inflections and tags. Each tag that
is found, is verified to correspond to the lexical information that is provided in
the dependency structure. This gives a set of stem-tag-inflection pairings that
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are in correspondence with the lexical information in the dependency structure.
Then, the tags are mapped to attribute-value structures (Section 2.4.3).

Finally, the dependency structures of these attribute-value structures are
unified with the corresponding part of the abstract dependency structure. This
is done to provide top-down guidance (Section 3.3) and to weed out lexical
items that have a configuration of dependents that does not correspond to the
abstract dependency structure.

The resulting attribute-value structures form the passive items for that par-
ticular lexical node. If a stem-tag pair has multiple inflections, the inflections
are stored as a list in the items to reduce the number of items.

Example Suppose that an abstract dependency structure states that the
generator should realize a singular verb with the stem praat ‘talk’. The ab-
stract dependency structure also lists a prepositional complement (pc) with the
preposition over ‘about’. The first step is to retrieve the stem-tag-inflection
tuples. Since the Alpino lexicon is extensive there many such tuples. We list a
very small subset in Table 3.1.

The plural readings of praat (row three and four) will be eliminated, since
the lexical information in the abstract dependency structure does not corre-
spond to that in the tag — the tag indicates that the inflection is plural, while
the abstract dependency structure requires a singular inflection.

Inflection Tag
praat verb(hebben,sg,pc pp(over))
praat verb(hebben,sg,intransitive)
praten verb(hebben,inf,pc pp(over))
praten verb(hebben,inf,intransitive)

...
...

Table 3.1: Four possible inflections and tags for the stem praat ‘talk’.

Consequently, the attribute-value structures of the first and second reading
will be created. The dependency structure of the first reading is shown in
3.2(a) and the second in 3.2(b). The first structure indicates that this reading
expects a prepositional complement, since its pc attribute has a value that is
not nil. The second reading expects no prepositional complement, since the pc
attribute has the value nil.

Since the abstract dependency structure that is the input to generation
specifies that the verb praat has a dependency with the relation pc, it will not
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dt
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dt




lex praat

surfs
〈
praat

〉




pc
dt

[ ]
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hd

dt




lex praat

surfs
〈
praat

〉




pc nil





Figure 3.2: Dependency structures of (a) verb(hebben,sg,pc pp(over)) and (b)
verb(hebben,sg,intransitive).

unify with the dependency structure of the reading with the tag verb(hebben,sg,
intransitive), and this entry will also be excluded.

Lexical items with a complex dependency structure

As discussed in Section 2.4.3, the lexicon contains entries consisting of multiple
words that have a syntactic structure (with dt entries). Since the roots of
such words occur separately in the abstract dependency structure, we cannot
simply find the relevant entry by looking up the the roots of those words. For
instance, the phrase helemaal niemand in the sentence Helemaal niemand ziet
ons ‘Nobody at all sees us’ has the dependency structure shown in Figure 3.3.

dt





hd

dt





lexical niemand

cat np

mod

〈

dt



hd
dt

[
lexical helemaal

cat advp

]


〉









Figure 3.3: Dependency structure of the phrase helemaal niemand ‘nobody at
all’.

We follow a simple method to find such instances. First, we construct a
special stem for each such lexical entry. This stem is the lexicographically sorted
list of stems of words within that entry. For instance, in the case of helemaal
niemand, the stem is ‘helemaal niemand’. Then, when constructing lexical
items for generation, we apply the following procedure: for each sub-structure
in an abstract dependency structure, we collect the lists of stems within that
structure. The stems are then sorted lexicographically to form a compound
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stem. This stem is then looked up in the dictionary. If the stem occurs in a
with dt entry, we introduce the corresponding entry if its dependency structure
unifies with the sub-structure that is under consideration.

3.2.5 Indexing of items

A grammar rule in the Alpino system consists of three elements (Section 2.4.4):
(1) an atom that identifies the rule, such as np det n; (2) the attribute-value
structure that represents the left-hand side of the rule; (3) the list of attribute-
value structures that represents the right-hand side of the rule. Finding items
for completion can be sped up tremendously if the active items on the chart
are indexed by the next slot that should be completed.

Since items are Prolog facts in Alpino, we can rely on first argument indexing
in Prolog to index items. Prolog interpreters calculate a hash of the first
argument of a term that is asserted. When a goal is executed, the first argument
of the goal is also hashed, and the interpreter will only consider facts with a
matching hash. First argument indexing is only used when the first argument is
not variable. If the argument is a term, only the functor of the term is hashed.

To be able to use first-argument indexing, we have to ensure that the next
slot to be completed is the first argument in the term that represents an item.
Grammar rules are pre-compiled to have this property. When constructing
new active items using completion, the next (uncompleted) slot is made the
first term argument. Since Alpino has a rich type hierarchy, and types are
represented as term functors (Section 2.4.1), such indexing is very effective.

3.2.6 Head-first slot filling

Shieber et al. [1990] define the notion of a chain rule, which is a rule that has
a right-hand side slot with semantics that is identical to that of the left-hand
side. This slot, which we call the semantic head of the rule, is expected to
carry the most detailed syntactic information. Consequently, if we require that
the semantic head is completed before other right-hand side slots, a smaller
number of active items will be created.

Top-down guidance (Section 3.3) adds further selection restrictions to the
dependency structure of heads.

In the Alpino grammar, the semantic head of a rule is defined to be the
first right-hand side slot that has a dependency structure that is identical to
that of the left-hand slot. Consider the np det n rule in the Alpino grammar.
The head of the grammar rule clause is as follows:

grammar_rule(np_det_n,NP,[Det,N])
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By checking the right-hand side slots, we will find that N · dt is identical
to NP ·dt. Using this information, we can construct a different representation
of this rule that has the head as its first argument, to flag the slot that should
be completed first and to make use of first-argument indexing:

headed_grammar_rule(N,np_det_n,NP,[Det,N]).

If a rule has two slots that can be considered the semantic head, we complete
the leftmost head first. If a rule does not have a semantic head, the leftmost
slot is considered to be the semantic head.

3.3 Top-down Guidance

When chart generation is finished, we are only interested in those derivations
where the dependency structure of the root of the derivation tree is subsumed
by the dependency structure that was the input to generation.1 However, the
dependency structure that forms the input is not only the goal of generation,
but it also provides top-down information that can guide generation.

3.3.1 Semantic filtering

Shieber [1988] uses a filter that reduces the search space in a chart generator.
This filter retains items that have semantics that subsume some portion of the
goal semantics. Shieber [1988] argues that this can be seen analogous to in-
dexing on string positions in parsing, since it avoids the creation of derivations
that are in conflict with the input. It should be clear that this filter can also be
applied if we use another abstract representation, such as (in our case) depen-
dency structure. For example, consider the dependency structure in Figure 3.4,
corresponding to the sentence De wethouder berispt de burgermeester.

At some point during theorem proving, the generator may have constructed
a noun phrase corresponding to de wethouder and attempt to combine it with
an item corresponding to berispt to form a verb phrase item with the depen-
dency structure in Figure 3.5. However, the semantic filter would discard this
item, since its dependency structure does not subsume (a part of) the depen-
dency structure in Figure 3.4.

However, as Shieber [1988] points out, the use of a semantic filter can lead
to incompleteness, unless the grammar is semantically monotonic. A grammar
is semantically monotonic if “for every phrase admitted by the grammar, the

1Requiring the dependency structure of the root node to be identical to the input of
generation, would rule out realizations of an underspecified dependency structure.
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[
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]]
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Figure 3.4: Attribute-value structure for De wethouder berispt de burger-
meester.

semantic structure of each immediate subphrase subsumes some portion of the
semantic structure of the entire phrase”.2

Figure 3.6 gives an example of a unary AVG rule (S → A) that is not
semantically monotonic. This is because a portion of the semantics on the
right-hand side of the rule, sem:y, does not subsume a portion of the semantics
of the left-hand side. Assuming that P(sem : y) += some atom for at least
some of the possible goal semantics, we can see that Shieber’s semantic filter
can lead to incompleteness. This particular rule can produce derivations that
correspond to the goal semantics, even if the item used to fill the right-hand
side slot does not have semantics that subsume a portion of the goal semantics.
However, the item used to fill that slot would not pass the semantic filter in
such cases.

Conversely, under the assumption of semantic monotonicity, we can safely
ignore items with semantics that do not subsume part of the goal semantics,
since their semantics would eventually end up as a part of the semantics of a
derivation and the derivation would not correspond to the goal semantics.

While Shieber’s semantic filter is effective in excluding items that do not
correspond to the goal semantics, it is not completely satisfactory from the
performance perspective. It requires the complete unification of a slot, before
the filter is applied, and unification is a relatively expensive operation in a
grammar that uses complex attribute-value structures. Afterwards, the filter

2Shieber [1988], pp. 617
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Figure 3.5: The dependency structure of a verbal phrase where ‘de wethouder’
is the direct object of berispt.
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Figure 3.6: A grammar rule that violates semantic monotonicity — the seman-
tics of the right-hand side slot do not subsume (a portion of) the left-hand
side.

has to perform subsumption checks against all portions of the goal semantic,
until the subsumption check succeeds against one portion or fails against all
portions.

Another interesting question is how these subsumption checks should be per-
formed in the presence of list-valued attributes (Section 2.4.2 and Section 2.4.4).

In the next section we present a mechanism for top-down guidance that
makes the construction of items with unwanted dependency structure fail as
early as possible, namely during slot unification. We then discuss the handling
of list-valued attributes.

3.3.2 Semantic restriction

The mechanism that we use for top-down guidance is related to Shieber’s se-
mantic filter, but not identical. In our case, we do assume, as in Shieber [1988],
that the grammar exhibits the monotonicity requirement with respect to se-
mantics or dependency structure. But we exploit this requirement one step
further: the dependency structure of a lexical attribute-value structure is in-
stantiated with part of the abstract dependency structure that is the goal of
generation. As a consequence, our bottom-up algorithm is more goal-directed.
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When attribute-value structures are constructed for a stem in the abstract
dependency structure that is the input to the generator (Section 3.2.4), we
also unify their dependency structure attributes (dt) with the relevant part
of the abstract dependency structure. This has two consequences: (1) lexical
attribute-value structures that have a dependency structure that is incompati-
ble with (the relevant part of) the abstract dependency structure are excluded;
and (2) the dependents of a word are listed with their dependency relation
in the dependency structures of the remaining attribute-value structures. In-
stantiating the dependency structure of a word with its dependents has the
consequence that right-hand side slots are not only constrained by the syntac-
tic restrictions of the grammar rule or the syntactic head, but also by semantic
restrictions (in our case by specific dependents). If a candidate for completion
would introduce a dependency relation that is not specified in the abstract
dependency structure, and hence in the attribute-value structure of a word,
it would simply not unify with the attribute-value structure of the right-hand
side slot.

As an example, consider the dependency structure given in Figure 3.7.
When the lexical items are created to initialize the agenda, this is done with
the additional requirement that the value of the dt attribute unifies with this
dependency structure or with a sub-part of it. This implies that only the
words de, advies, adviezen and inflectional variants of the verb beklijven are
selected during lexical lookup. Moreover, the dependency structure of those
lexical entries is already instantiated with parts of the dependency structure of
3.7. For instance, the lexical attribute-value structure for beklijfden is given in
Figure 3.8(a). Top-down guidance results in the structure given in figure 3.8(b).
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Figure 3.7: Attribute-value structure for De adviezen beklijven.

In Figure 3.8(a), the attribute-value structure states that the subcat list
(the attribute sc) of the verb contains a single entry which is identical to the
subject (attribute subj). The dependency structure associated with the subject
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Figure 3.8: Attribute-value structure for beklijfden before (a) and after (b)
top-down guidance.

is identical to the su of the dependency structure of the verb. In addition, the
verb can take an arbitrary number of modifiers. The pair of attribute cmods
and mods are used to collect those modifiers in a derivation; cmods contains
the list of modifiers found so far, whereas mods represents the complete list of
modifiers (Section 2.4.4).

In Figure 3.8(b), the dependency structure has been instantiated as a result
of top-down guidance. Therefore, the verb can only combine with a subject
which has a dependency structure associated with de adviezen. Moreover,
the attribute value structure indicates that there cannot be a single modifier
attached to the verb, nor any other dependents.

Top-down guidance not only prevents the construction of items with a de-
pendency structure that is not a portion of the abstract dependency structure,
but it also enforces that all required dependencies are found. For instance,
if the input contains a dependency structure of a verb with a subject and a
direct object, then lexical lookup will typically not propose an attribute-value
structure for the intransitive reading of that verb: that attribute-value struc-
ture will have, in the lexicon, the value nil for the attribute obj1 which will
not unify with the goal. Similarly, if the input contains a number of modifiers
associated with a head, then, typically, maximal projections of that head with
fewer modifiers are also ruled out, solving one of the problems raised in Kay
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[1996].
Top-down guidance is thus achieved by instantiating the dependency struc-

ture of each lexical attribute-value structure with the corresponding part of the
dependency structure of the input. In addition, Shieber’s semantic monotonic-
ity requirement is enforced for other items as well. A new item is constructed
only in case its dependency structure is unifiable with any part of the depen-
dency structure of the goal.

We discussed our method for top-down guidance in the context of abstract
dependency structure, but it is applicable for the same grammars and abstract
representations as Shieber’s semantic filter.

3.3.3 List-valued attributes

As discussed in Section 2.4.4, modifiers are stored in lists in the Alpino gram-
mar, since a head can take an arbitrary number of modifiers. This poses two
problems for semantic restriction:

1. If a modifier list contains more than one element, we cannot rely on unifi-
cation to check whether the necessary modifiers are present. Consider for
instance the dependency structure in Figure 3.1. The modifiers warme,
chique, and gele can be realized in any order. Consequently, the order of
the modifier list can vary. Two lists with the same elements, but different
orders, do not unify, where in our application we want to view them as
equivalent.

In other words, the modifiers of a head are stored as a list for practical
reasons, though they actually form a multi-set.

2. Since the mods attribute is unified with the collected modifiers list cmods
when maximal projection is reached (Section 2.4.4), the validity of adding
a modifier is checked at a very late stage. As a result, the generator could
construct items where a head has modifiers that were not specified in the
input. Only at a later stage it would find these items to be useless.

To solve these problems, we added two refinements. (1) If a modifier list
in a (constructed) dependency structure is list-valued and contains more than
one element, we do not require this list to unify with the corresponding list in
the input, but rather to be a permutation of it. (2) When adding a modifier
to a collection list (such as cmods), we require that this modifier is present in
the corresponding list of modifiers of that head (or in the case of e.g. control
verbs the relevant dependent). This assures that it is not possible to add the
wrong modifiers to a head, but does not prevent that a valid modifier is used
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more than once. To assure that modifiers are only added once, we also need to
verify that the bag of modifiers is a sub-bag of the final bag of modifiers. Since
this would be too expensive, we use bit vector filtering instead.

3.3.4 Bit vector filtering

Since the top-down guidance method that was proposed in this section specifies
the dependencies of a head exactly, one would expect that a lexical item cannot
be used more than once by accident. This is true with respect to non-list
dependents, since a head will only take the dependents that are specified in
its dependency structure. However, top-down guidance does not prevent the
duplication of entries in collection lists. As discussed in the previous subsection,
although it is verified that a modifier that is added to a modifier collection
list is a valid modifier of the head, the modifier list is only checked to be a
permutation of the intended list at the maximal projection. As a consequence,
a head could collect a dependent more than once before the permutation check
occurs. For instance, given a rule N → Adj N and the dependency structure
in Figure 3.1, the generator would generate an infinite number of N categories,
containing an arbitrary number of warme, chique, and gele adjectives. We will
discuss a solution to this problem that is proposed in the literature and then
show that this solution does indeed work for our grammar and generator.

The stated problem is very similar to a problem that occurs in the parsing of
discontinuous constituents. If a grammar describes discontinuous constituents,
one cannot simply rely on the span of an item to infer which words that item
covers. This is problematic, because one cannot easily guarantee when com-
bining items that each word in the spans of the items is analyzed once and
only once. Johnson [1985] proposes to associate an index to each word (its
position) and to store in each item the set of indices of words that were used
in the derivation of that item. As Popowich [1996], we follow exactly the same
approach in generation. If we give a unique index to each lexical item, we can
store in each passive or active item the set of indices that identify the lexical
items that were used directly or indirectly to infer that item. For instance, if
we would generate the NP de hond ‘the dog’, its set would contain the indices
of de and hond. When an inference rule is applied, it is guaranteed that no
lexical item is used more than once if the intersection of the sets of the active
and the passive items is empty. If L(i) is the set of indices of the lexical items
that were used in the derivation of item i, then:

L([A→ α •Bβ]) ∩ L([A→ γ•] ≡ ∅ (3.13)

The lexical item set of the newly inferred item is then the union of both
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sets:

L([A→ αB • β]) = L([A→ α •Bβ]) ∪ L([A→ γ•] (3.14)

It is well-known in set theory that, if the possible elements E in a set is finite
and we have a function f : e → N0 and ∀e∈E∀e′∈E [f(e) = f(e′) ⇐⇒ e = e′],
then we can represent sets as a bit vector:

• {} ≡ 0

• {e} ≡ 14 f(e), where 4 is a bitwise left shift.

• {e} ∪ {e′} ≡ f(e) | f(e′), where | is bitwise-OR.

• {e} ∩ {e′} ≡ f(e) & f(e′), where & is bitwise-AND.

Bit vectors provide an efficient representation for finite sets such those for
identifying lexical item coverage, since they are small and offer fast set difference
and union operations.

As said, we do not require bit vector filtering to the same extend as Johnson
[1985] and Popowich [1996], since our method for top-down guidance already
guarantees uniqueness for single-valued dependencies. However, we will give
two examples where bit vector filtering of lexical items reduces complexity in
generation: in modifier collection and in the handling of extraposed phrases.

Modifier collection As noted in the previous section, a modifier could be
used more than once in a modifier collection list. Bit vector filtering prevents
this, since adding a modifier twice would fail the check that requires that the
intersection of the sets of lexical items used by the active and passive items is
empty.

For example, consider the dependency structure in Figure 3.1 once more.
Suppose that we give lexical items in this dependency structure the bit vectors
in Table 3.2 and that one particular item contains the realization chique gele
trui. This item has the bit vector 1101 (0001 | 0100 | 1000). If the generator
attempts to combine this item with gele once more, it will fail the bit vector
check, since 1101 & 1000 +≡ 0.

Extraposition Internally, the Alpino grammar also uses lists that do not
directly correspond to lists in the dependency structure. One such list keeps
track of extraposed phrases. Without bit vector filtering, the grammar would
recursively try to add the same extraposition to the extraposition list over and
over. As a result, the generator would not terminate.
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Lexical item bit vector
trui 0001
warm 0010
chique 0100
geel 1000

Table 3.2: One possible distribution of bit vectors among the lexical items in
Figure 3.1.

By using bit vector filtering, any attempt to add an extraposition of the
same dependent more than once will be blocked by the bit vector filter.

3.4 Packing

When complex dependency structures are used as the input to the sentence
realizer, the chart can grow enormously. However, there may be a large number
of items with the same attribute-value structure. For instance, the use of
optional punctuation does not change an attribute-value structure, while it
does introduce new items for all allowed configurations of punctuation. Another
source of growth of the chart are lexical items that have more than one valid
inflection.

To compress the chart, we apply packing. In packing one passive item
can represent multiple derivation histories that share the same attribute-value
structure. A derivation history is represented by simple items that contain a
number that maps the item one-to-one to a passive item and the identifier of
the rule or lexical item that was used to construct the item. In the case of
a rule, we also include a list of pointers to passive items that were used to
complete the right-hand side slots of that rule.

For instance, consider the passive items [A → α•], [A → β•], and [A →
γ•], that have an identical left-hand side attribute-value structure A and were
constructed with the top start rule. Since these three items represent three
different manners in which the same attribute-value structure can be created,
we could represent them using simple history items. For instance, if this was
the 31st unique attribute-value item that was constructed during generation,
we can make the history items that correspond to these passive items:

his(31,r(top start,α))
his(31,r(top start,β))
his(31,r(top start,γ))
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However, since the right-hand side consists of attribute-value structures that
were also packed using this representation, we can replace the attribute-value
structures by the history identifiers for these attribute-value structures. For
example:3

his(31,r(top start,[20,25]))
his(31,r(top start,[23,29]))
his(31,r(top start,[23,30]))

In other words, the history his(31,r(top start,[23,30])) represents one
particular way the attribute-value structure of passive item 31 was constructed,
namely, by completing the top start grammar rule using passive items 23 and
30. The derivation histories of lexical nodes contain lexical information, such
as the stem and the Alpino part of speech tag, rather than a list of passive item
pointers.

Packing is performed when a passive item is created. If a passive item is
found on the chart with the same attribute-value structure, the history of the
new passive item is added to the existing passive item. We have also experi-
mented with forward-packing (where packing is applied when the new item is
subsumed by an passive item on the chart) and backward-packing (where the
new item subsumes an passive item on the chart). However, the benefits of both
forms of packing did not outweigh the decreased performance caused applying
subsumption checking: (1) we subsumption checking had to be applied twice
(for backward and forward packing); and (2) we look up identical attribute-
value structures by hash code, after freezing blocked goals (Section 2.4.1) and
numbering variables.

3.4.1 Unpacking

After chart generation, full and partial realizations can be retrieved (unpacked)
from the ‘packed forest’. Unpacking creates a derivation tree for these realiza-
tions. A (fully) realized sentence is represented by items with a top category
and dependency structures that unify with the dependency structure that was
the input to sentence realization. Derivation trees are constructed by expand-
ing histories top-down. Algorithm 2 summarizes how a derivation tree with a
particular identifier (id) is unpacked - all the histories with the identifier are re-
trieved and unpacked with a rule or lexical item unpacking function, depending
on the type of history.

3In the actual generator, this replacement is already performed after the unification of a
slot. The identifiers were made up for this example.
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Algorithm 2 Unpacking

function unpack(id)
histories← retrieve histories(id)
unpacked← []
for all his ∈ histories do

if is rule history(his) then
append(unpacked,unpack rule(his))

else
append(unpacked,unpack lex(his))

end if
end for
return unpacked

end function

Most of the actual work is done in the function that unpacks histories of
items that were constructed using grammar rules. The pseudo-code of this
function is shown in Algorithm 3. As discussed in the previous section, the
history of such an item contains the identifier of the grammar rule, as well as list
of pointers to histories that complete the right-hand side slots. unpack rule
unpacks the derivations of the right-hand side slots, giving a list where the n-th
element is a list of derivation trees that completed the n-th slot on the right-
hand side in this item. It then takes the Cartesian product of these ‘sets’ to
obtain all possible combinations of derivations to complete the right-hand side
slots. For each such combination, the attribute value structure is constructed
by completing the right-hand side slots with the attribute-value structures in
the derivation trees of each combination. Finally, each possible derivation of
the item is wrapped in a special tree term.

The unpacking function for lexical items is shown in Algorithm 4. This
function simply gets the lexical information in the history item, retrieves the
attribute-value structure of the item, and returns the item in tree representa-
tion.

Since the packed forest can contain an enormous number of realizations,
depending on the application we may want to unpack all or a specific number
of realizations. In chapter 4 we describe how we apply N-best unpacking to
retrieve the N most fluent realizations.
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Algorithm 3 Unpacking of non-terminal items.

function unpack rule(history)
rule id, daughter ids← history
lhs, rhs← grammar rule(rule id)
unpacked daughters← []
for all id ∈ daughter ids do

push back(unpacked daughters,unpack(id))
end for
trees← []
daughter combs← cartesian product(unpacked daughters)
for all comb ∈ daughter combs do

fresh lhs← unify rhs(lhs,rhs,comb)
append(trees,tree(rule id, fresh lhs, comb)

end for
end function

Algorithm 4 Unpacking of terminal items.

function unpack lex(history)
lex info← history
attr val← get lex item(lex info)
return [tree(lex info, attr val, [])]

end function

3.4.2 Punctuation

Although punctuation is not specified in an abstract dependency structure
(Section 3.1), the use of punctuation can improve fluency or may even be
required. The Alpino grammar uses different lexical types for optional and
required punctuation. Optionality is achieved by providing an ε punctuation
sign of the optional punctuation type.

Since optional punctuation can be used in many configurations, mostly to
be robust in parsing, a tremendous number of competing derivations can be
unpacked from the packed forest. Initially it seemed appropriate to let the
fluency ranking component decide on such variations. However, unpacking all
derivations was unacceptably slow, even when applying beam search (Chap-
ter 4). For this reason, we eventually disabled the use of optional punctuation
in the generator.

This problem also surfaced, although less profoundly, when using only non-
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optional punctuation. However, we cannot exclude punctuation completely,
since the use of a rule that has mandatory punctuation is sometimes required
to realize an abstract dependency structure. For this reason, we introduce
as little punctuation as possible to retrieve realizations of the input from the
forest.

Extraction of realizations using the smallest amount of punctuation is achieved
through iterative deepening. First we attempt to unpack realizations with no
punctuation token. When this fails, we attempt to unpack realizations with one
punctuation token. Et cetera. The algorithm is summarized in Algorithm 5,
and uses a special version of unpack that unpacks trees such that the given
number of punctuation signs is used.

Algorithm 5 Iterative deepening

derivations← []
n punct← -1
repeat

n punct← n punct+ 1
derivations← unpack punct(id,n punct)

until ¬empty(derivations) or n punct = max punct

In the future it would be worthwhile to explore methods to introduce op-
tional punctuation judiciously to improve fluency.

3.5 Evaluation

3.5.1 Experimental setup

A simple experimental setup was used to monitor coverage and performance
of the generator during its development. In this setup, we keep track of the
number of dependency structures for which realizations could be constructed
(coverage), the number of realizations, and the time required for constructing
all realizations for a given dependency structure. Using this information, we can
extract various interesting characteristics, such as the coverage of the realizer,
and the average generation time for a dependency tree of a certain complexity.

The realizer was tested using three Alpino test suites (the so-called g, h, and
i suites). These suites where created during the development of the grammar,
are generally of increasing complexity, and cover a wide array of lexical and
syntactic phenomena.
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The abstract dependency structures that are the input to the generator
are constructed by parsing each sentence in a suite, extracting the dependency
structure that resembles the manual annotation the most. We then remove
information to form an abstract dependency structure (Section 2.3).

It may seem more natural to form abstract dependency structures based
on the manually corrected dependency structures. However, the problem with
the gold standard structures is that the grammar may not be able to construct
them. As a result, we would not be able to generate from those structures.
The goal of the generator is to be able to construct sentences for abstract
dependency structures that are valid in the grammar. For this reason, we
construct the abstract dependency structure from the best parse of a sentence.
It is the best dependency structure that is also valid according to the grammar.

To select the best parse of a sentence, we choose the parse with the de-
pendency structure that is the most similar to the annotation. The similarity
of a dependency structure of a parse and an annotation is estimated using
concept accuracy (CA). Concept accuracy is a parsing accuracy measure that
is normally applied to a complete evaluation corpus. Let Di

p be the number
of dependencies produced by the parser for sentence i, Di

g is the number of
dependencies in the manual annotation of i, and Di

o is the number of correct
dependencies produced by the parser. Concept accuracy (CA) is defined as:

CA =

∑
i D

i
o∑

i max(Di
g, D

i
p)

(3.15)

In this case we select the best annotation on a per-sentence basis. Conse-
quently, we calculate the concept accuracy on a per-sentence basis:

CAi =
Di

o

max(Di
g, D

i
p)

(3.16)

3.6 Results

Table 3.3 shows the coverage of the sentence realizer on the g, h, and i suites.
As we can see in this table, coverage is good for the Alpino test suites. Most
of the remaining problems are caused by components of the productive lexi-
con that are not truly reversible or post-processing that the parser applies to
the dependency structures. There are also some less interesting cases, such
as empty dependency structures, derived from ‘sentences’ that only contain
punctuation. We give examples of two sources of typical errors.
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Suite Inputs ≥ 1 realization Coverage (%)
g suite 996 995 99.9
h suite 990 960 97.0
i suite 271 260 95.9

Table 3.3: Coverage of the chart generator on various test suites.

Productive lexicon

One fairly common reason the generator could not produce a realization is that
parts of the dependency structure are constructed by components of the pro-
ductive lexicon that are currently only available during parsing. For example,
the lexicon contains a definite clause grammar for analysing phrases such as
times, dates, numbers, and amounts. This definite clause grammar makes it
possible to analyze phrases such as those underlined in the following sentences:

• De winst bedroeg tussen de 3 en de 3.5 miljoen gulden.
(The profit amounted between the 3 and the 3.5 million guilders.)

• We moesten een boek of zes lezen. (We had to read a book or six.)

• De twee na laatste ploegen verdwijnen. (The second to last teams disap-
pear.)

Unfortunately, we do not have an efficient method to use this definite clause
grammar in the opposite direction yet.

Post-processed dependency structure

The parser applies transformations to some dependency structures as a post-
processing step. There are cases where annotation standards require a struc-
ture that the current grammar cannot create. For instance, the sentence Ik
heb platen gedraaid en films gekeken. has the dependency structure shown
in Figure 3.9, but is then transformed to the structure in Figure 3.10 that is
according the annotation standard.

The first dependency structure provides an analysis as if there were two
sentences (ik heb platen gedraaid and ik heb films gekeken), using reentrancy
to indicate that the subject and main verb are shared between both conjuncts.
The dependency structure derived after post-processing shows more clearly
that the VC is actually a conjunction. The generator is currently not equipped
to reverse these post-processing steps.
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Figure 3.9: Dependency structure for Ik heb platen gedraaid en films gekeken.
before post-processing.

3.7 Conclusion

In this chapter, we gave an overview of the chart generator in the Alpino
system. Although chart generation itself is a simple and elegant algorithm,
effective top-down guidance is required to make chart generation efficient. Our
method for top-down guidance unifies the dependency structure of the initial
lexical items with parts of the abstract dependency structure that was the
input to generation. In this manner we assure that items are combined in such
a manner that only the correct dependencies are introduced.

Since the usefulness of a generator is highly dependent on the coverage of its
grammar and lexicon, the next chapter makes a short detour in techniques to
improve the coverage of a grammar and lexicon. Chapter 8 introduces methods
to improve computational lexicons and grammars. In Chapter 4 we introduce
a stochastic component to rank realizations by fluency.
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Figure 3.10: Dependency structure for Ik heb platen gedraaid en films gekeken.
after post-processing.



Chapter 4

Fluency ranking

4.1 Introduction

Chapter 3 describes a chart generator that uses the grammar and lexicon of
the Alpino system. This generator generates sentences that are supposed to
be syntactically correct. However, many of these so-called realizations of the
input would not be used by a native speaker of a language. For instance, gener-
ating from the abstract dependency structure corresponding to Harm luisterde
gisteren met Daniël naar Miles Davis ‘Harm listened yesterday with Daniël to
Miles Davis’, the generator produces 24 different realization, such as:

(1) a. Harm luisterde gisteren met Daniël naar Miles Davis
b. gisteren luisterde Harm met Daniël naar Miles Davis
c. met Daniël luisterde Harm gisteren naar Miles Davis
d. Harm luisterde met Daniël naar Miles Davis gisteren
e. naar Miles Davis luisterde Harm met Daniël gisteren

Although these realizations are syntactically correct realizations of the input,
they differ highly in what is called fluency. A sentence is said to be fluent
if it has a mix of a comprehensible syntactic structure, frequent words and
obeys conventions. As we will discuss in Chapter 5, fluency has a strong re-
lation with sentence comprehension — we often consider those sentences that
are most likely to be understood correctly, to be the most fluent. Since we
expect a generation system to produce a sentence that is comprehensible and
conventional, we also need a fluency ranker to choose a realization that is not
only grammatical, but also perceived by a human as fluent.

69
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In this chapter, we will first analyze this problem, by discussing various
aspects which play a role in the fluency of a sentence. We will argue that
these aspects are so varied in nature that a model is required that allows us to
consider potentially any characteristic of the derivation. We will first discuss
n-gram language models, which have traditionally been used to rank sentences.
It will then be shown that n-gram models cannot model all the different aspects
of fluency. We will then discuss maximum entropy modeling, which allows us to
construct models incorporating any characteristic of a derivation as a feature.
We will then discuss the features that we use in our fluency ranking model.
Finally, we discuss how we evaluate our model and provide the results of this
evaluation.

4.1.1 Different aspects of fluency

In this section, we will introduce the problem of fluency ranking more exten-
sively, by discussing different aspects or preferences that influence the fluency
of a sentence, using examples. In some examples, one realization is clearly pre-
ferred over another. In other examples, this is not as clear-cut — the preference
may depend on the domain, or the realizations may even be considered equally
fluent. Aspects of fluency that will be described are: syntactic preferences,
fixed expressions, prenominal modifiers, and conjunctions. This description is
by no means complete, but aims to show that most of these aspects are of a very
different nature — some of them can be described using straightforward rules,
others require knowledge of semantics, pragmatics, tradition, and custom.

Syntactic preferences One of the most important classes of preferences in
fluency ranking are syntactic preferences. This is expected, since sentences that
do not have a conventional syntactic structure to realize an abstract structure
can be misinterpreted or are hard to grasp.

The preference for subject fronting is one of the simplest and foremost
syntactic preferences in Dutch. In Dutch, both the subject and the direct object
can be fronted in declarative main clauses. Consider the following (syntactically
correct) realizations of an abstract dependency structure:

(2) a. De
The

baseliner
baseliner

speelde
played

ter
for

voorbereiding
preparation

op
of

het
the

Grand
Grand

Slam
Slam

één
one

grastoernooi.
grass-tournament.

b. Eén grastoernooi speelde de baseliner ter voorbereiding op het
Grand Slam.
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Although both realizations are permitted in Dutch, the first realization, which
fronts the subject, is clearly preferred. The second realization would only be
used to emphasize that the baseliner only played ‘one grass tournament’.

In the preceding example, fronting of the direct object does not lead to
misinterpretation, since we know that a grass tournament cannot play, hence
it cannot be the subject of speelde. Direct object fronting becomes outright
confusing for a reader if it is not possible to discern the subject and the direct
object, other than by their position in the sentence. For example, the second
realization in the following example will give a reader the impression that ‘Van
’t Klooster’ and ‘Milliard’ hit a ball, rather than ‘Gumbs’ and ‘Balentina’:

(3) a. Gumbs
Gumbs

en
and

Balentina
Belentina

sloegen
hit

Van
Van

’t
’t

Klooster
Klooster

en
and

Milliard
Milliard

over
over

de
the

thuisplaat
home-plate

(5-3).
(5-3).

Gumbs and Belentina’s hits made it possible for Van ’t Klooster
and Milliard to pass the home plate. (5-3)

b. Van ’t Klooster en Milliard sloegen Gumbs en Balentina over
de thuisplaat (5-3).

Another example of a syntactic preference in fluency is modifier adjunction. If
a verb in a verb cluster is modified, we generally prefer left-adjoining modifica-
tion. For instance, the first of the following realizations is preferred, because in
de vermakelijke en chaotische eindfase is on the left side of the verb voorkomen
in the VC.

(4) a. Ze
They

konden
could

de
the

gevreesde
feared

massasprint
mass-sprint

in
in

de
the

vermakelijke
enjoyable

en
and

chaotische
chaotic

eindfase
end-phase

niet
not

voorkomen.
prevent.

b. Ze konden de gevreesde massasprint niet voorkomen in de vermake-
lijke en chaotische eindfase.

The last syntactic preference in fluency that we discuss is ordering in the middle
field. Dutch is a language with a verb-second word order, where the second
constituent of declarative main clauses is always a finite verb. For example:

(5) a. Ik
I

heb
have

Jan
Jan

gisteren
yesterday

gesproken
spoken-to

b. Gisteren heb ik Jan gesproken
c. Jan heb ik gisteren gesproken
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The usual analysis of this phenomenon is that Dutch sentences have an SOV
(subject-object-verb) order, where the finite verb moves to the second position
in declarative main clauses.

The constituents between the verb in the second position and the remaining
verbs in the verb cluster in the final position are said to form the middle field.
We repeat the examples above, marking the middle field:

(6) a. Ik heb Jan gisteren gesproken
b. Gisteren heb ik Jan gesproken
c. Jan heb ik gisteren gesproken

If the verb in the second constituent position is not an auxiliary verb, the VC
at the end of the sentence is empty. Still, the material between the verb and
the VC gap is considered to be the middle field. For instance:

(7) a. De
The

twee
two

giganten
giants

schudden
shake

elkaar
each-other

glimlachend
smiling

de
the

hand.
hand.

There is some freeness in the ordering of constituents in the middle field. For
instance, the following realizations use different orderings of the middle field
that are considered syntactically valid:

(8) a. De
The

Amerikaanse
American

vereniging
association

van
of

psychologen
psychologists

had
had

het
it

een
a

jaar
year

daarvoor
before

aan
to

de
the

leden
members

gevraagd.
asked.

The American association had asked its members a year before.
b. De Amerikaanse vereniging van psychologen had een jaar daar-

voor het aan de leden gevraagd.
c. De Amerikaanse vereniging van psychologen had het aan de leden

een jaar daarvoor gevraagd.

The second and third realizations would be considered less fluent than the first.
In other words, there are ordering preferences in the middle field: the direct
object should be positioned in front of the indirect object and modifiers and
it is preferred to put a modifier such as een jaar daarvoor before the indirect
object.

In the following example, the verb in the verb-second position is not an
auxiliary verb. Again, the middle-field in the first realization is the most fluent:

(9) a. De twee giganten schudden elkaar glimlachend de hand.
b. De twee giganten schudden elkaar de hand glimlachend.
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c. De twee giganten schudden glimlachend elkaar de hand.

Fixed expressions For the syntactic aspects of fluency, it is conceivable to
pick the best realization using a set of rules that encode these preferences.
However, the other aspects that we discuss cannot be captured with relatively
straightforward rules. For instance, consider the following sentence:

(10) a. In
In

plaats
place

daarvan
thereof

verdween
disappeared

Locci’s
Locci’s

echtgenoot
husband

Stefano
Stefano

Mele
Mele

voor
for

veertien
fourteen

jaar
years

achter
behind

slot
lock

en
and

grendel.
latch.

(Instead, Locci’s husband Stefano Mele dissapeared behind bars
for fourteen years.)

Another realization that the Alpino generator produces is:

(11) a. In plaats daarvan verdween Locci’s echtgenoot Stefano Mele voor
veertien jaar achter grendel en slot.

However, this would not considered be fluent in Dutch — although slot en
grendel may look like an ordinary conjunction, achter slot en grendel is a fixed
expression for (something or someone) being locked up. Since fixed expressions
are frequent in language, a component that makes decisions about fluency
should not only take syntactic preferences into account, but should also have
knowledge of a wide variety of fixed expressions.

Prenominal modifiers Given that fixed expressions do not follow general
rules, but occur relatively frequently, we could simply collect a list of fixed
expressions and use that list to wield out incorrectly realized variants of fixed
expressions. However, there are also surface-oriented preferences that we can-
not judge in such a manner. For instance, the ordering of prenominal modifiers
affects fluency, but cannot be described using relatively simple rules, nor can
we enumerate every possible ordering. For instance, the prenominal modifiers
marked in the following sentences cannot be swapped without impacting flu-
ency:

(12) a. Jean
Jean

Paul
Paul

de
de

Bruijn
Bruijn

is
is

de
the

nieuwe
new

Europese
European

kampioen
champion

bandstoten.
cushion-caroms.
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b. Djindjic
Djindjic

zei
said

dat
that

dit
this

weekeinde
weekend

in
in

reactie
reaction

op
to

de
the

ernstige
severe

politieke
political

crisis
crisis

in
in

Joegoslavië.
Yugoslavia.

c. Ook
Also

verschillende
several

regionale
regional

ministers
ministers

uit
from

Vlaanderen,
Flanders,

Wallonië
Wallonia,

en
and

Brussel
Brussels

mogen
may

meedraaien
participate

in
in

het
the

circus.
circus.

It could be argued that the adjective describing the most defining property
tends to be the closest to the noun. For instance, politieke crisis provides
more information than ernstige crisis. However, this does not always seem to
be the case. For instance, the first of the following two realizations would be
considered more fluent:

(13) a. Ik
I

zag
saw

gisteren
yesterday

de
the

snelle
fast

gele
yellow

auto.
car.

b. Ik zag gisteren de gele snelle auto.

In this case, snelle and gele could be equally defining properties. However,
we prefer to have the color closer to the noun. It is also possible that a dif-
ferent order has a different meaning, that would ideally have different input
representations:

(14) a. Zijn
His

twintigste
twentieth

fantastische
fantastic

goal.
goal.

b. Zijn fantastische twintigste goal.

The first realization means that someone scored his twentieth fantastic goal
(out of more) and the second realization means that he scored his twentieth
goal, which was fantastic.

Given the examples above, it is not surprising that most theories that have
attempted to describe the ordering of prenominal modifiers assume a relation-
ship between semantics and position. However, it is not inconceivable that
phonetic or phonological aspects also play a role in the ordering of prenominal
modifiers.

But even if we did have an exact set of rules for ordering modifiers, based on
semantic, phonetic, and phonological features, it would be difficult to integrate
such rules in the Alpino system. Alpino’s dependency structures do not allow
us to specify the intended meaning of a noun phrase, nor does the lexicon
provide a detailed semantic description of modifiers that could help in making
ordering decisions.
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Even though we do not know the exact underlying rules for the ordering of
prenominal modifiers and dependency structures may not provide enough infor-
mation if such rules did exist, we can attempt to deduce the best ordering via
other means. For instance, modifier-noun combinations are collocations, such
as politieke partij ‘political party’, Europese kampioen’ ‘European champion’,
or regenachtige dag ‘rainy day’. Such combinations can be prioritized based
on corpus statistics. The same thing applies to combinations of prenominal
modifiers.

Conjunctions Another construction where fluency is not determined syn-
tactically are conjunctions. In many conjunctions, there is no clear preference
for a specific ordering of conjuncts. In the following sentence, we can swap the
conjuncts Zenit Sint Petersburg and Spartak Moskou without a loss of fluency.

(15) a. Tijdens
During

de
the

competitiewedstrijd
competition-game

tussen
between

Zenit
Zenit

Sint
Saint

Petersburg
Petersburg

en
and

Spartak
Spartak

Moskou
Moscow

liep
went

het
it

uit de hand.
out of hand

(Things got out of hand during the competition game between
Zenit St. Petersburg and Spartak Moscow.)

However, often the order of conjuncts is important. For instance, the following
sentence has two time spans described using the conjunctions 28 uur en 45
minuten ‘28 hours and 45 minutes’ and 27 uur en 30 minuten:

(16) a. Sterry
Sterry

wist
knew

het
the

preken
speaking

28
28

uur
hour

en
and

45
45

minuten
minutes

vol te houden,
persist,

het
the

oude
old

record
record

staat op
is

27
27

uur
hour

en
and

30
30

minuten.
minutes.
(Sterry was able to persist in speaking for 28 hours and 45
minutes, the previous record was 27 hours and 30 minutes.)

The following realization of the same abstract dependency structure would be
considered odd:

(17) Sterry wist het preken 45 minuten en 28 uur vol te houden, het
oude record staat op 30 minuten en 27 uur.

The rule in such conjunctions is that we prefer to see larger units before smaller
units (ie. ‘ten meters and five centimeters’). Usually, a comparable rule applies
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to conjunctions where the conjuncts are numbers such as years or quantities.
For example, it would be odd to realize zestig en zeventig as zeventig en zestig
in the following sentence:

(18) a. In
In

de
the

jaren
years

zestig en zeventig
sixty and seventy

maakte
made

Roos
Roos

naam
name

met
with

een
a

persoonlijk
personally

getinte
tinted

human-interest-pagina.
human-interest-page.

(In the sixties and seventies Roos became known for a personal
human-interest page.)

Another situation where conjuncts cannot be ordered randomly, is when there is
a relation between the conjuncts that requires the conjuncts to have a particular
order. For instance, if a conjunction contains co-references, the referent should
be introduced first. In other words,

(19) a. Hij
He

plukt
reaps

een
a

handvol
handful

graan,
cereal,

bekijkt
looks-at

het
it

met
with

een
a

zuur
sour

gezicht
face

en
and

legt
explains

uit
why

waarom
the

de
harvest

oogst
this

dit
year

jaar
bad

slecht
will

zal
be.

zijn.

is a fluent sentence, while

(20) a. Hij bekijkt het met een zuur gezicht, plukt een handvol graan en
legt uit waarom de oogst dit jaar slecht zal zijn.

is not.

The relation between the conjuncts can also be temporal. In such cases
there are often no direct indicators that could help deciding on an order. For
example:

(21) a. Ze
She

pakt
takes

een
a

pen,
pencil,

schrijft
writes

een
a

notitie
note

en
and

roept
calls

een
a

bode.
messenger.

In many such cases, the input representation used by the generator should pro-
vide the means to encode phenomena such as co-references, temporal relations,
or conjunction order.
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4.1.2 Stochastic models for fluency ranking

As we can see in the examples in the previous section, a practical generation
system cannot present a random realization. Instead, realizations should be
ranked by fluency, and the most fluent realization(s) should be presented to
the user of the system. Such a component should be of a stochastic nature —
although the most likely realization may be the most fluent, in some circum-
stances another realization is picked by the speaker. In other words, a fluency
ranking component should provide a probability distribution over all possible
outcomes.

In the next section, we will discuss n-gram language models, which estimate
the probability of a realization based on the sentence or a simple abstraction
thereof, such as the sequence of part-of-speech tags. As we will argue, n-gram
models can ‘eliminate’ many realizations that are not fluent. However, some
other aspects, such as syntactic preferences, cannot be judged adequately by
n-gram models. We will discuss conditional maximum entropy models, which
allow us to integrate arbitrary characteristics of a realization, in Section 4.3.

4.2 N-gram language models

4.2.1 Model

One approach to choose the best of a set of generated realizations is choosing
the realization that occurs most frequently within human-written texts in the
domain that is targeted by the generator (e.g. newspaper text). If we assume
that human writers attempt to produce sentences that are as fluent as possible
for that domain and ignore the relation between the input and the generated
sentence, this approach would select a fluent sentence.

Obviously, this method is also naive. Since any sample of language that is
used for such counting is finite and the number of possible realizations is infinite,
most realizations will never occur in a particular sample. In other words, the
data is too sparse to make a good estimation of the relative frequencies of
realizations. To give a simple example, the sentence Komt deze zin voor in
Wikipedia? (Does this sentence occur in Wikipedia? ), does not occur in the
Dutch Wikipedia encyclopedia. Consequently, we are not able to estimate the
fluency of this perfectly fluent sentence.

The intuition that sentences or fragments that occur frequently are likely to
be fluent, however, has been used quite effectively in fluency ranking. Knight
and Hatzivassiloglou [1995] proposes to use language models in generation to
select the most fluent sentence from a set of candidate realizations. Language
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models estimate the probability of a sentence based on n-grams.1

A language model model can be obtained as follows. The relative frequency
of a sentence in a corpus is an estimate of the probability of that outcome of
the random variable.

p(wn
1 ) =

C(wn
1 )

N
(4.1)

Where wn
1 are the tokens (w1, w2...wn) in a sentence. The chain rule allows us

to calculate the joint probabilities from conditional probabilities:

p(wn
1 ) = p(w1)

n∏

i=2

p(wi|wi−1
1 ) (4.2)

Obviously, this step alone will not solve the problem of data sparseness,
since the frequency of a sentence in the sample is still required to estimate
p(wn|wn−1

1 ). If the distribution of a word wn+1 only depended on the preceding
word wn, then sentence generation would be a Markov chain [Markov, 1954].
We could then calculate the probability of a sentence as follows:

p(wn
1 ) = p(w1)

n∏

i=2

p(wi|wn−1) (4.3)

p̂(wn|wn−1) =
C(wn−1, wn)

C(wn−1)
(4.4)

where p̂(wn|wn−1) is a maximum likelihood estimation based on the training
sample. However, since the distribution of a word generally depends on other
factors, treating sentence generation as a Markov chain can (only) give an
approximation of the probability of a sentence.

Models that estimate the probability of the current word given the previous
word are called bigram models. Models with a larger context are often used
to obtain better estimations of sentence probabilities. However, increasing the
context size is a trade-off, since the data to estimate the probability of an n-
gram also becomes sparser. Hence, the length of n-grams should be chosen
by taking these factors into account. Many existing generation systems have
settled on the use of trigrams [Velldal and Oepen, 2006, White et al., 2007,
Cahill, 2009]

1Language models have a long history in computational linguistics. Goodman [2001]
provides a good survey of language modeling techniques.
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Even if the length of the context is relatively short, some n-grams may not
occur in the sample. It may be that a particular n-gram is so infrequent that
it did not occur, or worse, the n-gram contains one or more unknown words.
This is problematic, since if the n-gram has a frequency of zero, the conditional
probability of the word given its context will be zero, and finally the estimated
probability of the sentence will be zero.

Smoothing methods, which were pioneered by Lidstone [1920] and Good
[1953], attempt to solve the problem of unseen events by taking away some
probability mass from known events and reserving it for unseen events. In
other words, for any event y, p(y) += 0, in a smoothed probability distribution.

In the probability estimation of p(y|x), x, y might not occur in the training
sample. In such cases, it is inadequate to use the same smoothed probability
for p(y|x). For example, if a language model is used to estimate p(c|a, b) and
C(a, b, c) = 0, C(b, c) and C(c) may be non-zero. By exploiting probability
estimations of shorter contexts, a language model can be more effective in
estimating the conditional probability of its word.

Smoothing methods that take smaller contexts (so-called lower-order dis-
tributions) into account can be divided in two families: back-off smoothing and
interpolation smoothing. Chen and Goodman [1999] shows that both families
can be described generically, so we use their notation below. Back-off models
revert to a lower-order distribution if an n-gram did not occur in the training
sample. If τ is the computed distribution of trigrams, then back-off models
calculate the smoothed probability ṗ in the following manner:

ṗ(wi|wi−1
i−n+1) =

{
τ(wi|wi−1

i−n+1) if C(wi
i−n+1) > 0

γ(wi−1
i−n+1)ṗ(wi|wi−1

i−n+2) if C(wi
i−n+1) = 0

(4.5)

The factor γ(wi−1
i−n+1) is used to scale a lower-order n-gram probability into the

higher-order n-gram probability, to ensure that the conditional probabilities
of trigrams sum to one. Interpolation smoothing, on the other hand, always
uses the distribution of lower-order n-grams. A scaling factor is used to weigh
n-grams of different orders.

ṗ(wi|wi−1
i−n+1) = τ(wi|wi−1

i−n+1) + γ(wi−1
i−n+1)ṗ(wi|wi−1

i−n+2) (4.6)

Since n-gram language models have been shown to work quite effectively
[Knight and Hatzivassiloglou, 1995], they have been used in other work exclu-
sively as a fluency ranking components [Langkilde and Knight, 1998, Langkilde,
2000, Langkilde-Geary, 2002, White, 2004].
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4.2.2 Implementation

Our n-gram language models for fluency ranking use trigrams, which provide
a good trade-off between data availability and use of contextual information.
For smoothing, we use a very straightforward version of linear interpolation
smoothing:

ṗ(w3|w1, w2) = τ(w3) + τ(w3|w2) + τ(w3|w1, w2) (4.7)

Each distribution is estimated using the empirical distribution in the train-
ing sample and a context-independent weight:

τ(w3) = λ1 · p(w3)
τ(w3|w2) = λ2 · p(w3|w2)
τ(w3|w1, w2) = λ3 · p(w3|w1, w2)

The weights are estimated using deleted interpolation [Jelinek, 1980, Brants,
2000]. Deleted interpolation successively removes each trigram from the corpus,
and chooses λs such that the likelihood of the training data is maximized.
Algorithm 6 describes how the parameters are estimated from the training
sample, following Brants [2000].

Algorithm 6 Algorithm for estimating the parameters in linear interpolation
smoothing. Here N is the size of the corpus.

λ1, λ2, λ3 ← 0
for all wn

n−2 ∈ Corpus do

p3 ←
C(wn

n−2)−1

C(wn−1
n−2)−1

p2 ←
C(wn

n−1)−1

C(wn−1)−1

p1 ← C(wn)−1
N−1

if p3 > p1 and p3 > p2 then
λ3 ← λ3 + C(wn

n−2)
else if p2 > p1 then

λ2 ← λ2 + C(wn
n−2)

else
λ1 ← λ1 + C(wn

n−2)
end if

end for
normalize(λ1,λ2,λ3)

If a word does not occur in the training sample, then the interpolated
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probabilities are all zero. We have experimented with three different approaches
to estimating the probability of such words:

1. The probability of an unknown word estimated using Laplace smoothing:
C(wi)+α

N+d , where N is the size of the training sample and d the number of
types (we use α = 0.5).

2. The probability is estimated using linear interpolation, where the word
is replaced by a generic unknown word tag in the estimation of p(w3|w2)
and p(w3|w1, w2). The probability of p(w3) is estimated using Laplace
smoothing, since the generic unknown word tag overestimates the prob-
ability of an unknown word.

3. As (2) with the addition that the word is also replaced by the generic
unknown word tags when the word occurs in the context of known words.

For (2) and (3) we replace low-frequent words by a generic unknown word
tag to obtain the distribution of unknown words.

We report on experiments with these approaches in Section 4.7.1.
We also experimented with the modified Kneser-Ney (linear interpolation)

smoothing [Chen and Goodman, 1999]. However, since this method did not
perform better than linear interpolation smoothing with deleted interpolation
in our setup (as reported in Section 4.7.1) and we already used linear interpo-
lation smoothing in our system, we do not use it in later experiments.

4.2.3 Disadvantages

While n-gram models are simple and fast, they have some deficiencies that
make it impossible to pick up some important cues that indicate fluency. First
of all, n-gram models cannot capture dependencies that go beyond an n − 1
span of history. Moreover, even dependencies within this span are often not
taken into account due to data sparseness. A more general, related, problem
is that n-gram models are purely surface-based. They cannot integrate struc-
tural information about the realization process, such as characteristics of the
derivations that are built up during sentence realization. Such structural in-
formation is required to learn the syntactic preferences that were discussed in
Section 4.1.1. For instance, to express the preference for object fronting in
the general case, we need access to the attribute-value structures that were
constructed by the grammar during parsing to get information about the de-
pendents of the finite verb. Another, less obvious example are the conjunctions
that were also described in that section. In the sentence,
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(22) a. Sterry wist het preken 28 uur en 45 minuten vol te houden, het
oude record staat op 27 uur en 30 minuten.

it helps tremendously if we can recognize the conjunction and its conjuncts.
While n-gram language models are clearly too limited to effectively perform

fluency ranking on their own, they do settle a lot of local choices effectively.
For example:

• Given a pair of synonyms, a language model will prefer the word that is
more frequent within the domain of the training sample.

• A language model will often eliminate incorrect realizations of fixed ex-
pressions. For instance, the fixed expression appels en peren vergelijken
(lit: ‘apples and pears comparing’, ‘comparing apples and oranges’) will
be preferred over peren en appels vergelijken.

• Language models can settle superficial syntactic choices. For instance,
while they cannot settle subject-fronting in general, it does prefer subject
fronting in cases when pronouns are used. The n-gram model will prefer
realizations starting with a pronoun in the nominative case over sentences
starting with a pronoun in the accusative case.

Given that n-gram models do settle many interesting local choices, we use
two n-gram models as features in the maximum entropy model that we discuss
in the next session.

4.3 Maximum entropy modeling

4.3.1 Introduction

As discussed in the previous section, a serious drawback of n-gram language
models is that they cannot incorporate structural information to judge the flu-
ency of a realization. Also, language models attempt to estimate the probability
of a sentence in a language using a sample. However, in fluency ranking we
are actually more interested in the best realization of the abstract dependency
structure, which may not be the same. For instance, the first of the following
two sentences may be the most likely according to a language model:

(23) a. De
The

burgemeester
mayor

maande
urged

de
the

SP
SP

tot
to

spoed.
hurry.

b. De SP maande de burgemeester tot spoed.
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However, if the input specifies that de SP is the subject of the sentence, the
second sentence is a more fluent realization of the input. If l is the input
to generation, we are interested in the sentence s that maximizes p(s|l). For
simplicity and efficiency, we use an approximation (similar to Viterbi approx-
imation in speech recognition); if Ω(l) is the yield of l, we want to find the
derivation d ∈ Ω(l) that maximizes p(d|l).

We cannot directly estimate the conditional probability p(d|l), since most
inputs and derivations do not occur in the training data. Instead, derivations
can be decomposed in the form of potentially interesting features.2 Each feature
is associated with a real-numbered value that can encode a boolean, frequency,
probability, etc. by convention. Some examples of value types are shown in
table 4.1.

Type Feature Value Description
Boolean syntactic(subj np topic) 1 The realization has a topicalized

NP subject.
Frequency rule(np det n) 2 The grammar rule with identi-

fier np det n is used twice in this
derivation.

Probability word trigram distribution 64.3 −log p(wn
1 ) equals 64.3

Table 4.1: Examples of different types of feature-value pairs.

If we want a model for p(d|l) to be able to use arbitrary features, it is
difficult to guarantee that features are independent. For instance, a syntactic
phenomenon that signals that a phrase is fluent could be modeled concretely
through n-grams, or more abstractly by the use of certain grammar rules.
Consider the following realizations of a dependency structure:

(24) a. Het
It

is
is

zeker
certain

dat
that

hij
he

komt.
comes.

b. Zeker is het dat hij komt.

The fact that the first realization is more fluent than the second could be
described syntactically: fronting of the subject is preferred over fronting of the
predicative complement. However, the language model might also encode such
preferences indirectly: it could prefer Het at the start of the sentence over
Zeker at the start of the sentence. Also, Het is and is zeker are more frequent
than Zeker is and is het respectively.

2The term feature in this context should not be confused with the term feature in attribute-
value grammars, which is sometimes used as a synonym of attribute.



84 CHAPTER 4. FLUENCY RANKING

Since it is hard to craft complex models while maintaining feature inde-
pendence, it is strongly preferable to use a feature-based model that does not
assume feature independence. One such class of models are maximum entropy
models. Maximum entropy models have been shown to be effective for fluency
ranking by Velldal et al. [2004]. In Velldal [2008], maximum entropy models
are compared with support vector machines (SVM). However, it is shown that
the best SVM model does not outperform the best maximum entropy model
for fluency ranking.

The following sections give a short description of conditional maximum
entropy models, roughly following Berger et al. [1996]. First, we look at how
feature-value pairs in the training sample are used in the form of constraints
during the optimization of the model, making the model mirror the training
sample as much as possible. Then we will see how the principle of maximum
entropy can be used to pick the model with the least assumptions.

4.3.2 Feature value constraints

If feature-value pairs are used to characterize derivations, we are interested in
the distribution of features in fluent and non-fluent sentences. If L is the set of
abstract dependency structures in the training sample, fi(l, d) the value of the
feature fi in derivation d of the abstract dependency structure l, and p̃(l, d)
the joint probability of l and d, then the value of fi in the training sample is:

Ep̃(fi) =
∑

l∈L

∑

d∈Ω(l)

p̃(l, d)fi(l, d) (4.8)

We want to construct a model such that the model generates the training
sample. In other words, for a given feature, its expected value should equal its
value in the training data,

Ep(fi) = Ep̃(fi) (4.9)

where the expected value of fi, Ep(fi), is defined as

Ep(fi) =
∑

l∈L

∑

d∈Ω(l)

p̃(l)p(d|l)fi(l, d) (4.10)

Note that a conditional model only estimates the probability p(d|l), so p(d|l)
is multiplied by the empirical p̃(l) to obtain the joint probability of l and d
(given that p(l, d) = p(l)p(d|l)).

During the optimization of the model, the constraint in Equation 4.9 is
applied to each feature fi in the set of all features F .
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If P is the set of all possible models, F the set of features, we can de-
fine a restricted set of models C containing only those models wherein feature
constraints are satisfied:

C ≡ {p ∈ P | ∀fi∈F [Ep(fi) = Ep̃(fi)]} (4.11)

Section 4.3.6 discusses how the empirical probabilities p̃(l) and p̃(l, d) are
calculated.

4.3.3 The principle of maximum entropy

Since the set C normally consists of an infinite number of models, an additional
criterion is required to select the best model. This is where the principle of
maximum entropy [Jaynes, 1957a,b] becomes useful. This principle states that
of the models that are possible given a set of constraints, the model that is the
most uniform ought to be selected. The most uniform model is of particular
interest, because it does not make any additional assumptions besides those
that are implied by the training data.

The uniformity of a model is measured by its entropy - the entropy reaches
its maximum in the uniform model. Consequently, of all the models in C, we
are interested in the model that maximizes entropy. If H(p) is the entropy of
model p, we pick p such that:

argmax
p∈C

H(p) (4.12)

4.3.4 Parametric form

Picking the model in C that maximizes entropy is a constrained optimization
problem. Such problems can be solved by introducing Lagrange multipliers to
transform them into unconstrained optimization problems. Using this transfor-
mation we can derive the parametric form of maximum entropy models [Berger
et al., 1996]:3

p(d|l) = 1

Z(l)
exp

|F |∑

i=1

θifi(l, d) (4.13)

Here 1
Z(l) is a normalizer over the yield of l to ensure that

∑
d∈Ω(l) p(d|l) = 1:

3Plank [2011] provides a derivation of the parametric form.
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Z(l) =
∑

d∈Ω(l)

exp

|F |∑

i=1

θifi(l, d) (4.14)

The corresponding dual function and the unconstrained dual optimization
problem are:

Ψ(θ) = −
∑

l∈L

p̃(l) logZ(l) +
∑

fi∈F

θip̃(fi) (4.15)

θ∗ = argmax
θ

Ψ(θ) (4.16)

4.3.5 Maximum likelihood estimation

Optimization of the unconstrained optimization problem can also be seen as
maximum likelihood estimation. The log-likelihood of the distribution p̃ as
predicted by the model p is:

L(p) ≡
∑

l∈L

∑

d∈Ω(l)

p̃(l, d) log p(d|l) (4.17)

It can be shown [Berger et al., 1996] that the dual function Ψ(θ) is in fact
the log-likelihood of the model p.

4.3.6 Empirical probabilities

Calculating Ep(fi) and Ep̃(fi) (Section 4.3.2) requires the estimation of p̃(l)
and p̃(l, d) with respect to the training sample. The methods that have been de-
scribed in the literature can be divided broadly in two approaches: (1) methods
that divide the probability mass of the joint distribution between all deriva-
tions, proportionally to a quality metric; and (2) methods that put all the
probability mass of the joint distribution on the correct derivation(s). Since
the correct derivation may not always be available in the training data, the
methods that follow the latter approach can be relaxed such that they put
the probability mass on the best available derivation(s) according to a quality
metric. In the literature, at least three methods are described for estimating
p(l) and p(l, d):

1. Uniform inputs: Each input is equally probable. Each derivation takes
a part of the input probability, proportionally to its quality score [Os-
borne, 2000]:
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p̃(l) =
1

|L| p̃(l, d) = p̃(l)
score(l, d)∑

d′∈Ω(l) score(l, d
′)

(4.18)

2. Weighted inputs: The probability of an input is proportional to the
sum of the score of its derivations [van Noord and Malouf, 2005]:

p̃(l) =

∑
d∈Ω(l) score(l, d)∑

l′∈L

∑
d∈Ω(l′) score(l

′, d)

p̃(l, d) = p̃(l)
score(l, d)∑

d ∈Ω(l) score(l, d
′)

(4.19)

This is a variation of the first method. The motivation of [van Noord
and Malouf, 2005] is to give more weight to inputs with higher quality
derivations.

3. Uniform inputs with binary events: Each input is equally probable.
The input probability is shared between the highest-scoring derivations
[de Kok et al., 2011]. Let j(l, d) be a function which returns 1 if the
derivation d is the best-scoring derivation of l, and 0 if it is not. Then:

p̃(l) =
1

|L| p̃(l, d) = p̃(l)
j(l, d)

Σd′∈Ω(l)j(l, d′)
(4.20)

Another natural variation on these three methods is:

4. Weighted inputs with binary events: The probability of an input is
weighted by the number of derivations with the highest score. Let j(l, d)
again be a function that gives binary scores to derivations, then:

p̃(l) =

∑
d∈Ω(l) j(l, d)∑

l′∈L

∑
d∈Ω(l) j(l, d)

(4.21)

p̃(l, d) = p̃(l)
j(l, d)

Σd′∈Ω(l)j(l, d′)
(4.22)
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A different approach, that we did not evaluate, is to optimize directly over
the set of correct (or best) derivations, as proposed by Riezler et al. [2002]. In
that work, a model is trained to maximize the function

∑

l∈L

log(p(∀d∈Ω(l)j(l, d) ≡ 1|l)) (4.23)

This is similar to the third method above, in that it assumes a uniform distri-
bution of inputs and puts all the probability on the correct derivations.

In Section 4.7.3 we evaluate the practical impact of these four methods for
estimating empirical probabilities.

4.3.7 Parameter estimation

To find the model that maximizes the log-likelihood with respect to the training
data, an optimization method is required. Malouf [2002] provides a survey of
six commonly used methods, applied to natural language processing tasks:
Generalized Iterative Scaling [Darroch and Ratcliff, 1972], Improved Iterative
Scaling [Berger et al., 1996, Della Pietra et al., 1997], steepest ascent [Cauchy,
1847], two variants of conjugate gradient [Fletcher and Reeves, 1964, Polak and
Ribiere, 1969], and limited memory variable metric [Benson and Moré, 2001].
Malouf finds that the limited memory variable metric outperforms the other
methods by a substantial margin.

In this work, we use the L-BFGS optimization method [Nocedal, 1980, Liu
and Nocedal, 1989]. L-BFGS, like the limited memory variable metric, belongs
to the family of limited-memory quasi-Newton methods. Since L-BFGS cannot
apply !1 regularization (Chapter 6), we use an extension of L-BFGS named
OrthantWise Limited-memory Quasi-Newton (OWL-QN) that also supports
!1 regularization [Andrew and Gao, 2007].

L-BFGS attempts to solve the minimization problem F (θ), and requires
that F (θ) and its gradients G(θ) are computable. As discussed in Section 4.3.5,
the model in C that maximizes entropy is a model in the parametric family p(d|l)
that maximizes the likelihood of the training sample. Consequently, when using
a minimization algorithm, we have to minimize the negative log likelihood:

F (θ) = −Lp̃(p) (4.24)

L-BFGS also requires the gradient of the objective function. The gradient
of L(p) with respect to the parameter θi is [Malouf, 2002]:

G(θi) = Ep̃(fi)− Ep(fi) (4.25)
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4.3.8 Regularization

As discussed in Section 4.3.5, optimization of the parametric maximum entropy
model can be seen as maximum likelihood estimation. As other maximum like-
lihood estimators, parameter estimation of maximum entropy models is prone
to overfitting to the training data [Chen and Goodman, 1999]. This overfit-
ting results in extreme positive or negative weights, that negatively impact the
performance of the model.

Regularization is often applied during parameter estimation to avoid over-
fitting. If F (θ) is the objective function that is minimized during training, a
regularizer ωq(θ) is added as a penalty for extreme weights [Tibshirani, 1996]:

C(θ) = F (θ) + ωq(θ) (4.26)

The regularizer has the following form, where q ≥ 0:

ωq(θ) = λ
n∑

i=1

|θi|q (4.27)

Setting q = 2 in the regularizer gives a so-called !2 regularizer:

ω2(θ) =
1

2σ2

F∑

i=1

θ2i (4.28)

This regularizer amounts to imposing a Guassian prior distribution on the
parameters with a mean of zero and a variance of σ2 [Chen and Goodman,
1999]. Since the Gaussian distribution only has very little of its probability
mass in the tails, the !2 regularizer protects against extreme parameters.

Regularization with q = 1 will be discussed in Chapter 6.

4.3.9 Application

In order to estimate the parameters of the model, we use maximum entropy
modeling in the parametric form. However, in the application of maximum
entropy models a simpler equation is commonly used (e.g. Geman and Johnson
[2002] and Velldal and Oepen [2005]). Observe that the normalizer Z(l) is
constant for each d ∈ Ω(l), and also a > b ⇐⇒ ea > eb. So, if we are only
interested in the ordering of derivations, rather than their actual probabilities,
we can use a simpler scoring function:

score(d|l) =
|F |∑

i=1

θifi(l, d) (4.29)
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4.4 Features

Since a maximum entropy model ranks realizations based on feature values, we
have to settle on a set of features that can adequately describe characteristics
of derivations of fluent sentences. Features for fluency ranking can be divided
into two classes [de Kok and van Noord, 2010]: (1) Output features that de-
scribe aspects of the produced sentence, such as the probability of a sentence
according to a language model. (2) Construction features that describe aspects
of the derivation that constructed the sentence, such as how often a particular
grammar rule was used in the derivation.

While features can be hand-crafted, they are usually extracted automati-
cally by applying a template to the training or evaluation data. Such a template
can be seen as a function that takes a derivation as its input and results in a
set of features with corresponding values. As in other fluency rankers [Velldal
et al., 2004, Velldal and Oepen, 2006, Cahill et al., 2007], (nearly) all construc-
tion features were inherited from an existing parse disambiguation component;
in our case, the parse disambiguation component of the Alpino parser [van
Noord, 2006].

One important difference between our ranker and the ranker described by
Velldal et al. [2004] and Velldal and Oepen [2006] is abstraction level of the
construction features that are produced. The former works use features that
enumerate local derivation subtrees. However, as in Cahill et al. [2007], we
complement local derivation subtrees with deeper and more global syntactic
features from the attribute-value structures in the derivation. This has the
effect that we can improve the model by making informed decisions about
global syntactic phenomena, such as subject fronting, ordering in the middle
field, and long distance dependencies. This difference is not accidental, since
Velldal’s realizer was developed for English, while our realizer and that of Cahill
et al. [2007] were developed for other Germanic languages, which have a freer
word order. While such features provide more information about the fluency
of a sentence, they reduce the effectiveness of best-N unpacking (Section 4.5).

The performance of a fluency ranking model can be improved considerably if
generation-specific output features are added, as shown by Velldal et al. [2004].
For this reason, we also include surface-oriented features in our model.

In this section, we first describe the features that are used in the Alpino
fluency ranking model. We will then give a short comparison with the set of
features described in detail in Velldal and Oepen [2006].

Language models A language model over word trigrams is used as an aux-
iliary distribution [Johnson and Riezler, 2000] in the model. The advantage of
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using an auxiliary distribution over using trigrams directly as features, is that
in the case of an auxiliary distribution a large (unannotated) training corpus
can be used. If trigrams were integrated as separate features with their value
being the frequency of that trigram within a sentence, the weights of individ-
ual trigram features would have to be estimated within the maximum entropy
framework. Consequently, the training data would would be restricted to the
training data for the maximum entropy model.

In addition to the word trigrams language model, an auxiliary distribution
of Alpino part-of-speech tag trigrams is added as a feature. Since part-of-speech
tags provide an abstraction over words and the number of part-of-speech tags
is finite, a tag trigram distribution can ofter improve the estimation of fluency
in the presence of unknown words. Consider the following realizations:

(25) a. Barack
Barack

Obama
Obama

gebruikt
uses

een
a

tabletcomputer
tablet-computer

b. Een tabletcomputer gebruikt Barack Obama

If ‘Barack Obama’ and ‘tabletcomputer’ were unseen in the training sample,
it would be possible that a word trigram model has no (informed) preference
for either realization. Now suppose that ‘Obama’ was tagged as a proper noun
and ‘tabletcomputer’ as a noun. Since the sequence proper name - finite verb
- article is more likely than noun - finite verb - proper name, the tag trigram
model has a preference for the first realization.

Again, the use of an auxiliary distribution gives us access to far more train-
ing data. For instance, to train the tag trigram model, we used a large corpus
that was automatically annotated using Alpino’s parser.

We will now give a short example of how these features are used, and
combined in the model. Consider the following sentence

(26) a. De
The

optische
optical

astronomie
astronomy

maakt
makes

gebruik
use

van
of

zichtbaar
visible

licht.
light.

Alpino assigns the following part-of-speech tags in Table 4.2.

We use the word trigram model to estimate the probability of the sentence
and the tag trigram model to estimate the probability of the trigram sequence
determiner(de)..punct(punt). The logarithms of these probabilities then be-
come the values of the word trigram distribution and tag trigram distribution
features, respectively. As shown in Table 4.3, these values are multiplied by
the weights of the features (Section 4.3.9) that were found during the training
of the maximum entropy model. If we had no other features, the score of this
realization would be the sum of the weighted scores.
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Word Tag
De determiner(de)
optische adjective(e)
astronomie noun(de,sg,[])
maakt verb(sg3)
gebruik particle
van preposition(van)
zichtbaar adjective(no e(adv))
licht noun(het,sg,[])
. punct(punt)

Table 4.2: Part-of-speech tags assigned to the sentence De optische astronomie
maakt gebruik van zichtbaar licht.

Feature Weight (θi) Value (fi) θi · fi
word trigram distribution 0.0158 -62.70 -0.9907
tag trigram distribution 0.0115 -24.05 -0.2766
Score (

∑n
i=1 θifi) -1.2673

Table 4.3: Example output feature values for the sentence de optische as-
tronomie maakt gebruik van zichtbaar licht ‘the optical astronomy makes use
of visible light’. Each value is multiplied by the feature weight that was found
during training of the maximum entropy model. The score of the realization is
obtained by summing the weighted feature values.

As described in Section 4.2.2, both models use linear interpolation smooth-
ing to handle unknown trigrams. Laplace smoothing [Lidstone, 1920] is applied
for estimating the probability of unknown words.

Grammar rule identifiers Since some grammar rules are more likely to
be used in fluent realizations than others, the derivation tree features create a
distribution of grammar rule applications. Two types of features are used: (1)
a rule feature simply records how often a particular grammar rule is used in a
derivation, (2) a rule in context feature records how often a rule is used with
its parent. For instance, consider the small tree fragment shown in Figure 4.1.
The rule and rule in context features that have a non-zero value/frequency
in this fragment are enumerated in Table 4.4. The rule in context feature is
represented by a term that has three arguments: (1) the identifier of the rule
that was used to construct the parent; (2) the index of the parent slot that the
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rule filled, starting at 1; and (3) the rule identifier.

vp mod v

mod1a

vele jaren

optpunct(e) vproj vc

gevoetbald

Figure 4.1: A small tree fragment dominating the phrase vele jaren gevoetbald
‘many years played-soccer’.

Feature Value
rule(vp mod v) 1
rule(mod1a) 1

rule(optpunct(e)) 1
rule(vproj vc) 1

rule in context(vp mod v,1,mod1a) 1
rule in context(vp mod v,2,optpunct(e)) 1
rule in context(vp mod v,2,vproj vc) 1

Table 4.4: Rule features extracted from the tree fragment in Figure 4.1.

The rule and rule in context features are similar to the local derivation
subtree features used by Velldal et al. [2004] and Velldal and Oepen [2006]

Syntactic features The fluency ranking model also uses more abstract syn-
tactic features that originated in the parse disambiguation model. These fea-
tures have a non-zero value if a certain syntactic phenomenon occurs, by using
the relevant information in the attribute-value structure. For instance, one
such feature, syntactic(subj np topic), records the presence of a topicalized NP
subject. This feature ‘fires’ when a category in the derivation unifies with the
attribute-value structure in Figure 4.2. This structure states that if a cate-
gory has the type sv1 (a verb-first structure) and takes a nominative NP as its
slash-value, then it is a fragment with a topicalized NP subject.

Another syntactic feature template records orderings in the middle field. As
discussed in Section 4.1.1, Dutch provides some freeness in ordering the middle
field. For instance, for the examples given in that section,
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sv1

[
slash

〈

np

[
case nom

]〉]

Figure 4.2: Attribute-value structure that is used for recording a topicalized
NP subject.

Realization Middle field features
1 middle field(np(dat,pron(nwh)),mcat adv),

middle field(np(dat,pron(nwh)),np(acc,noun)),
middle field(mcat adv,np(acc,noun))

2 middle field(np(dat,pron(nwh)),np(acc,noun)),
middle field(np(dat,pron(nwh)),mcat adv),
middle field(np(acc,noun),mcat adv)

3 middle field(mcat adv,np(dat,pron(nwh))),
middle field(mcat adv,np(acc,noun)),
middle field(np(dat,pron(nwh)),np(acc,noun))

Table 4.5: Examples of mf features that capture ordering in the middle field
in three realizations.

1. De twee giganten schudden elkaar glimlachend de hand.

2. De twee giganten schudden elkaar de hand glimlachend.

3. De twee giganten schudden glimlachend elkaar de hand.

the fluency ranker extracts the middle field features in Table 4.5. We can
see that each middle field feature describes the order of a pair of categories
in the middle field. Where necessary, the category is augmented with more
information. For instance, the case of the noun phrases (accusative or dative)
is included, as well as a boolean to distinguish pronouns.

The mf feature is another example where deep and global syntactic knowl-
edge is required. We need a verb phrase to collect and provide its middle field;
we need detailed information about the categories in the middle field, such as
their case; and we need all the pairwise categories in the middle field to get a
proper estimation of the fluency of the middle field.

We discussed two syntactic phenomena that are described by features that
are more abstract than local derivation subtrees. Other syntactic phenomena
for which features are constructed are:

• Other types of fronting (NP/non-NP, subject/non-subject)
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• The presence or absence of long-distance dependencies.

• Parallelism of conjuncts in coordinations.

‘Velldal features’ Initially, we also used the feature templates that were
described by Velldal and Oepen [2006], which consist of construction features
capturing:

1. Local derivation subtrees with optional grand-parenting, with a maximum
of three parents.

2. Local derivation subtrees with back-off and optional grand-parenting,
with a maximum of three parents.

3. Binned word domination frequencies of the daughters of a node.

4. Binned standard deviation of word domination of node daughters.

However, the use of these features did not improve performance. Perhaps
this is not surprising, since templates (1) and (2) overlap with the rule and
rule in context features described above. Grand-parenting adds more context,
at the cost of data sparseness. Global preferences are captured more effectively
using abstract syntactic features.

Velldal and Oepen [2006] also describes two output templates:

1. N-grams of lexical types (n ≤ 4).

2. N-grams of lexical types (n ≤ 4), where the word corresponding to the
last type is also included.

Again, the addition of these templates did not give an improvement. This is
expected, since these templates overlap with the trigram models. Additionally,
since the trigram models are used as an auxiliary distribution, they have access
to a much larger amount of training data.

4.5 N-best unpacking

As discussed in Section 3.4, edges that share the same attribute-value structure
are stored only once with their derivation histories, to reduce memory use and
increase performance. The derivations can be unpacked when required, for
instance to apply the fluency ranking model or to extract realizations from the
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derivations. Unpacking can be relatively time consuming — every attribute-
value structure in a derivation is reconstructed. If we have access to information
with respect to fluency of a sentence, it can be used to extract the most fluent
realizations.

Such selective unpacking has been in wide use in parsing the last ten years.
For instance, Miyao and Tsujii [2002], Geman and Johnson [2002], and Clark
and Curran [2003] propose methods for unpacking the best derivations in pars-
ing using a dynamic programming algorithm. However, as van Noord and
Malouf [2005] points out, such approaches require monotonicity, in that a sub-
tree that has the highest probability locally should also be the most probable
globally. Exactly this assumption of monotonicity is not warranted in our case,
since many of our (syntactic) features are global.

As a solution to this problem, van Noord and Malouf [2005] propose to
unpack derivations using a beam instead. In this approach, the derivations of a
given item are unpacked, but only the N most probable derivations are retained.
Since this method is applied recursively, only a small subset of derivations is
constructed. The use of the N best realizations, rather than only the best,
increases the likelihood that the best parse is included. We follow this proposal
by using beam search to unpack realizations. However, in our case even local
information may not yet be available in an unpacked subtree. As discussed in
Section 2.4.4 some dependents, such as modifiers, are not immediately unified
in the attribute-value structure of a head. For instance, a head might collect
modifiers that are eventually transferred to another head. Given that such
local information is not finalized yet, purging derivations for such items is
premature. So, instead, we apply beam search only for items that are maximal
projections to assure that such local choices are settled. Algorithm 8 extends
the pseudo-code in Algorithm 2 with beam search.

4.6 Evaluation methodology

4.6.1 Treebanks

Throughout this thesis, two treebanks are used for training and evaluating
models. The newspaper part of the Eindhoven corpus,4 named cdb (corpus
dagbladen), is used for training models. This corpus consists of 7136 sentences
of 1 to 74 tokens, with an average length of 19.73 tokens. Syntactic annotations
are part of the Alpino Treebank.5

4http://www.inl.nl/tst-centrale/nl/producten/corpora/eindhoven-corpus/6-27
5http://www.let.rug.nl/vannoord/trees/

http://www.inl.nl/tst-centrale/nl/producten/corpora/eindhoven-corpus/6-27
http://www.let.rug.nl/vannoord/trees/
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Algorithm 8 Algorithm for unpacking the N best derivations for a given item.
The search beam is only applied at maximal projections, to ensure e.g. that a
head was chosen for modifiers.
function unpack(id)

histories← retrieve histories(id)
unpacked← []
for all his ∈ histories do

if is rule history(his) then
unpacked′ ← unpack rule(his)
if maximal projection(his) then

append(unpacked,n best(unpacked′))
else

append(unpacked,unpacked′)
end if

else
append(unpacked,unpack lex(his))

end if
end for
return unpacked

end function

For evaluation, we use the PPH corpus. This corpus consists of sentences
from the Trouw 2001 newspaper, that are originally from the Twente Nieuws
Corpus (TwNC).6 The PPH corpus consists of 2267 sentences of 1 to 63 tokens,
with an average length of 16.43 tokens. Syntactic annotations are part of the
Lassy Small treebank.7

During the development of the fluency ranking component, we used a differ-
ent corpus for training and evaluation. For development purposes, we created a
corpus of 20,000 sentences of 5 to 25 tokens that were randomly selected from
the Dutch Wikipedia of August 2008.8 Since no syntactic annotations were
available for this corpus, we used the best parse constructed by the Alpino
parser to find the corresponding abstract dependency structure. This provided
access to a relatively large test set of training and testing at the cost of anno-
tation errors. Since we do not use this corpus in the evaluation of the fluency
ranking component described in this thesis, this has no effect on its evaluation.

The trigram language language models are trained using the Twente Nieuws-

6http://wwwhome.cs.utwente.nl/~druid/TwNC/TwNC-main.html
7http://www.inl.nl/tst-centrale/nl/producten/corpora/lassy-klein-corpus/6-66
8http://ilps.science.uva.nl/WikiXML/

http://wwwhome.cs.utwente.nl/~druid/TwNC/TwNC-main.html
http://www.inl.nl/tst-centrale/nl/producten/corpora/lassy-klein-corpus/6-66
http://ilps.science.uva.nl/WikiXML/
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corpus,9 with the exception of the Trouw 2001 newspaper (approximately 110
million words). The training data of the tag trigram model is generated by
applying parsing the data and extracting the part-of-speech tags.

4.6.2 Preparation for fluency ranking

Each treebank consists of sentences with annotations in the form of depen-
dency structures. To train and evaluate a fluency ranking model, we need
access to the derivation of that sentence. We could generate directly from
the dependency structure to obtain the corresponding derivations. However,
it is not always possible to construct a given dependency structure using the
grammar. Conversely, it may not always be possible to generate from the gold
standard dependency structures. For this reason, the derivations that are used
for training and evaluating the fluency ranking model are created in two steps:

• Each sentence in the treebank is parsed using Alpino. The parse that
has the dependency structure with the highest correspondence to the
dependency structure in the treebank is selected.

• The best dependency structure that was found in the previous step is
used as the input to the generator. The derivation of each realization
is stored, along with a quality score that will be discussed in the next
section.

In this procedure for preparing training and testing data, we assume that
the sentence that occurs in the treebank is the most fluent realization of the
corresponding dependency structure. This may not be true, or there may
be multiple realizations that are equally fluent. Nonetheless, we expect that
writers (in this case newspaper journalists and editors) attempt to express their
thoughts as fluently as possible for the given domain.

Another assumption is that the dependency structure in the best parse of
Alpino is similar enough to the gold standard dependency structure that the
gold standard sentence can be generated. We believe that this is a reasonable
approach: if the correct dependency structure is among the parses it will be
used. If it is not, the gold standard dependency structure can probably not
be derived using the grammar, conversely it is not possible to generate from
that dependency structure. In such cases, we are more interested in obtaining
training instances that are nearly correct, than in having nothing at all.

Producing all parses and realizations is expensive in time and space for
complex inputs. For these reasons, the amount of memory that can be used

9http://wwwhome.cs.utwente.nl/~druid/TwNC/TwNC-main.html

http://wwwhome.cs.utwente.nl/~druid/TwNC/TwNC-main.html
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is set to 10GB and parsing and generation time is limited to one minute on a
Xeon E5410 2.33 GHz core. With these limits, we could extract 4187 training
instances from the cdb treebank and 1622 evaluation instances from the PPH
treebank. Table 4.6 provides more information about both data sets.

Corpus Inputs Avg. realizations Avg. realization length
cdb 4187 414.6 18.0
PPH 1622 330.5 17.1

Table 4.6: Characteristics of the cdb training set and the PPH evaluation set.

4.6.3 Realization quality

During training and evaluation, a quality estimation of each realization is re-
quired. In training, this estimation is used to select the best realization(s) when
the correct realization(s) are not available (methods (3) and (4) in Section 4.3.6)
or to estimate the empirical probability p̃(x, y) of a realization (methods (1) and
(2) in Section 4.3.6). In the evaluation, the quality score of the best realization
according to the fluency ranker is used to evaluate the ranker. Since quality
scores are an important factor during training and evaluation, it is important
to select a good scoring metric.

One of the simplest metrics for the evaluation of a fluency-ranker is the exact
match accuracy. This is simply the percentage of evaluation instances where
a fluency ranker chose the derivation with the correct sentence. It is possible
that the generator could not construct a derivation that contains the correct
sentence. In such a case, the fluency ranker would be penalized for a deficiency
in another component by the best match accuracy. The best match accuracy
is the percentage of evaluation instances where the fluency ranker chose the
derivation with the best available realization, according to some metric.

An important disadvantage of exact and best match accuracies, is that
they penalize equally the choice of a realization that is almost correct and
a realization that is outright wrong. It is better to have a metric that can
distinguish the choice of realizations in a more fine-grained manner.

Cahill [2009] examines such fine-grained metrics (BLEU, ROUGE-L, GTM,
SED, WER, and TER) in the context of a sentence generation system for Ger-
man. The metrics are compared in their correlation with human judgements.
Overall, the General Text Matcher (GTM) [Melamed et al., 2003] was found to
be the metric with the highest correlation to human judgments. Since German
is fairly similar to Dutch and the system used by Cahill [2009] uses a grammar
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formalism that is comparable to stochastic attribute-value grammar, we believe
that the outcome is applicable for our experiments.

The GTM method can best be explained by considering the relationship
between a realization and the treebank sentence in a bitext grid. Figure 4.3
shows such a grid for the imaginary realization C B A I C D E and the reference
sentence A B C D E F B A I C. The tokens that match between the strings
are marked by placing a bullet in the corresponding cell, this is called a hit. To
avoid double counting, the GTM method uses the concept of a matching. A
matching is a subset of hits in the grid, such that no hits are in the same row
or column. A maximum matching is a matching of the maximum possible size
for that bitext. The size of the maximum matching of the bitext in Figure 4.3
is 7.

The use of maximummatchings allows one to find the configuration where as
many tokens match as possible, while not double counting a token. However, in
generation, we not only want a realization to contain the tokens of the reference
sentence, it should also have those tokens in the same order. Sequences of
tokens in the realization that match with those in the reference text can easily
be detected in the bitext grid. They are characterized by diagonally adjacent
hits that run parallel to the main diagonal. Melamed et al. [2003] refers to such
diagonals as runs. Since longer common substrings are preferred over shorter
ones, GTM puts a heavier weight on longer runs, by calculating the match size
as follows:

size(M) =

√∑

r∈M

length(r)2 (4.30)

where r is a run in the matching M . Longer runs get a heavier weight due to
squaring. The score is normalized using a square root, making the maximum
possible score equal to length of the shorter of the realization and the reference.

It should be emphasized that only those hits in a run should be counted
that are in the maximum matching. So, for instance, in Figure 4.3 there are
runs (from left to right) of length 1, 2, and 4. In this case the resulting size is√
12 + 22 + 42.
The match size can be used to calculate the precision, recall, and f-score.

The General Text Matcher score is then the f-score. If C is the candidate
realization and R the reference sentence, then:

precision =
size(mm(C,R))

|C| recall =
size(mm(C,R))

|R| (4.31)

where mm(A,B) is the maximum match defined above.
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Figure 4.3: The maximum matching of a realization and a reference sentence.
This example is from Melamed et al. [2003].

4.6.4 Statistical significance

Quality scores such as GTM scores in fluency ranking or CA scores in parse
disambiguation do not have a simple distribution. Usually, there are two clus-
ters of scores, one of which is nearly normally distributed and another which
has scores that are exactly 1. This can be observed in the normal QQ-plot of
the GTM scores of the model with all features in Figure 4.4(a). Since the eval-
uation scores of all our models exhibit this property, the differences between
scores of models usually have a large number of zeros, as seen in Figure 4.4(b).

Since the scores do not have a distribution that is appropriate for a paramet-
ric test, we use the non-parametric approximate randomization test [Noreen,
1989]. Cohen [1995] provides a practical introduction to randomization tests.
In this section, we give a more formal description of exact and approximate
pair-wise randomization tests.

Exact pair-wise randomization test

The intuition behind the exact pair-wise randomization test is fairly simple.
Suppose that we have a pseudo-statistic t that compares two samples. The
null hypothesis in our case is that two models perform equally. If the null
hypothesis is true, we could simply swap pairs of scores from both samples
without a drastic effect on the statistic t.

Suppose that Sm is the sample of evaluation scores of model m and Sn
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Figure 4.4: Normal Q-Q plots for (a) the GTM scores of the model with all
features and (b) the differences in GTM scores between the model with all
features and the model with only the ngram auxiliary distributions.

that of n. If t(Sm, Sn) calculates the pseudo-statistic for Sm and Sn, we can
compute the probability p(t(Sm, Sn)) that such a score would occur. First, we
create all possible permutations of pairs in the samples Sm and Sn. If |Sm| is
the size of the samples, then the number of possible pair-wise permutations is
2|Sm|.

For a one-tailed test, we can then partition the sample permutations such
that all sample permutations (Sm′ , Sn′) for which t(Sm′ , Sn′) ≥ t(Sm, Sn) ap-
plies belong to P , while the rest belongs to Q. We can then estimate the
probability that the value of the test statistic, or a larger value, occurs by
chance:

p =
|P |+ 1

|P ∪Q|+ 1
(4.32)

For a two-tailed test, we define the sets P and R: if t(Sm′ , Sn′) ≥ t(Sm, Sn)
then the permutation is in P, and if t(Sm′ , Sn′) ≤ t(Sm, Sn) then the permuta-
tion is in R. The p-value is then:

p =
min(|P |, |R|) + 1

|P ∪R|+ 1
(4.33)
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where the desired significance level should be divided by two (to account for
both tails).

Approximate pair-wise randomization test

Unfortunately, the exact randomization test is computationally intractable for
most larger sample pairs. The approximate pair-wise randomization test applies
the same methodology to a (relatively) small sample of all possible permuta-
tions. Algorithm 9 shows the pseudo-code of this test (wherein N is the size of
the sample of permutations).

Algorithm 9 Approximate randomization test

leftCount← 0
rightCount← 0
for i = 1 . . . N do

(Sm′ , Sn′) ← ([], [])
for all pair ∈ (Sm, Sn) do

(x’,y’) ← shuffle(pair)
append(Sm′ , x′)
append(Sn′ , y′)

end for
if t(Sm′ , Sn′) ≥ t(Sm, Sn) then

rightCount← rightCount+ 1
end if
if t(Sm′ , Sn′) ≤ t(Sm, Sn) then

leftCount← leftCount+ 1
end if

end for
p← min(leftCount,rightCount)+1

N+1

In this thesis, we apply approximate randomization tests with the mean
difference of two samples as the test statistic t:

mean diff(Sm, Sn) =
Sm − Sn

|Sm| (4.34)

A note on some previous descriptions

Pair-wise approximate randomization tests have been used before to test sig-
nificance of models in related tasks, such as parse disambiguation [Riezler and
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Maxwell, 2005, Cahill et al., 2008, Plank, 2011]. We would like to point out
that the algorithms described in these works do not explicitly check whether
t(Sm, Sn) is in the left tail or right tail. Instead, they take the absolute value
of the pseudo-statistic. This has the effect that if the original test statistic
had the value β, that randomizations with a test statistic value that is at least
as extreme as β and −β are counted together. This overestimates the tailed
p-value by a factor approaching two. But since these works do not divide the
test p-value by two to obtain the critical p-value for each tail, their algorithm
accepts or rejects the null hypothesis correctly for a two-tailed test.

The problem, however, is that this approach assumes that the pseudo-
statistic has a mean µ ≈ 0 for repeated randomizations. Their algorithms
will give incorrect results when this assumption does not hold. An example
of a pseudo-statistic where µ +≈ 0 for repeated randomizations, is the ratio of
variance [Cohen, 1995] of two samples:

tvar(Sm, Sn) =
var(Sm)

var(Sn)
(4.35)

This statistic is used to test whether two models have equally consistent
performance.

Correction for comparisons with repeated tests

The performance of multiple models is often compared pairwise. If we check
the significance at a particular level, probability of an erroneous rejection of the
null-hypothesis increases. If αc is the error per-comparison and k the number
of pairwise comparisons, then the experiment-wise error is αe = 1− (1− αc)k

[Cohen, 1995]. To test significance that is experiment-wise at the 99% level,
we apply the Šidák correction [Šidák, 1967]. This correction calculates the
allowable per-comparison error as: αc = 1− (1− αe)

1
k . The Šidák test differs

from the more widely-used Bonferroni test [Dunn, 1961] in that it assumes that
individual tests are independent, but gives a stronger bound.

4.6.5 Training of the models

Language models

The language models used in our system are trained using deleted interpolation
(Section 4.2.2). Since each model is very large, we compress the models by
storing them in tuple automata [Daciuk and van Noord, 2004].

For our experiments with modified Kneser-Ney smoothing, we used MITLM10

10http://code.google.com/p/mitlm/

http://code.google.com/p/mitlm/
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to train the model. The Kneser-Ney model was compressed and applied using
KenLM.11

In both models, we discard words that occur fewer than eight times in the
training sample, and use them to model the distribution of unknown words.

Maximum entropy models

The maximum entropy models are trained by using the cdb corpus as the
training set. Each dependency structure corresponds to a training input, each
realization of that dependency structure is an event. A dependency structure
can have an enormous number of realizations. However, it turns out that
parameter estimation can be performed reliably by using an informative sample
[Osborne, 2000]. We make such a sample by randomly selecting 100 realizations
if |Ω(x)| > 100 for a particular x ∈ X.

We train each model using the TinyEst12 maximum entropy parameter
estimator, that was specifically developed for use in the Alpino system. The
experiments that are described in this chapter were conducted using TinyEst
with a !2 prior where σ2 = 1000. This provides smoothing to prevent overfitting
of the model. Chapter 6 describes further experiments with the !1 prior and
feature selection techniques.

4.6.6 Evaluation

The fluency ranking models are evaluated by applying the rankers to the PPH
corpus. For each abstract dependency structure in the evaluation data, we
let a ranker choose the best realization. Table 4.7 shows an example of such a
ranking decision. The table contains the realizations of a dependency structure
obtained by parsing the phrase de geletterdheid van de volledige bevolking wordt
geschat op 36% (the literacy of the full population is estimated to be 36% ), along
with their GTM scores, and the fluency scores assigned by a fluency ranking
model (Section 4.3.9). Here, the fluency ranking model will choose the first
realization, since it has the highest score. This realization is also the best
realization, since it has the highest GTM score.

For each ranker, we calculate the average of the GTM scores of the realiza-
tions that were chosen by that ranker to determine its performance. We also
report the best match accuracy. The realization with the highest GTM score
is considered to be the best realization.

11http://kheafield.com/code/kenlm/
12http://github.com/danieldk/tinyest

http://kheafield.com/code/kenlm/
http://github.com/danieldk/tinyest
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Realization GTM score Ranker score
de geletterdheid van de volledige
bevolking wordt geschat op 36%

1.00 -1.20

de geletterdheid van de volledige
bevolking wordt op 36% geschat

0.74 -1.56

op 36% wordt de geletterdheid van
de volledige bevolking geschat

0.65 -1.66

op 36% wordt de geletterdheid
geschat van de volledige bevolking

0.51 -1.81

Table 4.7: A fluency evaluation example for a dependency structure with four
realizations. In this case, the ranker picks the most fluent realization.

4.7 Results

4.7.1 Language models

Section 4.2.2 provided a description of the n-gram language model that is used
in the Alpino fluency ranker. We evaluate the effectiveness of three variants
of the language model described in that section, as well as the widely used
modified Kneser-Ney method.

Table 4.8 shows the performance of these four word trigram language mod-
els. As we can see, there is quite a discrepancy in the performance of the
three models that use linear interpolation. The first model uses only Laplace
smoothing for estimating the probability of unknown words, the second model
also attempts to model contextual probabilities by replacing an unknown word
by a generic unknown word marker, and the third model also uses this generic
marker when an unknown word occurs in the context of a known word. Per-
haps surprisingly, among the three models the works the best. One possible
explanation would be that the more sophisticated models attribute too much
probability to unknown words.

The differences between the best linear interpolation model and Modi-
fied Kneser-Ney smoothing are less profound: linear interpolation smoothing
achieves a higher best match accuracy, Kneser-Ney smoothing, on the other
hand, fares better in the evaluation using the GTM method.

Since the differences between the best model using linear interpolation
smoothing and that using modified Kneser-Ney smoothing are not conclusive,
and linear interpolation smoothing had previously been used in our system
[de Kok and van Noord, 2010], we continue to use n-gram models with linear
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Model Best match (%) GTM
Random 17.64 0.5519
Linear interpolation 41.52 0.6864
Linear interpolation (generic marker) 38.68 0.6761
Linear interpolation (unknowns in context) 38.19 0.6743
Modified Kneser-Ney 41.15 0.6867

Table 4.8: Performance of the word n-gram language model using linear inter-
polation smoothing with deleted interpolation and back-off smoothing using the
modified Kneser-Ney method [Chen and Goodman, 1999]. Linear interpolation
smoothing is used in three variants: the first only uses Laplace smoothing to
estimate the probability of an unknown word, the second integrates contex-
tual probabilities by replacing the unknown word by a generic unknown word
tag, the third also replaces the word by a generic unknown word tag when
estimating the probability of a known word.

interpolation smoothing in other experiments in this chapter.
We also experimented with different language models for tag trigrams, but

the differences in accuracy are much smaller. This is expected, since the tag
set is a closed and much smaller class.

4.7.2 Fluency rankers

We have evaluated three surface models: word trigrams, tag trigrams, and a
maximum entropy model that uses the n-gram models as the only features.
In the evaluation of the model of structural information, we first evaluate a
model that only uses structural features. Then, we combine both surface and
structural features. The results are shown in Table 4.9. To show the range
of possible scores, we also give the performance of random selection and the
oracle, which always selects the best realization.

Of the n-gram models, the word n-gram model outperforms the tag ngram
model (significant at p < 0.001). Training a maximum entropy model using
both models as auxiliary distributions improved performance over the word n-
gram model, although not significantly. The syntactic features by themselves
provide a fairly weak model - it only performs insignificantly better than the
tag n-gram model and is outperformed significantly by the word n-gram model.
However, adding syntactic features to a model with the n-gram models as
auxiliary distributions (all features) improved performance significantly when
comparing to the model using the n-gram distributions.

The best match accuracies for each model are also shown in Table 4.9.
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Model Best match (%) GTM
Random 17.64 0.5519
Word trigrams 41.52 0.6864
Tag trigrams 31.28 0.6336
Word and tag trigrams 43.62 0.6945
Syntactic features 33.50 0.6439
All features 51.33 0.7219
Oracle 100.0 0.8662

Table 4.9: Best match accuracies and GTM scores for fluency models incorpo-
rating n-gram language models and syntactic features from parse disambigua-
tion. The model that combines syntactic features with language models (all
features) outperforms the other models.

word trigrams tag tigrams trigrams syntactic
Word trigrams
Tag trigrams p < 0.0001
Both trigrams p = 0.0045 p < 0.0001
Syntactic p < 0.0001 p = 0.0262 p < 0.0001
All p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001

Table 4.10: Experiment-wise significance at 99% level, p < 0.001.

These scores may seem relatively low, but they should be seen as an indication
of the relative performance of each model. Since we created the training and
testing data automatically from treebanks, there was no manual verification
that the dependency structure used was the correct reading of the original
sentence. Additionally, we only have the treebank sentences as an annotation,
while there can be more than one fluent realization.

4.7.3 Empirical probabilities

Section 4.3.6 discussed four different methods to estimate the empirical proba-
bilities p̃(l) and p̃(l, d): (1) uniform inputs [Osborne, 2000]; (2) weighted inputs
[van Noord and Malouf, 2005]; (3) uniform inputs with binary events [de Kok
et al., 2011]; and (4) weighted inputs with binary events. We experimented with
these four methods to train a model with all available features. The results of
this experiment are shown in Table 4.11. As we can see, there is some benefit
in carefully selecting a method. Method (3) outperforms the other methods
substantially when comparing on best match accuracy, while the overall GTM
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score improves slightly. However, the differences in performance are not signif-
icant (at p < 0.001).

Input probabilities Best match (%) GTM
Uniform inputs 50.40 0.7178
Weighted inputs 50.46 0.7205
Uniform inputs with binary events 51.33 0.7219
Weighted inputs with binary events 51.08 0.7211

Table 4.11: Best match accuracies and GTM scores for fluency models trained
using four different methods for estimating the input probability. The model
using uniform inputs with binary events outperforms the other models.

Uniform Weighted Uniform (binary evts)
Uniform
Weighted p = 0.0842
Uniform, binary evts p = 0.0228 p = 0.3580
Weigted, binary evts p = 0.0245 p = 0.3905 p = 0.9530

Table 4.12: Experiment-wise significance at 99% level, p < 0.0017.

As we will see in the next chapter, methods (3) and (4) have another benefit,
in that they are more generic. Since the derivations are just marked as 1
(correct) or 0 (incorrect), the training data can be mixed with training data that
used another scoring function. This will be taken advantage of in Section 5.5.1.

4.7.4 Error analysis

In the previous section, we evaluated fluency ranking models using automated
methods. They give a good indication of the performance of a fluency ranker,
but do not provide an analysis of the types of errors that the ranker makes. In
this section, we discuss some of the differences between the realizations chosen
by the ranker, and the realizations that resemble the gold standard the most.
As we will see, some of the differences are errors made by the fluency ranker,
some differences are caused by limitations of the input representation, and
finally there are cases where more than one sentence can be considered fluent.

Punctuation One minor source of differences is punctuation. As we dis-
cussed in Section 3.4.2, punctuation is not specified in abstract dependency
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structures. In some cases, it is necessary to introduce punctuation to success-
fully construct a realization. Often different punctuation tokens are allowed,
leading to a situation where many realizations only differ in the punctuation
sign(s) being used. In such cases, the realization with the highest n-gram lan-
guage model score is used. In the following sentence we see that the best realiza-
tion according to the ranker (a) uses a comma as the non-optional punctuation
character, while the best realization (b) with the highest correspondence to the
gold standard uses a hyphen:13

(27) a. Hij
He

stond
stood

voor
for

de
the

naastenliefde
benevolence

maar
but

werd
became

toch
still

de
the

klos
victim

,
,

zulke
such

dingen
things

gebeuren
happen

nog
still

dagelijks.
daily.

b. Hij stond voor de naastenliefde maar werd toch de klos - zulke
dingen gebeuren nog dagelijks.

In the following example, the tendency of the generator to introduce as little
punctuation as possible reduces readability:

(28) a. Enig
Any

beroep
appeal

is
is

niet
not

mogelijk
possible

en
and

zelfs
even

het
the

parlement
parliament

mag
may

niet
not

weten
know

welke
which

bedrijven
companies

steun
support

ontvangen,
receive,

aldus
according-to

mr.-Polak,
mr.-Polak,

lid
member

van
of

de
the

Eerste-Kamer.
First-Chamber.

b. Enig beroep is niet mogelijk en zelfs het parlement mag niet weten
welke bedrijven steun ontvangen. aldus mr.-Polak, lid van de
Eerste-Kamer.

When reading this sentence, it is not immediately clear that it starts with a
quote. In a fluent realization, punctuation would be used to mark the quote:

(29) “Enig beroep is niet mogelijk en zelfs het parlement mag niet weten
welke bedrijven steun ontvangen.”, aldus mr.-Polak, lid van de Eerste-
Kamer.

Realization of words Sometimes there are multiple realizations of lexical
attribute-value structures, even if their lexical information is not underspeci-
fied. For instance, the word vóór has an alternative inflection in the Alpino
lexicon, namely voor :

13The same order is used in all the examples that follow in this section.
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(30) a. Maar
But

het
the

pleidooi
plea

voor
in-favor

heeft
has

de
the

tijd
time

niet
not

mee.
with-it.

(But the plea was not made in a favorable climate.)

b. Maar het pleidooi vóór heeft de tijd niet mee.

The following realizations contain a compound that was unknown to the lex-
icon. In such cases, the productive lexicon (Section 2.4.3) creates one variant
with and one without a hyphen that connects the compounded words:

(31) a. Eind
End

2003
2003

zouden
would

alle
all

800
800

Laurus-winkels
Laurus-shops

zijn
be

omgebouwd.
rebuilt.

b. Eind 2003 zouden alle 800 Lauruswinkels zijn omgebouwd.

Conjunctions As expected, there is a lot of variety in conjunctions, since
they are fairly frequent, and their conjuncts can assume any order. In many
cases, the ordering does not have a notable impact on fluency. We give two
examples:

(32) a. Graven,
Counts,

koningen
kings

en
and

prinsen
princes

hadden
had

een
a

orkestje
small-orchestra

tot
to

hun
their

beschikking
availability

en
and

een
a

kapelmeester
chapel-master

die
who

het
the

muzikale
musical

leven
life

aan
of

het
the

hof
royal-household

organiseerde.
organized.

Counts, kings, and princes had a small orchestra available to them,
as well as a chapel master who managed music in the royal house-
hold.)

b. Graven, prinsen en koningen hadden een orkestje tot hun
beschikking en een kapelmeester die het muzikale leven aan het
hof organiseerde.

Another example where the conjuncts can be ordered freely is:

(33) a. Pronk
Pronk

is
is

al
already

zestien
sixteen

jaar
years

minister
minister

en
and

zit
sits

al
already

dertig
thirty

jaar
years

in
in

de
the

nationale
national

politiek.
politics.

b. Pronk zit al dertig jaar in de nationale politiek en is al
zestien jaar minister.
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A difference in emphasis can be observed in these realizations: the first empha-
sizes that Pronk has been a minister for sixteen years, the second that he has
been active in politics for thirty years.

In the following example, proper ordering is required since the sentence uses
antithesis for rhetorical effect. The writer is an adult, but is put in a situation
where he has to do childish things. The rhetoric effect is (unfortunately) mostly
absent in the realization that the fluency ranker proposes:

(34) a. Ik
I

loop
am

ineens
suddenly

met
with

een
a

molentje
little-mill

dat
that

in
in

de
the

wind
wind

draait
turns

te
to

zwaaien
wave

en
and

ik
I

ben
am

allang
so-long

volwassen.
adult.

(I have been adult for a long time and suddenly I am waving with
a small mill that spins in the wind.)

b. Ik ben allang volwassen en ineens loop ik met een molentje te
zwaaien dat in de wind draait.

There are almost no cues in the sentence that could help the ranker to give the
correct order of conjuncts, except perhaps the word ineens ‘suddenly’.

Equally difficult are conjunctions that form a sequence of instructions. The
following realization is part of a recipe, although the fluency ranker chose a
realization with an incorrect order of instructions:14

(35) a. Dek af,
Cover,

laat
let

anderhalf
one-and-a-half

uur
hour

pruttelen
simmer

en
and

giet
pour

er
there

dan
then

genoeg
enough

water
water

zodat
such-that

alles
everything

net
just

onder
under

staat
water

bij.
into.

(Cover, let it simmer for one and a half hour and pour enough
water such that everything is drenched.)

b. Giet er dan genoeg water bij zodat alles net onder staat, dek af
en laat anderhalf uur pruttelen.

In this example, a human would be able to deduce the correct order of instruc-
tions — we know that you should not cook something for one and a half hour
before adding water. However, such knowledge is not available to the fluency
ranker. It is not hard to think up comparable examples where even humans
cannot deduce the correct ordering of conjuncts.

Many of these ‘errors’ are not choices that the ranker could realistically
decide on. The abstract representation, on the other hand, currently lacks the

14The word bij should also be placed after water.
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possibility to impose a particular order in conjunctions.

Modifier fronting As we discussed previously, subject fronting in Dutch is
preferred over direct object fronting. However, it turns out that in many cases
the fronting of a modifier is considered to be fluent as well. In Table 4.13 we
list the five most frequent dependency relations in the vorfeld (the constituent
positioned before the inflected verb in a main clause) in the Eindhoven corpus.
This shows that direct object fronting is indeed rare, but also that modifier
fronting occurs fairly frequently.

Relation Frequency %
Subject 4310 60.52
Modifier 2150 30.19
Direct object 161 2.26
Predicative complement 124 1.74
PP of a prepositional verb 98 1.38

Table 4.13: Dependency relation of constituents in the vorfeld in the Eindhoven
corpus.

The consequence is that the fluency ranking model, besides the preference
for subject fronting, learns a conflicting preference for modifier fronting. This
is not an error, since modifier fronting is considered to be fluent in many cases,
but does decrease accuracy in the automatic evaluation. In some cases the
ranker will pick the modifier-fronting realization and the gold standard the
subject fronting realization, and vice versa. We give two examples of both
scenarios:

(36) a. Misschien
Maybe

was
was

Nevill
Nevill

toch
nevertheless

niet
not

de
the

arrogante
arrogant

cynicus
cynical

of
or

de
the

lolbroek
joker

voor
for

wie
which

zijn
his

mede-officieren
fellow-officers

hem
him

hielden.
took.

b. Nevill was misschien toch niet de arrogante cynicus of de lol-
broek voor wie zijn mede-officieren hem hielden.

(37) a. Zoals
As

verwacht
expected

ging
was

de
the

strijd
battle

in
in

de
the

koningsklasse
highest-class

tussen
between

de
the

Italiaanse
Italian

kemphanen
scrappers

Biaggi,
Rossi,

Rossi
Biaggi,

en
and

Capirossi.
Capirossi.

b. De strijd in de koningsklasse ging zoals verwacht tussen de
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Italiaanse kemphanen Rossi, Biaggi en Capirossi.

In both examples, the realizations are (according to our judgment) equally
fluent, but the ranker obtained a lower GTM score for not choosing the best
match.

Coreferencing Coreferencing still poses a problem for the current ranker.
For instance, in the following realizations, the ranker preferred a realization
where the referring expression is introduced before the referent:

(38) a. Anders
Otherwise

moeten
have-to

ze
they

stoppen
stop

en
and

de
the

boeren
farmers

moeten
have-to

kunnen
be-able-to

concurreren
compete

met
with

de
the

rest
rest

van
of

de
the

wereld.
world.

b. De boeren moeten kunnen concurreren met de rest van de wereld
en anders moeten ze stoppen.

In some cases, it may be feasible to improve ordering when co-referencing is
used. For example, if the referent and the referring expression are both subjects
in a conjunction of sentences, we could try to model the ordering of e.g. proper
names and pronouns. For instance, such a strategy could work for realizing an
abstract dependency structure that corresponds to the following sentence:

(39) Zo
In-that-manner

hanteerde
used

Scheffer
Scheffer

toevalstechnieken
coincidence-techniques

bij
during

de
the

montage
editing

van
of

zijn
his

film
movie

over
about

John
John

Cage
Cage

en
and

speelde
played

hij
he

met
with

verschillende
different

tempi
tempos

in
in

het
the

portret
portret

over
about

Elliott
Elliot

Carter.
Carter.

However, in other cases this does not work, since the subjects do not always
refer to the same entity. For example:

(40) Ze
She

wilde
wanted

niet
not

trouwen
marry

en
and

Bratt
Brett

zou
would

daarom
for-that-reason

hebben
have

aangestuurd
steered

op
towards

het
the

verbreken
break-up

van
of

de
the

relatie.
relationship.

To address this issue properly, co-references should be marked a such in abstract
dependency structure. This would allow for the training of a ranker, such that
a referent is introduced first in a realization.
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Miscellaneous Finally, there is a long tail of less frequent types of errors
and differences that do not influence fluency. We will give two examples. The
first example shows that a separable verb particle can be placed before and
after a prepositional complement:

(41) a. Bij
During

het
the

ingaan
start

van
of

de
the

finale
final

maakte
made

hij
he

deel
part

van
of

een
a

kopgroep
front-line

van
of

negen
nine

man
men

uit.
out

(During the start of the final he was part of a nine men front-line.)
b. Bij het ingaan van de finale maakte hij deel uit van een kopgroep

van negen man.

It is not clear that one of these realizations is more fluent than the other.
The second example is the discontinuous realization of direct objects with

modifying phrases. For instance, consider the following realizations:

(42) a. Joegoslavië
Yugoslavia

moet
should

meer
more

aan
on

onderwijs
education

besteden,
spend,

aldus
according-to

de
the

Wereldbank
World-bank

die
who

echter
however

ook
also

mogelijkheden
possibilities

voor
for

opmerkelijke
remarkable

bezuinigingen
cost-cutting

ziet.
sees.

b. Joegoslavië moet meer besteden aan onderwijs, aldus de Wereld-
bank die echter ook mogelijkheden ziet voor opmerkelijke
bezuinigingen.

In the realization that resembles the gold standard the most, the direct object
mogelijkheden voor opmerkelijke bezuinigingen is split to place the verb ziet
after the head of the direct object mogelijkheden. Such discontinuous direct
objects also occur in main clauses. For example:

(43) a. Ik
I

heb
have

het
the

recht
right

de
the

beste
best

optie
option

voor
for

mezelf
myself

en
and

mijn
my

familie
family

te
to

kiezen.
choose.

b. Ik heb het recht de beste optie te kiezen voor mezelf en mijn
familie.

Here the direct object de beste optie voor mezelf en mijn familie is split in the
gold standard to place te kiezen between het recht and the modifying phrase
voor mezelf en mijn familie. Again, none of these realisations would be consid-
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ered more fluent than the other.

4.7.5 A note on prenominal modifiers

We have discussed the role of ordering prenominal modifiers on fluency in
Section 4.1.1. It is clear that the trigram model that we have discussed in
this chapter provides a probability distribution over such modifiers. It can
be argued though, that a word trigram model may not be the best estimator
for such long sequences of modifiers. Given the factorial number of possible
orderings, many orderings will not occur in the training sample. Consider a
sentence, such as

(44) een
a

groot
big

wit
white

Nederlands
Dutch

vliegtuig
airplane

Even if groot wit opstijgend Nederlands does not occur in the training sample,
the training sample could still settle relevant questions with respect to the
ordering of these modifiers, such as: is groot followed by Nederlands more
frequent than the opposite? Does groot tend to be far from its head?

Given the opportunity to exploit corpora further, it is not surprising that
more elaborate corpus statistics have been used in different works:

• Quirk and Greenbaum [1974], Dixon [1977], and Sproat and Shih [1991]
have argued that modifiers can be ordered by their underlying semantic
properties. For instance, Sproat and Shih [1991] proposed the ordering
Quality> Size> Shape> Color> Provenance. Such ordering preferences
could be extracted automatically from an annotated corpus.

• Mitchell [2009] applies a corpus-based approach, where modifiers are
grouped in broad classes based on where they usually occur prenomi-
nally. A class can correspond to a specific position (e.g. immediately
preceding the noun) or multiple consecutive positions. When realizing a
noun phrase, the orderings are filtered such that they do not violate the
(trained) class constraints.

• Shaw and Hatzivassiloglou [1999] uses a corpus to construct a w × w
matrix, where w is the distinct number of prenominal modifiers, and the
cell [A,B] contains the number of occurrences where ‘A’ preceded ‘B’.
This information is then used to check modifier orderings, for if there is
a preference for ‘A’ to occur before ‘B’, then [A,B]9 [B,A].

• Liu and Haghighi [2011] uses a maximum entropy model that incorpo-
rates many features, such as the 2 to 5-gram counts of the prenominal
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modifiers, characteristics of the modifier at each position (such as the use
of hyphenation, suffix, and length), and satisfaction of the Mitchell class
ordering.

We did some preliminary experiments with a model that is comparable to
that of Liu and Haghighi [2011]. However, this did not provide a worthwhile
improvement. It turns out that in our data, nouns rarely have more than
two prenominal modifiers. In Table 4.14 and Table 4.15 we provide counts of
the number of modifiers head nouns have in the Eindhoven and PPH corpora.
These frequencies were obtained using Dact [van Noord et al., 2012]. We can
see that in both corpora, nouns rarely have more than two modifiers (0.16% and
0.04% respectively). Previous works on prenominal modifiers usually focused
on lexical modifiers, such as adjectives. If we restrict ourselves to these cases
(fourth and fifth columns in both tables), this number even decreases somewhat,
as expected.

# Modifiers Modifiers % Lexical modifiers %
0 14298 68.76 15140 72.81
1 5994 28.83 5287 25.43
2 467 2.25 345 1.66
3 32 0.15 20 0.10
4 3 0.01 2 0.01
≥ 5 0 0.00 0 0.00

Table 4.14: Number of modifiers of noun heads in the Eindhoven corpus. The
fourth and fifth columns only include lexical modifiers.

# Modifiers Modifiers % Lexical modifiers %
0 3784 69.47 3913 71.84
1 1541 28.29 1440 26.44
2 120 2.20 92 1.69
3 2 0.04 2 0.04
≥ 4 0 0.00 0 0.00

Table 4.15: Number of modifiers of noun heads in the PPH corpus. The fourth
and fifth columns only include lexical modifiers.

Summarized, further investigation in the ordering of noun phrases with
more than two prenominal modifiers is not worthwhile for the corpora that
we use. It would be interesting to study whether this is also true for other
domains.
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Chapter 5

Reversible SAVG

5.1 Introduction

In the previous chapter, we augmented the Alpino attribute-value grammar
with a model for fluency ranking. Together, these form a Stochastic Attribute-
Value Grammar (SAVG). As a result, Alpino actually consists of two SAVGs,
one for parsing and one for generation. In this chapter, we propose Reversible
Stochastic Attribute-Value Grammar (RSAVG), a grammar that uses a single
stochastic model for both fluency ranking and parse disambiguation.

5.2 Parse disambiguation

In Chapter 4, we described our fluency ranking model for the Alpino grammar
and chart generator. This model ranks derivations by the fluency of their
embedded realizations. Parsing, which uses a grammar to prove that a sentence
is valid with a particular syntactic or semantic analysis, has a counterpart to
fluency ranking, parse disambiguation. Since human language is ambiguous,
parsing of a sentence often yields many derivations that correspond to different
readings of that sentence. For instance, reconsider the sentence

(1) a. De
The

baseliner
baseliner

speelde
played

ter
for

voorbereiding
preparation

op
of

het
the

Grand
Grand

Slam
Slam

één
one

grastoernooi.
grass-tourney.

b. Eén grastoernooi speelde de baseliner ter voorbereiding op het
Grand Slam.

119
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The sentence can be read such that de baseliner is the subject and één grasto-
ernooi the direct object, or vise versa.

Parse disambiguation attempts to solve ambiguity by selecting the most
likely reading of a sentence. In the example above, a parse disambiguation
component should normally choose the reading having the de baseliner as the
subject, since in Dutch, subject fronting is preferred over direct object fronting
(Section 4.1.1).

However, as implied by the word ‘ambiguity’, parse disambiguation is also a
stochastic process. Although reading a fronted subject is preferred in general,
sometimes there is reason to read the initial noun phrase of a sentence as a
direct object. For instance, in a sentence such as

(2) a. De
The

resultaten
results

van
of

de
the

berekeningen
calculations

toetsen
check

de
the

wetenschappers
scientists

aan
with

de
the

waarnemingen
observations

op
on

zee
sea

op
at

het
the

ogenblik
moment

dat
that

de
the

satelliet
satellite

voorbijkomt.
passes by.

The results of the calculations are checked against observations at
sea at the moment the satellite passes by.

the noun phrase de resultaten van de berekeningen ‘the results of the calcula-
tions’ is the direct object of the main verb toetst ‘check’, since calculations are
something to be checked.

Chapter 4 discussed how an attribute-value grammar can be complemented
by a discriminative model to estimate the fluency of a realization. Likewise, an
attribute-value grammar can be complemented by a discriminative model for
parse disambiguation. In fact, such combinations are successfully employed in
a wide variety of systems [Toutanova et al., 2002, Riezler et al., 2002, Miyao
and Tsujii, 2005, Clark and Curran, 2004, Forst, 2007], including Alpino [van
Noord, 2006]. We call such discriminative models directional, since they either
work in parse disambiguation or fluency ranking, but not both.

5.3 Limitations of directional models

The development of separate models for parse disambiguation and fluency rank-
ing led to a situation in which an attribute-value grammar is coupled with two
distinct stochastic components. One of these is employed during parsing, the
other during generation. This is reasonable to some extent, because some fea-
tures that can be employed by the stochastic model are only relevant in a
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certain direction. For instance, in the fluency model described in Chapter 4, a
trigram language model is included as an auxiliary distribution [Johnson and
Riezler, 2000]. Obviously, such information is irrelevant for parsing since the
sentence is given. On the other hand, the disambiguation model of Alpino
contains features which judge aspects of the dependency structure of a deriva-
tion. Since the dependency structure is fixed in generation, these features are
irrelevant in fluency ranking.

Yet, there are also many features that appear to be relevant in both di-
rections. For instance, the feature discussed in Chapter 4 that signals topi-
calization of NP subjects (Section 4.4) is very effective in fluency ranking and
parsing. The reason simply is that, in Dutch, the unmarked ordering is that
subjects precede objects. This generalization is relevant both for parsing and
generation. Such parallelism is not accidental, of course. Clearly, if surface
realization favored direct object fronting, whereas disambiguation favored a
subject reading in such cases, communication would become problematic.

In this chapter we propose the formalism of Reversible Stochastic Attribute-
Value Grammars (RSAVG) in which we maintain only a single stochastic com-
ponent which is used both for parsing and generation. As before, the stochastic
component implements a conditional model, but we condition more abstractly
over the set of constraints that the input specifies, rather than the sentence
(for parsing) or the dependency structure (for generation).

There is also practical motivation for reversible stochastic attribute-value
grammar. We provide experimental results indicating that, under certain con-
ditions, fluency models and parse disambiguation models are out-performed by
reversible models.

But before discussing RSAVG, we give a short overview of stochastic models
that have been used previously in parse disambiguation and fluency ranking.
Since the earliest models were reversible, our aim is to show the (historical)
motivation for the introduction of directional models.

5.4 A history of SAVG

5.4.1 Stochastic context-free grammar

Stochastic context-free grammar (SCFG) has traditionally been and continues
to be a popular formalism for estimating the probability of a derivation. An
SCFG consists of context-free grammar rules, where each rule V → w is as-
signed a conditional probability p(w|V ), usually written as p(V → w). Since
the probability is conditioned on the left-hand side of the rule, the conditional
probabilities of all grammar rules with the same left-hand side symbol should
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sum to one. Formally, if N is the set of non-terminal symbols and R the set of
grammar rules, then:

∀V ∈N [
∑

V→w∈R

p(V → w)] = 1 (5.1)

The relative frequency, in a treebank, of the rule V → w among all rules
that have V on their left-hand side provides a maximum-likelihood estimate
(MLE) of p(V → w):

p(V → w) =
C(V → w)

C(V )
(5.2)

where C(V ) is the frequency of V in the treebank. The probability of a deriva-
tion is then calculated by multiplying the probability of the rules that were
applied to construct the derivation. If R(d) is the multi-set of the rules that
were used in the construction of derivation d, then

p(d) =
∏

V→w∈R(d)

p(V → w) (5.3)

It can be shown that relative frequencies provide maximum likelihood es-
timates in SCFG. However, Abney [1997] shows that the use of relative fre-
quencies does not yield maximum likelihood estimates in formalisms that are
more powerful than context-free grammar. In other words, SCFG provides
an optimal model for Gs (Section 2.2.2), but not G. G is more powerful than
context-free grammar, since it can define constraints across syntactic categories.

Following Abney [1997], we will show intuitively that empirical relative
frequencies do not lead to an optimal solution for AVGs. Consider the attribute-
value grammar fragment in Figure 5.1. Now, suppose that we have the treebank
in Figure 5.2. Using this treebank, we can derive:

• p(x→ y y) = C(x→y y)
C(x) = 1.0

• p(y → a) = C(y→a)
C(y) = 0.5

• p(y → b) = C(y→b)
C(y) = 0.5

Suppose that we want to estimate the probability of the only possible deriva-
tion of aa, we would obtain the probability p(x→ y y) · p(y → a) · p(y → a) =
1 · 0.5 · 0.5. However, this is an not an accurate estimation of the probabil-
ity of this derivation. The rule x → y y requires the surf attributes of both
right-hand side slots to unify. The rule y → b is not an option anymore after
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using y → a to rewrite the first y symbol. Consequently, the probability of
completing the second slot with y → a is one. Since the grammar can only pro-
duce two possible trees, and both trees occur once in the treebank, the correct
probability of the derivation of aa is 0.5.

A related issue with this model is that it does not even provide a correct
probability distribution. The grammar can only generate the trees in Fig-
ure 5.2, however p(tree(aa)) + p(tree(bb)) += 1.

x

[
surf

〈
1 , 1

〉]
→

y

[
surf 1

]

y

[
surf 1

]

y

[
surf a

]
→ a

y

[
surf b

]
→ b

Figure 5.1: A grammar fragment with constraints on categories.

x

y

a

y

a

x

y

b

y

b

Figure 5.2: A simple treebank conformant to the grammar in Figure 5.2.

This example shows that once constraints are introduced between cate-
gories, there is a chance that relative frequencies do not provide an optimal
estimation of the probability of applying a rule.

5.4.2 Maximum entropy modeling

Abney proposes to use a maximum entropy model to estimate the probability
of a derivation instead. This (non-conditional) model estimates the probability
of a derivation, p(d):

p(d) =
1

Z
exp

∑

i

θifi(d) (5.4)
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Each derivation is characterized by a set of feature values. Thus, fi(d) is
the value of feature fi in derivation d. A parameter θi is associated with each
feature fi. In (5.4), Z is a normalizer which is defined as follows, where Ω is
the set of derivations defined by the grammar:

Z =
∑

d′∈Ω

exp
∑

i

θifi(d
′) (5.5)

Note that in the case we only want to find the best derivation, it suffices
to compute

∑
i θifi(d) for each d. The resulting model is applicable both

for parsing and generation. In contrast to the model that was described in
Chapter 4, the probability of the derivation is not conditioned on an abstract
representation or a sentence. As a consequence, this model can be used for
parse disambiguation and fluency ranking.

The model is trained on the basis of a representative set of correct deriva-
tions: a treebank. Weights are estimated for each feature fi such that the
expected value of a feature in the model Ep(f) is equal to its empirical feature
expectation Ep̃(f):

Ep(fi) = Ep̃(fi)

≡ Ep(fi)− Ep̃(fi) = 0

≡
∑

d∈D

p(d)fi(d)− p̃(d)fi(d) = 0 (5.6)

where D is the set of derivations in the treebank, p(d) is the probability of
derivation d according to the model, and p̃(d) is the empirical distribution of
d, in this case simply the relative frequency of d in the treebank.

Since it is necessary to calculate p(d) during training, training requires
access to all derivations (Ω) allowed by the grammar. Obviously, for any
non-trivial grammar this set of derivations is infinite. Abney [1997] suggests
to approximate the normalizer with random sampling using the Metropolis-
Hastings algorithm, but the resulting procedure is believed to be impractical
for realistically sized grammars.

5.4.3 Conditional maximum entropy models

Johnson et al. [1999] avoid the expensive computation of the normalizer Z by
using a conditional maximum entropy model. In parse disambiguation, such
a model estimates the probability of a derivation d given a sentence s, p(d|s).
Under the reasonable assumption that the number of derivations for a given
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sentence s is finite, the number of derivations may still grow exponentially with
the sentence length, but the calculation of the normalizer in a conditional model
is less problematic. The model can be estimated using an informative sample
of derivations [Osborne, 2000] or by using dynamic programming to calculate
the feature expectations and normalizers over packed charts [Miyao and Tsujii,
2002, Geman and Johnson, 2002, Clark and Curran, 2003]. Conversely, as
described in Chapter 4, the probability of a derivation d given the abstract
representation l can also be estimated.

Since conditional maximum entropy models were discussed extensively in
Chapter 4, we only repeat their parametric form here for brevity,

p(d|x) = 1

Z(x)
exp

|F |∑

i=1

θifi(x, d) (5.7)

Z(x) =
∑

d∈Ω(x)

exp

|F |∑

i=1

θifi(x, d) (5.8)

where x is either a sentence s or an abstract representation l.
The introduction of conditional models, which normalize over the yield of

an input rather than all derivations generated by a grammar, made it com-
putationally feasible to construct models for realistically sized grammars with
a large number of features. However, the other side of the coin is that these
conditional models are used directionally, since they estimate p(d|s) or p(d|l)
respectively.

5.5 Reversible stochastic attribute-value gram-
mars

5.5.1 Finding the best consistent derivation

In the bigger picture, parsing and generation can be seen as two instances of
a more general task: given a set of constraints that the input specifies, give
all possible derivations that are consistent with these constraints. In the case
of parsing, the constraints restrict the set of possible derivations to those that
have the same words and word order as the input sentence. In generation, the
constraints restrict the set of possible derivations to those having a dependency
structure corresponding to the input.

In reversible stochastic attribute-value grammars (RSAVG) we exploit this
view to introduce one model for parse disambiguation and fluency ranking.



126 CHAPTER 5. REVERSIBLE SAVG

RSAVG estimates the probability of a derivation d given the set of input con-
straints c, p(d|c). We use a conditional maximum entropy model to estimate
p(d|c):

p(d|c) = 1

Z(c)
exp

∑

i

θifi(c, d) (5.9)

Z(c) =
∑

d′∈Ω(c)

exp
∑

i

θifi(c, d
′) (5.10)

As discussed in the previous section, directional conditional models assume
that the number of derivations of a sentence or abstract representation is finite.
In RSAVG, we maintain this assumption – for each set of constraints that forms
an input to the system, there should be a finite number of derivations that are
consistent with the constraints.

We derive a reversible model by training on data for parse disambiguation
and fluency ranking simultaneously (Section 5.5.2). During training, we im-
pose constraints on the feature values with respect to the sentences S in the
parse disambiguation treebank and the dependency structures L in the fluency
ranking treebank:

∑

s∈S

∑

d∈Ω(s)

p̃(s)p(d|c = s)fi(s, d)− p̃(c = s, d)fi(s, d) = 0 (5.11)

∑

l∈L

∑

d∈Ω(l)

p̃(l)p(d|c = l)fi(l, d)− p̃(c = l, d)fi(l, d) = 0

where Ω(s) is the set of derivations for sentence s and Ω(l) is the set of deriva-
tions for dependency structure l

If parse disambiguation and fluency ranking are governed by the same pref-
erences (Section 5.3), enforcing constraints with respect to parse disambigua-
tion and fluency ranking data simultaneously should should have no negative
effect on estimating weights for features that are used in both directions. Es-
timation of weights for task-specific features should be unaffected, since they
have constant values in the training instances of the opposite task.

Practically, it is also possible to use one type of constraint by concatenating
the training data for fluency ranking and parse disambiguation:

∑

i∈S∪L

∑

d∈Ω(i)

p̃(i)p(d|c = i)fi(i, d)− p̃(c = i, d)fi(i, d) = 0 (5.12)
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However, with such an approach one should ensure that the empirical proba-
bilities (p̃(i) and p̃(i, d)) are estimated such that p̃(i) is a uniform distribution.
A uniform distribution of p̃(i) implies that there is only competition between
derivations for an input. If task-specific scoring methods (such as GTM and
CA scores) are used intermixed using a non-uniform distribution p̃(i), the pa-
rameter estimator may be biased on the task with the highest average scores
or the highest average number of derivations per input. This does not turn out
to be problematic in practice, since we have shown that the best-performing
method for estimating p̃(i, d) in fluency ranking uses binary derivation scores
and a uniform distribution for p̃(i) (Section 4.7.3). For completeness, we give
the results of applying different methods for normalizing p̃(s, d) in Table 5.1. It
is not surprising that here, the methods that use binary events also outperform
the methods that use the quality scores directly, although the differences are
(again) not significant.

Input probabilities CA-score (%)
Uniform inputs 90.93
Weighted inputs 90.91
Uniform inputs with binary events 91.14
Weighted inputs with binary events 91.18

Table 5.1: CA-scores for parse disambiguation models, using various methods
to estimate p̃(s) and p̃(s, d).

5.5.2 Symmetric treebanks

For training reversible models, the previous section assumed separate parse
disambiguation data and fluency ranking data. An interesting special case is
the notion of symmetric treebanks [Velldal et al., 2004]. A symmetric treebank
consists of pairs of abstract representations and sentences. The treebank is
symmetric in the sense that for a pair of a sentence and an abstract represen-
tation, the abstract representation is an appropriate analysis of the sentence,
and the sentence is a fluent realization of the abstract representation.

Conventional treebanks in which sentences are annotated with the corre-
sponding abstract representations can be considered symmetric treebanks, un-
der the assumption that the writers of the sentences are fluent in the language
that is used and attempted to write as fluently as possible for the given domain.
Since treebanks often use, as in our case, newspaper text, this assumption usu-
ally holds.
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Models are trained and evaluated using competing derivations for each in-
put (abstract representation or sentence). These derivations are obtained by
creating all derivations that are consistent with the constraints in the input.
Derivations that have a symmetric abstract representation and sentence ac-
cording to the treebank are marked correct. All other competing derivations
are marked incorrect.

The resulting training data contains for each abstract representation and
sentence in the treebank a set of correct and incorrect derivations. Conse-
quently, it can be used to train or evaluate a reversible model.

5.6 Evaluation methodology

We think that one reversible model is to be preferred over two distinct parsing
and fluency models for theoretical reasons as well as for more practical reasons
of simplicity, compactness, and maintainability. As an additional advantage,
reversible models are applicable for tasks which combine aspects of parsing
and generation, such as paraphrasing. Of course, these benefits are convincing
only if the resulting reversible models achieve similar performance to their
directional counterparts.

We are also interested in seeing if certain baseline models can be improved
by adding derivations from the opposite direction to the training data (cross-
pollination). For instance, if we had only the n-gram trigram auxiliary distri-
butions available in the training data for fluency ranking, would the accuracy
of the model improve if we train the weights of other features using derivations
from parsing?

In this section, we first provide a description of how parse disambiguation
models are trained and evaluated (the training and evaluation of fluency rank-
ing models was already introduced in Section 4.6). We will then discuss how we
train and evaluate reversible models. Finally, we will introduce some scenarios
to test how effective the aforementioned cross-pollination is.

5.6.1 Training and evaluation of parse disambiguation

The parse disambiguation models are trained and tested on the same treebanks
as fluency ranking (Section 4.6.1). However, since the Alpino parser provides
an analysis for every sentence in these treebanks, all the sentences are available
as training and evaluation instances.

Since the treebanks only contain an abstraction of a derivation in the form
of a dependency structure, as in generation, we parse each sentence to construct
the derivations of each sentence. In the current system, we create at most 3000
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derivations for each sentence. The quality of each derivation is estimated using
the concept accuracy score (CA-score) that was introduced in Section 3.5.1.

During training, we take a representative sample of at most 100 derivations
per training input. The model is then trained using TinyEst with an !2 prior
of σ2 = 1000. The probability p(s, d) is estimated using binary scores with
uniform input probabilities.

Since we only discussed features that are active in fluency ranking in Sec-
tion 4.4, we will now give a short description of the features that are active in
parse disambiguation and have not yet been discussed in that section. These
features can be divided in two sets, namely features modeling the distribution
of lexical frames and dependency relations.

Lexical frames The parser applies lexical analysis to find all possible sub-
categorization frames for tokens in the input sentence. Since some frames occur
more frequently in good parses than others, two feature templates record the
use of frames in derivations. An additional feature implements an auxiliary
distribution of frames, trained on a large corpus of automatically annotated
sentences (436 million words). The values of lexical frame features are constant
for all derivations in sentence realization, unless the frame is underspecified in
the dependency structure.

Dependency relations Several templates describe aspects of the depen-
dency structure. For each dependency relation multiple dependency features
are extracted. These features list the dependency relation, and characteristics
of the head and dependent, such as their roots or part of speech tags. Addi-
tionally, features are used to implement auxiliary distributions for selectional
preferences [van Noord, 2007]. In generation, the values of these features are
constant across derivations corresponding to a given dependency structure.

5.6.2 Baseline scenarios

Since preferences are shared between parse disambiguation and fluency ranking,
it is conceivable that a weak model could benefit from the use of training data
from the opposite direction. A model could be weak in two senses: (1) the
amount of task-specific training data available is relatively small; and (2) the
task-specific training data uses a smaller feature set.

To see if this cross-pollination from the opposite task occurs, we performed
four experiments where we reduce the amount of training data or the number
of features. The four experiments are:
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1. Comparing the learning curve of a directional fluency ranking model to
the learning curve of a reversible model that uses the given percentage of
fluency ranking training data and is simultaneously trained on all parse
disambiguation training data. In other words, the training data consists
of (1) the derivations obtained by generating said percentage of the ab-
stract dependency structures in the training data and (2) the derivations
obtained by parsing all of the sentences in the training data.

2. Comparing the learning curve of a directional parse disambiguation model
to the learning curve of a reversible model that uses the given percentage
of parse disambiguation training data and is simultaneously trained on
all fluency ranking training data.

3. Training models where the fluency ranking training data contains only n-
gram features, with and without training data from parse disambiguation.

4. Training models where the parse disambiguation training data contains
only rule identifier features, with and without training data from parse
disambiguation.

5.7 Results

5.7.1 Parse disambiguation

Table 5.2 shows the performance of the reversible model compared to the direc-
tional parse disambiguation model. We also provide lower and upper bounds:
the baseline model selects an arbitrary parse per sentence, while the oracle
chooses the best available parse.

Model CA (%) f-score (%)
Baseline 75.63 76.11
Oracle 95.23 95.44
Parse model 91.14 91.46
Reversible 90.99 91.32

Table 5.2: Concept Accuracy scores and f-scores for the parsing-specific model
versus the reversible model.

The results show that the performance of the general, reversible, model is
very close to that of the dedicated, parsing-specific model. In fact, the difference
is not significant.
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Suppose we had a less informed parse disambiguation model, could it then
be possible that adding fluency ranking data to a parse disambiguation model
would improve parsing accuracy? To answer this question, we experimented
with the baseline scenarios described in Section 5.6.2. The results of the ex-
periment with fewer features is shown in Table 5.3, where we can see that
adding fluency ranking training data to a parse disambiguation training data
with only the rule or the rule and rule in context features improves accuracy.
However, the improvement was only significant when features were added to
the model with only rule features (Table 5.4) Thus, in this scenario it is pos-
sible to improve parse disambiguation with a reversible model which includes
fluency ranking data.

Model CA (%) f-score (%)
rule 86.16 86.54
rule/fluency 86.95 87.31
rule/rule in context 88.33 88.69
rule/rule in context/fluency 88.51 88.88

Table 5.3: Concept Accuracy scores and F-Scores in terms of named de-
pendency relations for the baseline models that use only the rule and
rule in context features versus a model that uses data from fluency ranking.

rule rule/rule in context
rule/fluency p = 0.0023 ·
rule/rule in context/fluency · p = 0.0362

Table 5.4: Significance of the improvement in accuracy. Experiment-wise sig-
nificance at 99% level is p < 0.005.

Figure 5.3 provides the results of the other baseline experiment. Here we
compare the learning curve of the parsing model to that of the reversible model
which was trained using all derivations in the fluency ranking training data in
addition to the given percentage of parse disambiguation training data. We see
that the addition of training data from fluency ranking makes the reversible
model more effective than the directional model when less than 20% of the
parse disambiguation training data is available (20% amounts 1440 sentences
with the corresponding sample of derivations). From this, we can conclude
that training data from fluency ranking can be used to improve the weight
estimation of features that are active in parsing and generation.
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Figure 5.3: Learning curves of the parsing model and the reversible model when
data from fluency ranking is immediately available.

5.7.2 Fluency ranking

Table 5.5 compares the reversible model with a directional fluency ranking
model. As the table indicates, the reversible model outperforms the directional
model, although the difference is not significant at p < 0.001.

Model Best match (%) GTM
Random 18.26 0.5539
Oracle 100.00 0.8662
Fluency 51.33 0.7219
Reversible 52.19 0.7252

Table 5.5: General Text Matcher scores and best match percentages for the
fluency ranking-specific model versus the reversible model.

In Figure 5.4 we compare the learning curve of the directional fluency ranker
to that of the reversible model which has the given percentage of fluency ranking
training data available and all the training data from parse disambiguation. We
can see that models that were trained using a small amount of training data
perform better when training data for parse disambiguation is added. Also,
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the addition of this training data never impacts performance negatively. On
the contrary, we even see a mild improvement of performance when using a
reversible model.
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Figure 5.4: Learning curves of the fluency ranking model and the reversible
model when data from parse disambiguation is immediately available.

To show that the reversible model actually profits from mutually shared
features, we conducted an experiment where the fluency ranker only has access
to the auxiliary trigram distributions as features in the training data. We
train two models, the first using just this data, and the second adding parse
disambiguation training data. The results for this experiment are shown in
table 5.6. Adding information via parse disambiguation training data results
in a considerable gain in accuracy (significant at p < 0.01). The resulting
model performs almost as well as the directional fluency ranking model shown
in table 5.5. This shows that preferences learned from parse disambiguation
data are practically useful in fluency ranking.

5.8 Conclusion

We proposed reversible stochastic attribute-value grammars as an alternative
to directional stochastic attribute-value grammars. This framework is based
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Model Best match (%) GTM
word/tag trigrams 43.62 0.6945
word/tag trigrams + parse 48.74 0.7152

Table 5.6: General Text Matcher scores and best match percentages for the
fluency ranking baseline model versus the baseline model with data from parse
disambiguation.

on the observation that syntactic preferences are shared between parse disam-
biguation and fluency ranking. The integration of knowledge from parse disam-
biguation and fluency ranking data may be beneficial to tasks which combine
aspects of parsing and generation, such as paraphrasing.

We have also shown that this framework is not purely of theoretical interest.
In our experiments, reversible models obtain similar accuracy compared to
directional models, and actually lead to increased accuracy in baseline models
— small models in terms of features perform better if information from other
tasks can be integrated. For instance, our baseline fluency ranking model had
a considerably higher accuracy after complementing it with data from parse
disambiguation.

However, there is an open question: given that reversible models also use
features that are specific to parsing or generation, there is the possibility that
the model is trained to rely on these directional features. If this is true, the
premise that preferences are shared between parse disambiguation and fluency
ranking does not hold, even though it may appear so in the results discussed
in this chapter. In Chapter 7 we will revisit RSAVG and show using feature
selection that reversible models do indeed rely on features that are active in
both directions.



Chapter 6

Feature selection

6.1 Introduction

In Chapters 4 and 5 we discussed directional and reversible models for parse
disambiguation and fluency ranking. In such models, the most interesting
aspects of a derivation are described using features. A parameter estimator
estimates a weight for each feature, so that we can estimate the probability of
a derivation given the input of parsing or generation.

To achieve a high accuracy in such tasks, it is attractive to capture as many
aspects of the derivation as possible. For instance, one could enumerate deriva-
tion tree fragments in varying sizes and forms, using very general templates.
This path is followed in previous works, such as Velldal et al. [2004]. The ad-
vantage of this approach is that it requires little human labor and generally
gives good ranking performance for languages with less free word orders, such
as English. However, the generality of templates leads to huge models in terms
of the number of features. For instance, in our experiments with the templates
described by Velldal [2008], about half a million features were extracted using
the training data described in previous chapters. Such models are very opaque,
giving little understanding of strong discriminators in fluency ranking or parse
disambiguation. Practically, the use of such large feature sets with no fur-
ther selection may also be inconvenient in terms of storage space and training
time. Feature selection can be applied to make such models compact and more
understandable.

In this chapter, we discuss various feature selection methods that were
(where necessary) modified for ranking tasks. These methods are then com-
pared based on the performance of the features that they select. Finally, we

135
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use the best method to give an analysis of the most effective features in fluency
ranking and parse disambiguation.

6.2 Feature selection methods

Feature selection is a procedure that attempts to extract a subset of discrim-
inative features S ⊂ F from a set of features F , such that a model using S
performs comparable to a model using F and |S|4 |F |.

As discussed in de Kok [2010], a good feature selection method should
reduce or eliminate three kinds of redundancies in feature sets:

• Inactive: Some features rarely change value within a context. Such
features are not effective in general at discriminating good derivations
from their competition.

• Overlap: Features can be overlapping. In that case, they may be ef-
fective in themselves, but using such functions in conjunction may not
improve accuracy.

• Noise: Features may have values that do not correlate with the quality
of the derivation. Such features are said to be noisy.

Also, since we want to analyze the relative effectiveness of features, a feature
selection method should also provide a ranking of features by their discrimina-
tive power.

In the remainder of this section, we will describe six feature selection meth-
ods: (1) frequency-based selection; (2) correlation-based selection; (3) selection
using an !1 prior; (4) grafting; (5) grafting-light; and (6) gain-informed selec-
tion. All of these selection methods, except the first two, are based on maximum
entropy modeling. Since we augmented attribute-value grammar with condi-
tional maximum entropy models, it is attractive to perform feature selection
within that framework as well.

6.2.1 Frequency-based selection

Frequency-based selection counts for each feature f the number of inputs where
a feature is active [van Noord, 2004]. In other words, it counts the number of
inputs in the training data (x ∈ X) where there are at least two derivations
d1, d2, such that f(x, d1) += f(x, d2). The features are then sorted in descending
order based on these counts. The resulting list provides the order in which
features are selected.
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6.2.2 Correlation-based selection

While frequency-based selection helps in selecting features that are active, it
cannot account for feature overlap, nor does it exclude noisy features. Active
features that have a strong correlation to features that were selected previously,
are still added.

To detect feature overlap, we propose a simple correlation-based method
that calculates the correlation of a candidate feature and a previously selected
feature. If a candidate feature has a high-correlation with a previously selected
feature, it is excluded. To estimate Pearson’s correlation of two features, we
calculate the sample correlation coefficient,

rf1,f2 =

∑
x∈X,d∈Ω(x)(f1(x, d)− f̄1)(f2(x, d)− f̄2)

(n− 1)sf1sf2
(6.1)

where f̄x is the average feature value of fx, and sfx is the sample standard
deviation of fx.

Of course, inter-feature correlation can only be used to detect overlap, since
it does not provide a ranking of features by their effectiveness. Since frequency-
based selection provides a ranking of how ‘active’ features are, we use frequency-
based selection as described in the previous section to make an initial ranking
of the features. We then use the correlation metric above to exclude features
that overlap with features with a higher rank.

Since correlation-based selection compares features one by one, it cannot
detect overlap in cases where some selected features jointly overlap strongly
with a candidate feature. It is also not able to detect noisy features. It could,
however, be extended to exclude noisy features by calculating the correlation
between feature values and derivation scores — if such a correlation does not
exist, the feature is noisy. Despite these disadvantages, correlation-based se-
lection is a very simple technique.

6.2.3 !1 regularization

During the training of maximum entropy models, regularization is often applied
to avoid unconstrained feature weights and overfitting (Section 4.3.8). If F (θ)
is the objective function that is minimized during training, a regularizer ωq(θ)
is added as a penalty for extreme weights [Tibshirani, 1996]:

C(θ) = F (θ) + ωq(θ) (6.2)
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Again, the regularizer has the following form, where q is a non-negative
integer:

ωq(θ) = λ
n∑

i=1

|θi|q (6.3)

The !2 regularizer (q = 2) was discussed in Section 4.3.8. Another commonly-
used setting is q = 1, which gives an !1 regularizer. This regularizer amounts to
applying a double-exponential prior distribution with µ = 0. Since the double-
exponential puts much of its probability mass near its mean (which is µ = 0
for feature weights), the !1 regularizer has a tendency to force weights towards
zero, providing integral feature selection and while simultaneously preventing
unbounded weights. Increasing λ strengthens the regularizer, and forces more
feature weights to be zero.

Given an appropriate value for λ, !1 regularization can exclude features
that change value infrequently, as well as noisy features. However, it does not
guarantee the exclusion of overlapping features, since the weight mass can be
distributed among overlapping features. !1 regularization also does not fulfill
a necessary characteristic for the present task, in that it does not provide a
ranking based on the discriminative power of features. However, !1 selection is
the basis of the two other selection methods that we will discuss, grafting and
grafting-light.

6.2.4 Grafting

Grafting [Perkins et al., 2003] adds incremental feature selection during the
training of a maximum entropy model. The selection process is a repetition
of two steps: 1. a gradient-based heuristic selects the most promising feature
from the set of unselected features Z, adding it to the set of selected features S;
and 2. a full optimization of weights is performed over all features in S. These
steps are repeated until a stopping condition is triggered.

During the first step, the gradient of each unselected feature fi ∈ Z is
calculated with respect to the model pS , that was trained with the set of
selected features, S:

∣∣∣∣
∂L(θS)

∂θi

∣∣∣∣ = EpS (fi)− Ep̃(fi) (6.4)

The feature with the largest gradient is removed from Z and added to S.
The stopping condition for grafting integrates the !1 regularizer in the graft-

ing method. Note that when !1 regularization is applied, a feature is only
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included (has a non-zero weight) if its penalty is outweighted by its contribu-
tion to the reduction of the objective function. Consequently, only features for

which
∣∣∣∂L(wS)

∂wi

∣∣∣ > λ holds are eligible for selection. This is enforced by stopping

selection if for all fi in Z

∣∣∣∣
∂L(θS)

∂wi

∣∣∣∣ ≤ λ (6.5)

The full grafting algorithm is shown in Algorithm 10.

Algorithm 10 The grafting selection algorithm. estimate is the parameter
estimation function.
S ← {}
while do

θS ← estimate(S)
maxGradient← 0
maxF ← undefined
for f ∈ Z do

gradient← EpS (f)− Ep̃(f)
if gradient > maxGradient then

maxGradient← gradient
maxF ← f

end if
end for
if maxGradient ≤ λ then

break
end if
S ← S ∪maxF
Z ← Z −maxF

end while

Although grafting uses !1 regularization, its iterative nature avoids selecting
overlapping features. For instance, if f1 and f2 behave identically, and f1 is

added to the model pS ,
∣∣∣∂L(θS)

∂θ2

∣∣∣ will amount to zero.

Performing a full optimization after each selected feature is computationally
expensive. Riezler and Vasserman [2004] observe that during the feature step
selection a larger number of features can be added to the model (n-best selec-
tion) without a loss of accuracy in the resulting model. However, this so-called
n-best grafting may introduce overlapping features.



140 CHAPTER 6. FEATURE SELECTION

6.2.5 Grafting-light

The grafting-light method [Zhu et al., 2010] uses the same selection step as
grafting, but improves grafting performance-wise by applying one iteration of
gradient-descent during the optimization step rather than performing a full
gradient-descent. As such, grafting-light gradually works towards the optimal
weights, while grafting always finds the optimal weights for the features in S
during each iteration.

Since grafting-light does not perform a complete gradient-descent, an addi-
tional stopping condition is used, because the model may still not be optimal,
even if no features are eligible for selection. This condition requires that the
change in value of the objective function incurred by the last gradient-descent
is smaller than a predefined threshold.

6.2.6 Gain-informed selection

Grafting and grafting-light use the gradient of candidate features to estimate
their effectiveness. From a theoretical perspective this is not completely satis-
fying. Gradient-based methods use the gradient as an indirect measure for the
contribution that a feature would provide. It is certainly true that a feature
with a gradient of zero would not contribute to a model, but for other features
there may be factors that influence the gradient, such as the magnitude of the
feature values.

Another class of methods aims to estimate the contribution of a feature more
directly by calculating its effect on the objective function. In other words, the
contribution (or so-called gain) of a candidate feature fi ∈ Z given the set of
selected features is L(θS)−L(θS∪fi). The selection algorithm, which is outlined
in Algorithm 11, is then very similar to grafting, except that the feature with
the highest gain is chosen during a selection step, rather than the feature with
the highest gradient.

The problem with the naive implementation of this selection method is
that we have to compute L(θS∪fi) for each fi ∈ Z during each selection step.
Calculating θS∪fi requires the estimation of θfi . In other words, during each
selection step, we are required to do parameter estimation of |Z| models. This
is computationally intractable for any non-trivial feature or training set.

Berger et al. [1996] eliminate the aforementioned inefficiency by assuming
that the weights of the features in S do not change as a result of adding a
new feature. Under this assumption θi, the weight of fi, can be estimated
using a simple line search method. This improves the performance of the
method considerably, such as Newton’s iterative root finding method [Berger
et al., 1996]. They modify the selection procedure so that the full parameter
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Algorithm 11 General schemata of gain-informed selection algorithms. es-
timate is the parameter estimation function, L(θ) the log-likelihood of the
model with feature weights θ, and Z is the set of unselected features.

S ← {}
while do

θS ← estimate(S)
maxGain← 0
maxF ← undefined
for f ∈ Z do

θS∪f ← estimate(S ∪ f)
gain← L(θS)− L(θS∪f )
if gain > maxGain then

maxGain← gain
maxF ← f

end if
end for
if maxGain < threshold then

break
end if
S ← S ∪maxF
Z ← Z −maxF

end while

estimation to obtain a feature’s weight is replaced by a simple line search. This
weight is used to calculate the gain of the feature and will become its weight if
the feature is selected.

Zhou et al. [2003] point out that, despite this optimization, the weight of
every candidate feature is still re-estimated during each selection step, although
this may be irrelevant for many features. Zhou et al. [2003] observes that while
the gains of candidate features may decrease as a result of the selection of a
feature, they rarely increase. This observation can be exploited in the following
manner: if we have a list of (remaining) candidate features ordered by their
gains, we can select the topmost feature unless its gain decreased by such an
amount that it is lower than the second feature on that list.

In our experiments, we apply the selection method of Zhou et al. [2003],
with a small modification to allow for arbitrary feature values [de Kok, 2010].
In short, the recursive function used in the former work to update the vectors
of unnormalized probabilities and normalizers assumed that features have a
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binary value (0 or 1). This method is outlined in Algorithm 12.

Algorithm 12 Gain-informed selection algorithm using selective gain compu-
tation [Zhou et al., 2003]. estimate simple performs a line search to estimate
the weight of one feature, gain succeeding(O, f) gives the gain of the feature
succeeding f in O, and reinsert(O, f, gain) reinserts the feature f in O such
that O is still sorted.

S ← {}
gains← compute gains(S,Z)
O ← sort descending(gains)
repeat

for f ∈ O do
θS∪f ← estimate simple(S, f)
gain← L(θS)− L(θS∪f )
if gain > gain succeeding(O, f) then

S ← S ∪maxF
O ← O −maxF
break

end if
reinsert(O, f, gain)

end for
until first(O)< threshold

Since this selection method uses the gain of a feature in its selection crite-
rion, it excludes noisy and infrequent features. Overlapping features are also
excluded since their gain diminishes after selecting one of the overlapping fea-
tures.

6.3 Evaluation methodology

The goal of our evaluation of feature selection method is to find out which
feature selection method performs the best when picking a very small subset
of features. This method will be used in Section 6.5 to provide an analysis of
the twenty most effective features in parse disambiguation and fluency ranking.
Consequently, we are interested to see how good each method performs ‘over
time’ as we allow the method to add features to the model. To this end, we
let each method, with the exception of selection with an !1 prior, select 200
features. We will then use the ordered list of features provided by each method
to train increasingly large models. At the highest granularity, this gives us 200
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models per selection method with 1 to 200 features, that we can then evaluate.
The result of this evaluation will give the performance of each method as it
selects more features.

The training and evaluation sets will be familiar. We use the newspaper
part of the Eindhoven corpus to let each method select the most discriminative
features and to train the maximum entropy models using these features. The
PPH corpus is again used for evaluation of the models. Both corpora were ex-
tensively discussed in Chapters 4 and 5. The methods are evaluated separately
for parse disambiguation and fluency ranking.

The correlation selection method is used, so that features that have a corre-
lation of 0.9 with a previously selected feature, are skipped. In de Kok [2011] we
observed that gain-informed selection performed far worse in our setup than the
grafting-based methods. This performance degradation compared to de Kok
[2010] was caused by a change in the estimation of p̃(x, y) from weighted in-
puts to uniform inputs with binary events (Section 4.3.6). For this reason, we
use weighted inputs for feature selection using the gain-informed method. The
feature weights in the resulting feature sets are estimated in the same manner
as the other feature selection methods.

6.4 Results

6.4.1 Parsing

Figure 6.1 shows the performance of the five rankers in parse disambiguation.
Figure 6.1(a) compares frequency, correlation and gain-informed selection. We
can clearly see that gain-informed selection consistently outperforms the fre-
quency and correlation selection methods. This clearly shows that excluding
features in a smart manner, based on overlap and noisiness, pays off. Among
the methods that are not based on maximum entropy modeling, the correlation
method performs slightly better than frequency selection. But with its restric-
tion to one-to-one overlap detection, it fails to impress. Figure 6.1(b) compares
the maximum entropy-based methods. All three methods perform comparably,
but overall, grafting results in the best models.

Besides comparing the selection methods individually, it is also interest-
ing to observe the general trend — after selecting around 80 features the line
flattens for the maximum entropy-based methods. After selecting 80 features,
the model constructed using grafting has a concept accuracy of 89.59%. In
comparison, the uniform model has an accuracy of 75.63% and the complete
parse model 91.14%. In other words, a relatively small number of features
settles most ambiguities. The long tail of remaining features are far less dis-
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Figure 6.1: Performance of parse disambiguation models created with the (a)
frequency, correlation, and gain-informed selection methods; and (b) maximum
entropy, grafting, and grafting-light selection methods. The gain-informed,
grafting, and grafting-light methods outperform the frequency and correlation
based selection by a wide margin. Among the maximum entropy-based meth-
ods, the Grafting method performs the best overall.

criminative, but certainly important to the performance of the disambiguation
component. However to get a grasp of the most discriminative features in
parsing, we have to analyze a relatively small number of features.

6.4.2 Fluency ranking

The performance of selection methods in fluency ranking is shown in Figure 6.2.
Figure 6.2(a) compares the frequency, gain-informed and grafting-light selec-
tion methods. Not much difference can be observed between the grafting-light
and frequency selection methods. Both methods outperform gain-informed se-
lection most of the time. Figure 6.2(b) compares the frequency, correlation,
and grafting methods. Again, the grafting method performs the best, while
the correlation method performs comparably to the frequency method.

In general, we see that there is much less differentiation between the se-
lection methods than in parse disambiguation. We believe this is caused by
the fact that the fluency ranking feature set contains fewer redundancies than
that of parse disambiguation. For instance, parse disambiguation uses a large
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Figure 6.2: Performance of fluency ranking models created with the (a) fre-
quency, gain-informed, and grafting-light selection methods; and (b) frequency,
correlation, and grafting selection methods. Grafting outperforms the other se-
lection methods.

number of lexical frame and dependency relation features (Section 5.6.1).

As in parse disambiguation, a very small number of discriminative features
is required to construct an effective model. The lines of the selection methods
flatten at around 50 to 60 features. For instance, the grafting model achieves a
GTM score of 0.7203 after selecting 60 features, compared to 0.5519 for the uni-
form model and 0.7219 for the complete fluency ranking model (Section 4.7.2).
Again, to get insights into the most discriminative features, one only needs to
analyze a relatively small amount of features.

6.5 Discriminative features

In the previous section, we have established that grafting was the most effective
feature selection method for our particular task and data sets. In this section,
we use grafting to extract the twenty most discriminative features in parse
disambiguation and fluency ranking, and provide an analysis of these features.
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6.5.1 Parse disambiguation

Table 6.1 shows the twenty most discriminative features in parse disambigua-
tion. The second column enumerates the polarities of the features, a polarity
indicates whether a feature is an indicator for a good (+) or bad (-) derivation.
We now provide a description of these features by category.

Rank Polarity Feature
1 + word frame distribution
2 - rule(np n)
3 + rule in context(np det n,2,n n pps)
4 - parallel conjunction depth
5 - rule in context(vp mod v,3,vproj vc)
6 - frame(adj)
7 - rule in context(vp arg v(np),2,vproj vc)
8 + rule in context(vp mod v,2,optpunct(e))
9 + rule(n adj n)
10 + tag dependency tag(prep,hd/pc,verb)
11 + syntactic(subj np topic)
12 + word tag dependency tag(van,prep,hd/mod,noun)
13 + p1(par)
14 - rule(optpunct(e))
15 + rule in context(top start xp,1,max xp(root))
16 + rule in context(vp arg v(np),1,np det n)
17 - frame(verb(intransitive))
18 + tag dependency tag(noun,hd/su,verb)
19 + tag dependency tag(prep,hd/mod,verb)
20 - rule in context(np n,1,l)

Table 6.1: The twenty most discriminative features in parse disambiguation.

Lexical frames Various features assist in the selection of word tags in parse
disambiguation. Many words can be read in more than one manner, for in-
stance, the word kiezen can be read as a finite or infinite verb (‘to choose’)
that can be transitive or intransitive. It can also be a nominalized verb (het
kiezen) or the plural of the noun kies ‘molar’. The most discriminative feature
in parse disambiguation, word frame distribution, provides an auxiliary distri-
bution that estimates the probability of a tag given a word. Feature 6 penalized
the reading of a word as an adjective, and feature 17 intransitive verb readings.



6.5. DISCRIMINATIVE FEATURES 147

Topicalization As expected, one of the features (11) encodes the prefer-
ence for topicalized NP subjects. It may perhaps be surprising that none of
the features indicates the possibility of modifier topicalization (Section 4.7.4).
However, in a sentence that starts with a modifier, followed by a verb, this
ambiguity is not present. Feature 11 specifically settles ambiguity for the case
where a sentence starts with an NP. We will see that in fluency ranking, where
there is a choice of fronting the subject, direct object, and modifiers, that there
is a discriminative feature describing modifier fronting.

Modification One frequent ambiguity in sentences is the attachment of prepo-
sitional phrases, which can often be attached to a noun or a verb. Feature 3
indicates a preference for noun attachment. Feature 10 states that if a prepo-
sition combines with a verb, it is preferred that it modify the verb with a pc
(prepositional complement) relation. Feature 12 indicates the preference that
modifiers that are headed by the word van ‘of’ should be attached to a noun.
Feature 5 indicates readings with left-adjoining modifiers, unless the modifier
and the verb are not separated by punctuation (Feature 8).

Parallelism in conjunctions In parse disambiguation, parallelism in con-
junctions is preferred. Parallelism requires that the conjuncts in a conjunction
are analyzed using the same grammar rule and that the conjuncts have the
same (maximal) tree depth. The value of feature 4 is the difference of depth
in conjunctions. This feature has a negative polarity, because it is indicative
of a derivation that is not preferred. If a derivation has a high value for this
feature, it means that the analysis has a conjunction that is not parallel with
respect to the depth of conjuncts.

The second feature (13) has a non-zero value if the conjuncts of a conjunc-
tion are indeed constructed using the same grammar rule, or are all lexical. As
such, it is a positive indicator of a good derivation.

Other Two features (2, 20) state the preference that analyses with bare noun
NPs should not be preferred. Feature 18 prefers readings where verbs have a
noun subject. This feature could reject readings with two characteristics: (1)
sentences that have a subject that is not headed by a noun and (2) sentences
that do not have a subject at all. For both cases, there are examples that they
occur, although infrequently. For instance: (1) Het beschamende daarbij is dat
hij loog. ‘The embarasing about-that is that he lied.’ and (2) Voorgesteld wordt
het assortiment vleeswaren uit te breiden. ‘Proposed is the collection meat to
expand.’ Finally, feature 9 states the preference for reading the word before
the noun as an adjective.
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6.5.2 Fluency ranking

Table 6.2 shows the twenty most discriminative features in fluency ranking. We
will, again, discuss the features by category.

Rank Polarity Feature
1 + word trigram distribution
2 + tag trigram distribution
3 - rule(vp v mod)
4 + rule(optpunct(e))
5 + syntactic(subj np topic)
6 + rule in context(vp mod v,3,vproj vc)
7 + rule in context(vpx vproj,1,vp arg v(np))
8 + rule in context(non wh topicalization(modifier),3,imp)
9 + rule in context(vp arg v(pp),2,vproj vc)
10 + rule in context(vp arg v(pred),2,vproj vc)
11 + rule in context(vp arg v(np),2,vproj vc)
12 + rule in context(vp arg v(np),2,vp arg v(np))
13 + rule in context(non wh topicalization(modifier),1,mod2)
14 + middle field(mcat adv,np(acc,noun))
15 + rule in context(vp arg v(np),2,vp mod v)
16 + middle field(mcat pp,np(acc,noun))
17 + rule(n adj n)
18 + rule in context(non wh topicalization(np),1,np det n)
19 - syntactic(non subj np topic)
20 + rule in context(vp mod v,1,mod1a)

Table 6.2: The twenty most discriminative features in fluency ranking.

Trigram models The trigram models are the most important features (1,
2). This confirms the results outlined in Table 4.9 of Chapter 4 — language
models form a solid baseline for fluency ranking models.

Topicalization Various features express preferences with respect to con-
stituent fronting/topicalization. Foremost, feature 5 expresses a preference
for realizations that have a topicalized NP subject. As discussed in Chapter 4,
direct object fronting is allowed in Dutch, but not preferred. This is expressed
by feature 19, which discredits realizations that have a topicalized NP that is
not the subject. Modifier topicalization also occurs frequently in Dutch (Sec-
tion 4.7.4), features 8 and 13 express this preference. Feature 18 is also related
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to topicalization, it expresses the preference that fronted noun phrases were
constructed using the NP → Det N rule.

Modifiers Four features (3, 6, 15, 20) are related to modifier adjoining. Fea-
ture 3 indicates that realizations with right-adjoining modifiers are not pre-
ferred. The other features describe instances of left-adjoining of modifiers,
which are indicators of a good derivation. For instance, the model would pre-
fer zij heeft met de hond gelopen ‘she has with the dog walked’ over zij heeft
gelopen met de hond ‘she has walked with the dog’.

Features 9 to 12 indicate the preferences of left-adjoining of phrasal argu-
ments, such as prepositional phrases (9) and noun phrases (11).

Ordering in the middle field Two features (14, 16) describe ordering pref-
erences in the middle field. Feature 14 prefers that an adverbial is positioned
before an accusative noun phrase that is headed by a noun. For instance, hij
heeft gisteren kaas gekocht ‘he has yesterday cheese bought’ is preferred over
hij heeft kaas gisteren gekocht. Feature 16 prefers that a prepositional phrase is
positioned before an accusative noun phrase headed by a noun. For instance,
wij hebben met plezier kaas gegeten ‘we have with pleasure cheese eaten’ is
preferred over wij hebben kaas met plezier gegeten.

Other Feature 4 expresses the preference to fill optional punctuation in rules
with an empty punctuation token.

6.6 Conclusion

In this chapter, we have discussed and compared five different feature selection
methods that provide an ordered list of features by their effectiveness. We saw
that the techniques that used the gradients of candidate features performed
the best. Although the gradient only gauges the contribution of a feature indi-
rectly, gradient-based selection methods do not require additional assumptions
to make them computationally tractable.

We then used a gradient-based grafting method, to select the twenty most
discriminative features in parse disambiguation and fluency ranking. The role of
many of these features can be understood well through simple inspection. What
we see is that a small number of specific features such as fronting, word-level
disambiguation, parallelism in conjunctions, specific orderings in the middle
field, and modifier adjoining settle the most frequent ambiguities. Then, there
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is a long tail of features that settle more specific cases. But we hope to have
isolated the most distinctive phenomena in parse and realization selection.

In the next chapter, we will apply feature selection to reversible models,
with a related goal: understanding what proportion of the features are truly
reversible.



Chapter 7

Discriminative Features in
RSAVG

7.1 Introduction

Reversible stochastic attribute-value grammars (Chapter 5) provide an elegant
framework that fully integrates parsing and generation. The most important
contribution of this framework is that it uses one conditional maximum entropy
model for fluency ranking and parse disambiguation. In such a model, the
probability of a derivation d is conditioned on a set of input constraints c that
restrict the set of derivations allowed by a grammar to those corresponding to
a particular sentence (parsing) or abstract representation (generation).

Reversible stochastic-attribute grammars rest on the premise that prefer-
ences are shared between language comprehension and production. For in-
stance, in Dutch, subject fronting is preferred over direct object fronting (Chap-
ter 4). If models for parse disambiguation and fluency ranking do not share
preferences with respect to fronting, it would be difficult for a parser to recover
the abstract representation that was the input to a generator.

Reversible models incorporate features that are specific to parse disam-
biguation and fluency ranking, as well as features that are active in both tasks
(task-independent features). We have shown in the previous chapter, through
feature selection and analysis, that task-independent features are indeed used
in parse disambiguation and fluency ranking models. However, since reversible
models assign just one weight to each feature regardless the task, one particular
concern is that much of their discriminatory power is provided by task-specific
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features. If this is true, the premise that similar preferences are used in parsing
and generation does not hold.

In this chapter, we aim to verify that reversible models do rely on features
used both in parsing and generation. We will do this by isolating the most
discriminative features of reversible models through feature selection, and make
a quantitative and qualitative analysis of these features.

To find the most effective features of a model, we use the grafting selection
method that was described in the previous chapter. For the training and eval-
uation of the reversible model, we use exactly the same data as described in
Chapter 5. In Section 7.2, we will introduce a quantitative method for com-
paring directional and reversible models through feature selection. We will
then apply this method to show that reversible models indeed rely on features
used in both directions. In Section 7.3 we provide a qualitative analysis of
the twenty most discriminative features in our reversible model. This analysis
shows that features used in both directions are also prominent among the most
discriminative features in reversible models.

7.2 Quantitative analysis of reversible models

To gauge how important features are to a model, we have to measure their
contribution to that model. In the general case, estimating the contribution of
a feature is difficult. If we have a maximum entropy model with overlapping
features, evaluating a model with and without that feature, does not provide
a good estimation of its contribution. In such a case, the removal of a feature
may barely impact the performance of the model. However, if its overlapping
features are also removed, the feature could improve the model.

One of the goals of feature selection was to limit the set of features such
that as many redundancies, including overlap, are removed. An iterative se-
lection method can remove overlap, and even if there is overlap, we consider
features that were selected earlier to be more important than features that were
selected later. Using an iterative feature selection method, we can estimate the
contribution of a feature to a model as follows:

c(fi) =
e(p0..i)− e(p0..i−1)

e(p0..n)− e(p0)
(7.1)

Here, p0..i is a model trained with the i most discriminative features, p0 is
the uniform model, e(p0..i) the effectiveness of p0..i measured via the average
GTM score, and n is the eventual number of features that we will calculate the
contribution for.
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For the quantitative analyses of highly discriminative features, we extract
the 300 most effective features of the fluency ranking, parse disambiguation,
and reversible models using grafting. We choose this number, because we have
seen in Section 4.7 that the improvement in performance of the rankers has
essentially flattened out after selecting that number of features.

We cannot directly compare the feature lists of the directional models and
the reversible model. The reason is that many of the candidate features are
overlapping and show subtle interactions, features can easily be substituted by
other features that have the same role. For example, in the set of most dis-
criminative features in parse disambiguation, there is a feature that disprefers
derivations that have an adjective modifying a verb. However, this feature
does not occur at all in the set of most discriminative features in the reversible
model. Instead, there is a feature that promotes the use of an adjective as the
modifier of a noun.

Another question is if we could compare the set of selected features directly,
whether this would be useful. By definition, the set of features selected for the
reversible model will be different from that of the directional models, since the
reversible model has to accommodate both parse disambiguation and fluency
ranking. If the reversible model is truly reversible, the number and contribution
of direction-specific features will be smaller. If the reversible model is not
truly reversible, the number and contribution of features that are active in
both directions will be smaller. Consequently, to test the hypothesis that the
reversible model is truly reversible, we have to show that the latter is not true.1

We divide each feature into one of five classes: dependency (enumeration of
dependency triples), lexical (readings of words), n-gram (word and tag trigram
auxiliary distributions), rule (identifiers of grammar rules), and syntactic (ab-
stract syntactic features). Of these classes, the rule and syntactic features are
active during both parse disambiguation and fluency ranking.

For the quantitative analysis, we train a model for each selection step, for
models having the 0 to 300 most discriminative features. Using these models
we compute c(fi), for each feature fi in among the 300 features. We then
simply calculate the per-class distribution by summing the contributions of the
features of each particular class.

1Computing a statistic such as the correlation of feature contributions of directional mod-
els and reversible models would show whether directional models and reversible models use
the same features with approximately the same contribution, whereas we are interested in
the actual per-class shift that occurs. In both extremes (the reversible model uses more
reversible features or the reversible model uses more directional features), we would actually
expect a low correlation.
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7.2.1 Parse disambiguation

Table 7.1 provides class-based counts of the 300 most discriminative features
for the parse disambiguation and reversible models. Since the n-gram features
are not active during parse disambiguation, they are not selected for the parse
disambiguation model. All other classes of features are used in the parse dis-
ambiguation model. The reversible model uses all classes of features.

Class Directional Reversible
Dependency 93 84
Lexical 24 24
N-gram 0 2
Rule 156 154
Syntactic 27 36

Table 7.1: Per-class counts of the best 300 features according to the grafting
method, for the directional parsing model and the reversible model.

Contributions per feature class in parse disambiguation are shown in Ta-
ble 7.2. In the directional parse disambiguation model, parsing-specific features
(dependency and lexical) account for 55% of the improvement over the uniform
model.

In the reversible model, there is a shift of contribution towards task-independent
features. When applying this model, the contribution of parsing-specific fea-
tures to the improvement over the uniform model is reduced to 45.79%.

We can conclude from the per-class feature contributions in the directional
parse disambiguation model and the reversible model, that the reversible model
does not put more emphasis on parsing-specific features. Instead, the opposite
is true: task-independent features are more important in the reversible model
than in the directional model.

Class Directional Reversible
Dependency 21.53 13.35
Lexical 33.68 32.62
N-gram 0.00 0.00
Rule 37.61 47.35
Syntactic 7.04 6.26

Table 7.2: Per-class contribution to the improvement of the model over the base
baseline in parse disambiguation, for the directional fluency ranking model and
the reversible model.
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7.2.2 Fluency ranking

Table 7.3 provides class-based counts of the 300 most discriminative features of
the fluency ranking and reversible models. During fluency ranking, dependency
features and lexical features are not active.

Class Directional Reversible
Dependency 0 84
Lexical 0 24
N-gram 2 2
Rule 181 154
Syntactic 117 36

Table 7.3: Per-class counts of the best 300 features according to the grafting
method.

Table 7.4 shows the per-class contribution to the improvement in accuracy
for the directional and reversible models. Since the dependency and lexical
features are not active during fluency ranking, it may come as a surprise that
their contribution is negative in the reversible model. Since they are used
for parse disambiguation, they have an effect on weights of task-independent
features. This phenomenon did not occur when using the reversible model for
parse disambiguation, because the features specific to fluency ranking (n-gram
features) were selected as the most discriminative features in the reversible
model. Consequently, the reversible models with one and two features were
uniform models from the perspective of parse disambiguation.

Class Directional Reversible
Dependency 0.00 -4.21
Lexical 0.00 -1.49
N-gram 81.39 83.41
Rule 14.15 16.45
Syntactic 3.66 4.59

Table 7.4: Per-class contribution to the improvement of the model over the
baseline in fluency ranking.

Since active features compensate for this loss in the reversible model, we
cannot directly compare per-class contributions. To this end, we normalize
the contribution of all positively contributing features, leading to table 7.5.
Here, we can see that the reversible model does not shift more weight towards
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task-specific features. On the contrary, there is a mild effect in the opposite
direction here as well.

Class Directional Reversible
N-gram 81.39 79.89
Rule 14.15 15.75
Syntactic 3.66 4.39

Table 7.5: Classes giving a net positive distribution, with normalized contribu-
tions.

7.3 Qualitative analysis of reversible models

While the quantitative evaluation shows that task-independent features remain
important in reversible models, we also want to get an insight into the actual
features that were used. Since it is unfeasible to study the 300 best features in
detail, we extract the 20 best features.

Grafting-10 is too course-grained for this task, since it selects the first 10
features solely by their gradients, while there may be overlap in those features.
To get the most accurate list possible, we perform grafting-1 selection to extract
the 20 most effective features. We show these features in table 7.6 with their
polarities. The polarity indicates whether a feature is an indicator for a good
(+) or bad (-) derivation.

We now provide a description of these features by category.

Word/tag trigrams The most effective features in fluency ranking are the n-
gram auxiliary distributions (1, 3). The word n-gram model settles preferences
with respect to fixed expressions and common word orders. It also functions
as a (probabilistic) filter of archaic inflections and incorrect inflections that are
not known to the Alpino lexicon. The tag n-gram model helps in picking out
a sequence of part-of-speech tags that is plausible.

Frame selection Various features assist in the selection of proper subcatego-
rization frames for words. This currently affects parse disambiguation mostly.
There is virtually no ambiguity of frames during generation, and a stem/frame
combination normally only selects one inflection. The most effective feature for
frame selection is 2, which is an auxiliary distribution of words and correspond-
ing frames based on a large automatically annotated corpus. Other effective
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Rank Polarity Feature
1 + word trigram distribution
2 + word frame distribution
3 + tag trigram distribution
4 - rule(np n)
5 + rule in context(np det n,2,n n pps)
6 - parallel conjunction depth
7 + rule in context(vp mod v,3,vproj vc)
8 - rule in context(vp arg v(np),2,vproj vc)
9 - frame(adj)
10 + rule in context(vp mod v,2,optpunct(e))
11 - syntactic(non subj np topic)
12 + rule(n adj n)
13 + tag dependency tag(prep,hd/pc,verb)
14 + rule(optpunct(e))
15 + word tag dependency tag(van,prep,hd/mod,noun)
16 + tag dependency tag(noun,hd/su,verb)
17 + parallel conjunction construction
18 - rule(vp v mod)
19 + tag dependency tag(prep,hd/mod,verb)
20 - frame(verb(intransitive))

Table 7.6: The twenty most discriminative features of the reversible model,
and their polarities.

features indicate that readings as an adjective (9) and as an intransitive verb
(20) are not preferred.

Modifiers Feature 5 indicates the preference to attach prepositional phrases
to noun phrases. However, if a modifier is attached to a verb, we prefer readings
and realizations where the modifier is left-adjoining rather than right-adjoining
(7, 18, 19). For instance, zij heeft met de hond gelopen ‘she has with the dog
walked’ is more fluent than zij heeft gelopen met de hond ‘she has walked with
the dog’. Finally, feature 15 gives preference to analyses where the preposition
van is a modifier of a noun.

Conjunctions Two of the twenty most discriminative features involve con-
junctions. The first (6) is a dispreference for conjunctions where conjuncts
have a varying depth. In conjunctions, the model prefers derivations where all
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conjuncts in a conjunction have an equal depth. The other feature 17 gives a
preferences to conjunctions with parallel conjuncts — conjunctions where every
conjunct is constructed using the same grammar rule.

Punctuation The Alpino grammar is very generous in allowing optional
punctuation. An empty punctuation sign is used to fill grammar rule slots
when no punctuation is used or realized. Two features indicate preferences
with respect to optional punctuation. The first (10) gives preference to filling
the second daughter slot of the vp mod v with the empty punctuation sign.
This implies that derivations are preferred where a modifier and a verb are not
separated by punctuation. The second feature 14 indicates a general preference
for the occurrence of empty optional punctuation in the derivation tree.

Subjects/objects In Dutch, subject fronting is preferred over object fronting.
For instance, Spanje won de wereldbeker ‘Spain won the World Cup’ is preferred
over de wereldbeker won Spanje ‘the World Cup won spain’. Feature 8 will in
many cases contribute to the preference of having topicalized noun phrase sub-
jects. It disprefers having a noun phrase left of the verb. For example, zij heeft
met de hond gelopen ‘she has with the dog walked’ is preferred over met de
hond heeft zij gelopen ‘with the dog she has walked’. Feature 11 encodes the
preference for subject fronting, by penalizing derivations where the topic is a
non-subject noun phrase.

Other syntactic preferences The remaining features are syntactic prefer-
ences that do not belong to any of the previous categories. Feature 4 indicates
a dispreference for derivations where bare nouns occur. Feature 12 indicates a
preference for derivations where a noun occurs along with an adjective. Finally,
feature 13 gives preference to the prepositional complement (pc) relation if a
preposition is a dependent of a verb and lexical analysis shows that the verb
can combine with that prepositional complement.

We can conclude from this description of features that many of the features
that are paramount to parse disambiguation and fluency ranking are task-
independent, modeling phenomena such as subject/object fronting, modifier
adjoining, parallelism and depth in conjunctions, and the use of punctuation.

7.4 Conclusion

In this chapter we have used feature selection techniques for maximum entropy
modeling to analyze the hypothesis that the models in reversible stochastic
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attribute-value grammars use task-independent features. We used grafting to
select the most effective features for parse disambiguation, fluency ranking,
and reversible models. In our quantitative analysis we have shown that the
reversible model does not put more emphasis on task-specific features. In fact,
the opposite is true: in the reversible model task-independent features become
more defining than in the directional models.

We have also provided a qualitative analysis of the twenty most effective
features, showing that many of these features are relevant to both parsing and
generation. Effective task-independent features for Dutch model phenomena
such as subject/object fronting, modifier adjoining, parallelism and depth in
conjunctions, and the use of punctuation.
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Chapter 8

Error mining

8.1 Introduction

The coverage (and accuracy) of a grammar are crucial to the success of parsers
or generators written for that grammar. Improving coverage increases the
number of sentences that a parser can analyze and the variety of sentences
that can be generated. However, finding incomplete descriptions by hand can
become a tedious task once a grammar has evolved.

In this chapter, we describe error mining, a technique that can be used
to detect incomplete descriptions in a grammar or lexicon by parsing a large
number of unannotated sentences. Error mining is closely related to classifica-
tion — if we divide the sentences of a corpus in a bag of sentences for which
the parser could find an analysis spanning the full sentence (henceforth called
parsable) and a bag of unparsable sentences, we could construct a binary clas-
sifier that predicts the class of a sentence (parsable or unparsable). However,
in this case we are not so much interested in classifying sentences, but in the
features that indicate that a sentence is in the class ‘unparsable’, since these
features could point to the source of a parsing error. An error miner performs
two tasks:

• Feature extraction identifies superficial properties of sentences (such
as sequences of words or part-of-speech tags), that are promising features.

• Feature selection: identifies the features that are the most discrimina-
tive for the ‘unparsable’ class.

Error mining can be used in addition to more traditional methods of gram-
mar engineering, such as the manual construction of a set of example sentences
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1. @ , schreewt @ , screams
2. het libido the[neut] libido
3. de piste the circus-ring/pissed
4. goeden huize good[+infl] house[+infl]
5. tenzij . unless .

Table 8.1: Example output of the error miner of van Noord (2004).

with the corresponding annotations to maintain or improve the coverage and
accuracy of the parser [Nerbonne et al., 1993]. These methods are valuable
too, but the error mining technique has the advantage that it can be applied
to (large amounts of) new, previously unseen sentences. As a result, it can dis-
cover errors that need not have been anticipated, and which are not reflected
in existing treebanks. For this reason, error mining is also particularly useful
for adapting the parser to new domains and text genres.

As illustrated in van Noord [2004], an error miner is able to find quite
distinct types of problems. Some typical examples reported in van Noord [2004]
are repeated in Table 8.1, listing the features that indicated that problem. Here
the character @ is used to indicate a sentence boundary. The examples illustrate
the following types of problems:

1. Mistakes by the tokenizer and sentence splitter. In this example, a sen-
tence boundary has been introduced wrongly after a direct quote, for
instance in a sentence such as:

(1) Je
You

bent
are

gek!,
crazy!,

schreeuwt
yells

Franca.
Franca.

(Franca yells: You are crazy!)

2. Mistakes in the lexicon (e.g., wrong attribute-value specification for a
syntactic property such as gender or agreement). In this case, the noun
‘libido’ was specified as non-neuter in the lexicon, whereas it is typically
used with the neuter determiner in the corpus.

3. Omissions in the lexicon. In this case, the lexicon did contain ‘piste’,
the past tense form of the verb ‘pissen’, but it did not contain the more
frequent noun ‘piste’ (circus ring).

4. Frozen expressions with idiosyncratic syntactic properties. The phrase
‘van goeden huize’ (‘of good family’) is a frozen expression with archaic
inflection.
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5. Incomplete grammatical descriptions. In the grammar, subordinate coor-
dinators always need to combine with a complement. The word sequence
‘tenzij .’ is due to sentences in which a subordinate coordinator occurs
without such a complement:

(2) Gij
Thou

zult
shallt

niet
not

doden,
kill,

tenzij.
unless.

In section 8.2 we first give a description of what is expected of feature
extraction and feature selection components. We will then review the error
miners of van Noord [2004] (Section 8.3.1) and Sagot and de la Clergerie [2006]
(Section 8.3.2). Then, we discuss our new error miner in Section 8.4, which
combines the strengths of the former proposals [de Kok et al., 2009]. Since error
mining is most effective when huge corpora are parsed, some optimizations
are required to keep error mining tractable. In Section 8.6 we discuss these
optimizations. Previously, error miners have only been evaluated qualitatively.
In Section 8.7 we discuss a simple evaluation method based on precision and
recall. Finally, we compare the three error miners discussed in this chapter in
Section 8.8.

8.2 Preliminaries

8.2.1 Feature selection

One of the tasks of an error miner is feature selection. It may seem attrac-
tive to apply one of the selection methods that was discussed in Chapter 6.
The problem of applying correlation selection or one of the maximum entropy
methods is, however, the size of the datasets and feature space used in error
mining. For example, in the experiments that we discuss in this chapter, we
use a corpus of 103 million sentences. The feature space in these experiments
consisted of millions of features. In comparison, the training set in our fluency
ranking experiments consisted of approximately 200,000 unique derivations af-
ter sampling, and nearly 4800 features before applying feature selection. The
correlation and maximum entropy-based selection methods already required
hours or days (depending on the method and granularity) to complete on a
dataset and feature space that is orders of magnitude smaller than those in
error mining.

Since it is infeasible to apply normal feature selection methods, error mining
uses shallower methods for feature selection. What binds the methods discussed
in this chapter is that they all use the notion of suspicion. The suspicion of
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a feature is a number between 0 and 1 that provides an estimation of how
effective that feature is in characterizing an unparsable sentence. If a feature
has a suspicion of zero, it does not discriminate unparsable sentences at all. If
a feature has a suspicion of one, it is believed to be a perfect discriminator for
unparsable sentences. A feature with a high suspicion will typically point to a
source of parsing errors.

8.2.2 Feature extraction

Given that the input to error mining consists of unannotated sentences, the
error miner has to rely on surface properties of sentences. Consequently, the
features in error mining are usually words and n-grams. Miners can also use
other features that can be extracted with other natural language processing
components that do not require parsing, such as part-of-speech tags.

In order to select features that are effective and not overlapping, feature
extraction may already use a simple form of pre-selection to filter out features
that do not look promising.

8.3 Previous work

In the literature, two promising error mining techniques have been been pro-
posed. van Noord [2004] uses word n-grams of arbitrary length as its features
and implements a simple, frequency-based feature selection method. Sagot and
de la Clergerie [2006] proposes a more sophisticated iterative selection method.
However, that method provides only rudimentary feature extraction. In this
section, we will describe these proposals. However, in contrast to van Noord
[2004] and Sagot and de la Clergerie [2006], we will formulate error mining
explicitly in terms of feature selection and extraction.

8.3.1 Suspicion as a ratio

van Noord [2004] introduces the notion of parsability. The parsability of a
feature, e.g., a word or a bigram, is the ratio of succesfully parsed sentences
with regards to all sentences that contain this feature. Following Sagot and
de la Clergerie [2006], we define the inverse of parsability, suspicion. In the
introduction of this chapter, it was assumed that the corpus that is being
mined can be divided into parsable and unparsable sentences. In the following
description we use an error function error(s), which is zero if the sentence s was
parsable or one if it was not parsable. The use of an error function opens the
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possibility of refining feature selection if more information about the severity
of the parse error is available.

The suspicion of the feature fi, susp(fi), then simply reduces to the mean
error score of the sentences in which the feature fi occurs. Here, S is the bag
of sentences, and fi(s) is the number of occurrences of feature fi in sentence s.

susp(fi) =

∑
s∈S k(fi(s)) · error(s)∑

s∈S k(fi(s))
(8.1)

where

k(fi(s)) =

{
1 if fi(s) > 0

0 otherwise
(8.2)

A variation of this method, which is actually used in the software provided
for van Noord [2004], is to use the value of fi(s) directly:

susp(fi) =

∑
s∈S fi(s) · error(s)∑

s∈S fi(s)
(8.3)

We use the latter method when we evaluate the miner of van Noord [2004] in
Section 8.7.

A feature can be a single word, but it can also be an n-gram. The inclusion
of n-grams has been shown in van Noord [2004] to be very beneficial. In fact,
all of the examples that were discussed in the introduction of this chapter
(Table 8.1) are bigrams.

As another motivating example, consider the expression ‘by and large’ in
English. Suppose that this expression is not treated in the dictionary, then
presumably the parser will typically fail for sentences which include this tri-
gram. As a result, the suspicion of this trigram will be very high. On the other
hand, because each of the words ‘by’, ‘and’, and ‘large’ are very frequent in
their normal usage, the suspicion of these individual words will be about as low
as most other words. If no n-gram features are used, this systematic error will
go unnoticed.

As an unwanted side-effect, note that all longer n-grams which contain
the trigram ‘by and large’ will likewise get a very high suspicion. This is
undesirable. Therefore, if n-grams are included as features in the error miner,
a selection criterion is required. van Noord [2004] proposes to add a longer
n-gram only if its suspicion is higher than all of the n-grams it contains:

susp(wh...wi...wj ...wk) > susp(wi...wj) (8.4)
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As a result, there usually is only a small number of long n-grams which
the error miner needs to take into account. This also implies that there is
no need to set a value for n a priori - but rather the data determines which
longer n-grams are required. As a further heuristic, if a longer n-gram satisfies
the selection criterion, then the corresponding shorter n-grams are no longer
considered as features for the error miner.

The resulting error mining technique appears to work well in practice. Yet,
the method can be criticized because in the case that a sentence cannot be
parsed correctly, all the words and n-grams which occur in that sentence are
blamed for it. So it can happen that a feature obtains a high suspicion, simply
because it co-occurs accidentally with real problematic features. In other words,
the feature selection in this miner is limited, since it used a simple ratio.

8.3.2 Iterative error mining

The error mining method described by Sagot and de la Clergerie [2006] alle-
viates the problem of accidentally suspicious features. It does so by taking
the following characteristics of suspicious features into account during feature
selection:

1. If a feature occurs in parsable sentences, it becomes less likely that it is
the cause of a parsing error.

2. The suspicion of a feature depends on the suspicions of other features in
the sentences where it occurs.

3. A feature observed in a shorter sentence is initially more suspicious than
a feature observed in a longer sentence.

These three characteristics make the suspicion of a feature dependent on its
sentential context. To account for locality, this method introduces the notion
of observation suspicion, susp(fi(s)) which is the suspicion of feature fi in
sentence s. The (global) suspicion of a feature is defined as the average of all
observation suspicions,

susp(fi) =

∑
s∈S susp(fi(s))∑

s∈S fi(s)
(8.5)

The observation suspicions are dependent on the feature suspicions, mak-
ing the method iterative. The observation suspicion is defined as the feature
suspicion, normalized by suspicions of the other features that are active within
the same sentence:
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suspn+1(fi(s)) =
error(s) · suspn+1(fi)∑

fj∈F (s) susp
n+1(fj)

(8.6)

Here, F (s) is the set of features that are active (have a non-zero frequency) in
sentence s. Since the mining procedure is iterative, the suspicion of a feature
is redefined to depend on the observation suspicions of the previous iteration:

suspn+1(fi) =

∑
s∈S suspn(fi(s))∑

s∈S fi(s)
(8.7)

Given the recursive dependence between feature suspicions and observation
suspicions, starting and stopping conditions are defined for iterative mining.
The observation suspicions are initialized by uniformly distributing suspicion
over the features that are observed in a sentence:

susp0(fi(s)) =
error(s) · fi(s)∑

fj∈F (s) fj(s)
(8.8)

Mining is stopped when the process reaches a fixed point where the feature
suspicions have stabilized.

This method addresses the main shortcoming of ratio-based error mining.
However Sagot and de la Clergerie [2006] only use this method to mine unigrams
and bigrams. They note that they have attempted to mine longer n-grams, but
encountered data sparseness problems. Also, their work does not provide any
criteria of when bigrams are to be preferred as features over unigrams.

8.4 N-gram expansion

8.4.1 Inclusion of n-grams

While the iterative miner described by Sagot and de la Clergerie [2006] only
mines on features that are word unigrams and bigrams, our experience with the
miner described by van Noord [2004] has shown that including n-grams that
are longer than bigrams as features during mining can capture many additional
phenomena. Reconsider the aforementioned trigram ‘by and large’. If this
expression is the cause of a parsing error, then the words ‘by’, ‘and’ and ‘large’
have very low suspicions during error mining, while ‘by and large’ itself has a
very high suspicion.
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8.4.2 Suspicion sharing

It may seem attractive to use every possible n-gram in a sentence as a feature
in iterative mining. However, this does not yield interesting results because
suspicion will be shared between competing features. For instance, if use of
the word ‘velar’ as an adjective in the trigram ‘voiced velar stop’ caused a
parsing error, the trigram, and its bigrams ‘voiced velar’ and ‘velar stop’, will
be suspicious as well. In such cases multiple features compete for suspicion,
and the adjective ‘velar’ will have less opportunity to be detected as the cause
of the errors.

Another concern is that the number of n-grams within a sentence grows at
such a rate (

∑n−1
i=0 n − i) that the feature space becomes too large for feature

selection to be tractable.

8.4.3 Expansion method

To avoid the sharing of suspicion between features, we propose a feature ex-
traction method that adds and expands n-grams when it is deemed useful. This
method iterates through a sentence unigram by unigram and expands unigrams
to longer n-grams when there is sufficient evidence that the expansion will be
useful. We then combine this feature extractor with the selection method of
Sagot and de la Clergerie [2006]. Within this extractor, we use the definition
of suspicion that was described in Section 8.3.1.

The method is based on the following observation: if we consider the word
bigram w1, w2, either one of the unigrams or the bigram can be problematic.
If one of the unigrams is problematic, the bigram will inherit suspicion of the
problematic unigram. If the bigram is problematic, the bigram will have a
higher suspicion than both of its unigrams. Consequently, we will want to
expand the unigram w1 to the bigram w1, w2 if the bigram is more suspicious
than both of its unigrams. If the bigram is just as suspicious as one of its
unigrams, such an expansion is not necessary, since we want to point to the
cause of the parsing error as exactly as possible.

The same procedure is applied to longer n-grams. For instance, the ex-
pansion of the bigram w1, w2 to the trigram w1, w2, w3 is only permitted if
w1, w2, w3 is more suspicious than its bigrams. Given that the suspicion of
w3 aggregates to w2, w3, we account for w3 and w2, w3 simultaneously in this
comparison.

The general criterion is that the expansion to an n-gram i..j is permitted
when susp(i..j) > susp(i..j-1) and susp(i..j) > susp(i+1..j). This gives us a bag
of n-grams w1..wx, w2..wy, ... w|si|..w|si| that represents sentence si optimally.
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This method differs from that of van Noord [2004] in that the method of
van Noord [2004] considers all n-grams in a sentence, while our method does
not consider wi..wj ..wk if the expansion to wi..wj failed.

In Table 8.2, we illustrate our method to expand the n-gram feature ‘voor’
to ‘voor uur van de’ in the following sentence:

(3) De
The

Disney-topman
Disney top exective

staat
stands

voor
before

uur
hour

van
of

de
the

waarheid.
truth.

(Lit: It’s the hour of truth for the Disney top executive.)

The counts in this example are based on real data.

Expansion susp(i..j) susp(i..j−1) susp(i+1..j) Expand

voor → voor uur 48
50

778949
9590152

116975
1563498 yes

voor uur van 40
40

48
50

856
9779 yes

voor uur van de 30
30

40
40

297
3748 no

Table 8.2: Expansion of the feature ‘voor’ to ‘voor uur van’.

Our expansion method also works with features that incorporate other kinds
of surface information, such as part-of-speech tags. In such cases, we prefer to
expand a feature using the most general type of information that is available.
If w is a word and p a part-of-speech tag, and we are trying to expand the
feature w1, w2 using either p3 or w3, the following procedure is followed. First
we attempt to expand to w1, w2, p3, since a part-of-speech tag is more general
than a word. This expansion is allowed when susp(w1, w2, p3) > susp(w1, w2)
and susp(w1, w2, p3) > susp(w2, p3). If the expansion is not allowed, then
expansion to w1, w2, w3 is attempted. As a result, mixed patterns emerge that
are as general as possible.

8.4.4 Data sparseness

While this expansion method looked promising in our initial experiments, we
found it to be too eager. This eagerness is caused by sparsity in the data.
Since longer n-grams are less frequent, they also tend to be more suspicious
if they occur in unparsable sentences. The expansion criterion does not take
data sparseness into account.

We introduce an expansion factor to handle sparseness. This factor de-
pends on the frequency of an n-gram in the set of unparsable sentences, and
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asymptotically approaches one for higher frequencies. As a result the bur-
den of proof is inflicted on the expansion: the longer n-gram needs to be
relatively frequent or much more suspicious than its (n-1)-grams. The ex-
pansion criteria are changed to susp(i..j) > susp(i..j-1) · extFactor(i..j) and
susp(i..j) > susp(i+1..j) · extFactor(i..j), where

extFactor(i..j) = 1 + exp(−α
∑

s∈S

error(s) · fi..j) (8.9)

As we show in Section 8.8.2, α = 0.01 proved to be a good setting.

8.5 Scoring functions

After error mining, we can extract a list of forms, ordered by suspicion. How-
ever, normally we are interested in forms that are both suspicious and frequent.
Sagot and de la Clergerie [2006] proposed three scoring functions that can be
used to rank forms:

1. Concentrating on suspicions:

score(fi) = susp(fi) (8.10)

2. Concentrating on most frequent potential errors:

score(fi) = susp(fi) ·
∑

s∈S

fi(s) (8.11)

3. Balancing between these possibilities:

score(fi) = susp(fi) · ln(
∑

S∈S

fi(s)) (8.12)

Since the frequency of a form in parsable sentences is not relevant to error
mining, it is more interesting to focus on forms that are only frequent in un-
parsable sentences [de Kok et al., 2009]. In further experiments, we discovered
that it is best to give a penalty for occurrences in parsable sentences as well.
Some tokens, such as the start of sentence marker, have a low suspicion, but
a very high frequency. Such features would still show up in the mining results
when the number of occurrences in parsable sentences is not taken into ac-
count. We simply take such cases into account by subtracting the frequency of
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a feature in parsable sentences from the frequency of that feature in unparsable
sentences. Given the following definition of delta(f),

delta(fi) =
∑

s∈S,error(s)>0

fi(s) −
∑

s∈S,error=0

fi(s) (8.13)

we revise the second and third scoring functions to:

score(fi) = susp(fi) · delta(fi) (8.14)

score(fi) =

{
0 if delta(fi) ≤ 0

susp(fi) · (1 + ln(delta(fi))) if delta(fi) > 0
(8.15)

In the experiments later in this chapter, we use the scoring function that
performed the best for a specific error miner. In the case of the iterative miner
of Sagot and de la Clergerie [2006] and the miner proposed in this chapter, the
scoring function in Equation 8.14 was the most effective. For the miner of van
Noord [2006], the scoring function in Equation 8.15 performed the best.

8.6 Implementation

To be able to mine large corpora, we had to apply some interesting optimiza-
tions. We discuss some of these optimizations in this section.

8.6.1 Compact representation of data

During n-gram expansion (Section 8.4), the miner calculates ratio-based sus-
picions of n-grams using frequencies of n-grams in parsable and unparsable
sentences. An n-gram can (potentially) be expanded to have the same length
as the sentence. Consequently, it is not practical to store n-gram frequencies
in a hash table, since we would have to store every possible n-gram within the
corpus. Instead, we compute a suffix array [Manber and Myers, 1990] for the
parsable and unparsable sentences.1 A suffix array is an array that stores the
indices of the tokens in a corpus. The array is sorted such that the indices
point to the n-grams in the corpus in lexicographic order. The first column of
Table 8.3 shows the suffix array for the corpus ‘to be or not to be’. The corre-
sponding lexicographically sorted n-grams are shown in the second column.

1We use the suffix sorting algorithm by Peter M. McIlroy and M. Douglas McIlroy.
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Suffix array Corresponding n-gram

5 be
1 be or not to be
3 not to be
2 or not to be
4 to be
0 to be or not to be

Table 8.3: Suffix array for the corpus to be or not to be with the n-gram that
corresponds to each index.

We use suffix arrays differently than van Noord [2004], because our expan-
sion algorithm requires the parsable and unparsable frequencies of the (n-1)-
grams, and the second (n-1)-gram is not (necessarily) adjacent to the n-gram
in the suffix array. As such, we require random access to frequencies of n-grams
occurring in the corpus. We can compute the frequency of any n-gram by look-
ing up its first and last occurrence in the suffix array.2 For example, if we look
up ‘to be’ in the suffix array in Table 8.3 we will find that the fifth element is
the first occurrence of ‘to be’ and the sixth element the last. Consequently, we
know that the frequency of ‘to be’ is two. As van Noord [2004] we use perfect
hashing to represent tokens throughout the error miner. Since hash codes are
generally shorter than the average token length, this saves memory. Moreover,
it improves performance across the board, since integer comparisons are much
faster than string comparisons.

8.6.2 Determining ratios for pattern expansion

While suffix arrays provide a compact and relatively fast data structure for
looking up n-gram frequencies, they are not fit for determining the frequency
of mixed patterns, such as n-grams that consist of a mix of words and part-of-
speech tags. For instance, consider the expansion of het Adj in the sentence
het/Det grote/Adj huis/Noun is/Verb leeg/Adv ‘the big house is empty’. To
look up the frequencies of the competing features het Adj Noun and het Adj
huis we would need suffix arrays corresponding to two different corpora:

(4) a. . . . het Adj Noun . . .
b. . . . het Adj huis . . .

2Since the suffix array is sorted, finding the first and last occurrences is a binary search
in O(log(n)) time.
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Since we have this choice for every position of the corpus, we would need tn

different suffix arrays, where t is the number of types of information and n the
length of the corpus.

Since suffix arrays are not viable for looking up frequencies of such mixed
patterns, we use a different method for computing frequencies of mixed pat-
terns. First, we build a hash table for each type of information that can be
used in patterns. A hash table contains an instance of such information as a
key (e.g. a specific token or part-of-speech tag) and a set of corpus indices with
that instance as the value associated with that key. Then, we can look up the
frequency of a sequence i..j by calculating the set intersection of the indices of
j and the indices found for the sequence i..j-1, after incrementing the indices
of i..j-1 by one. Et cetera.

For example, if we want to obtain the frequency of het Adj huis using the
hash table in Table 8.4, we proceed as follows:

1. Look up the indices of het → {300, 766, 937, 1233}

2. Increment the indices by one → {301, 767, 938, 1235}

3. Compute the intersection of these indices and the indices of Adj →
{301, 767, 938, 1235} ∩ {767, 938, 1319} = {767, 938}

4. Increment the indices by one → {768, 939}

5. Compute the intersection these indices and the indices of huis → {768, 939}∩
{323, 768, 1844} = {768}

6. Obtain the frequency → |{768}| = 1

Instance Indices

het {300, 766, 937, 1233}
Adj {767, 938, 1319}
huis {323, 768, 1844}
...

...

Table 8.4: Example of a table with instances and their indices.

The complexity of calculating frequencies following this method is linear,
since the set of indices for a given instance can be retrieved with O(1) time
complexity, while both incrementing the set indices and set intersection can
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be performed in O(n) time. However, n can be very large — for instance, the
start of sentence marker forms a substantial part of the corpus and is looked
up once for every sentence. In our implementation we limit the time spent on
such patterns by caching very frequent bigrams in a hash table.

8.6.3 Suspicion purification

Since only one feature within a sentence will normally be responsible for a
parsing error, many features will have almost no suspicion at all. However,
during the mining process, their suspicions will be recalculated during every
cycle. Mining can be sped up considerably by removing features that have a
negligible suspicion. As an added advantage, it allows the suspicion of forms
that were near one to be exactly one, since their (negligible) competition is
removed.

In an experiment where we mined the Dutch Wikipedia corpus using n-gram
expansion and iterative mining, our error miner extracted 4.8 million features
that occurred 13.4 million times in unparsable sentences. When we mined the
same material and dropped features that converged to a suspicion lower than
0.001, error mining resulted in a set of 3.5 million features that occurred 4.0
million times in unparsable sentences. This shows that this suspicion purifi-
cation reduces the feature space considerably, leading to more efficient error
mining.

8.7 Evaluation

8.7.1 Methodology

In previous on error mining, error mining methods have been evaluated pri-
marily manually. Both van Noord [2004] and Sagot and de la Clergerie [2006]
conduct a qualitative analysis of highly suspicious features. But once one starts
experimenting with various extensions, such as n-gram expansion and expan-
sion factor functions, it is difficult to gauge the contribution of modifications
through a small-scale qualitative analysis.

To be able to evaluate changes to the error miner, we have supplemented
qualitative analysis with a automatic quantitative evaluation method. Such a
method should judge an error miner in line with the interests of a grammar
engineer:

• An error miner should return features that point to problems that occur
in a large number of sentences.
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• The features that are returned by the error miner should be as exact as
possible in pointing to the problem.

The first requirement is relatively easy to test — the error miner should
return features that occur in a relatively large number of unparsable sentences.
It is less clear how the second requirement should be tested, since it requires
that a human checks the features to be relevant. However, if we assume that
the quality of features correlates strongly to their discriminative power, then
we would expect a miner to return features that only occur in unparsable
sentences. These characteristics can be measured using the recall and precision
metrics from information retrieval:

R =
|{Sunparsable} ∩ {Sretrieved}|

|{Sunparsable}|
(8.16)

P =
|{Sunparsable} ∩ {Sretrieved}|

|{Sretrieved}|
(8.17)

Consequently, we can also calculate the f-score [van Rijsbergen, 1979]:

F − score =
(1 + β2) · (P ·R)

(β2 · P +R)
(8.18)

The f-score is often used with β = 1.0 to give equal weight to precision and
recall. In evaluating error mining, this can cater to cheating. For instance,
consider an error miner that recalls the start of sentence marker as the first
problematic feature. Such a strategy would instantly give a recall of 1.0, and if
the coverage of a parser for a corpus is relatively low, a relatively good initial
f-score will be obtained. For this reason, we give more bias to precision by
using β = 0.5.

8.7.2 Material

In our experiments we use the Flemisch Mediargus newspaper corpus. This
corpus consists of 103 million sentences (1.5 billion words). For 6.2% of the
sentences no full analysis could be found. Flemish is a variation of Dutch
written and spoken in Belgium, with a grammar and lexicon that deviates
slightly from standard Dutch. Previously, the Alpino grammar and lexicon
were never specifically modified for parsing Flemish.
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8.8 Results

In this section, we discuss the results of the quantitative and qualitative evalua-
tion. We will first compare the miners described in van Noord [2004] and Sagot
and de la Clergerie [2006]. Then, we examine the performance of the expansion
method that we proposed in this chapter and compare it to the competition.
Finally, we will conclude this section with an qualitative evaluation of iterative
error mining with our expansion method.

8.8.1 Iterative error mining

Our first interest was if, and how much iterative error mining outperforms
error mining with suspicion as a ratio. To test this, we compared the method
described by van Noord [2004] and the iterative error miner of Sagot and de la
Clergerie [2006]. For the iterative error miner we included all bigrams and
unigrams without further selection. Figure 8.1 shows the F-scores for these
miners after N retrieved features.

0 2000 4000 6000 8000 10000

0.
1

0.
2

0.
3

0.
4

0.
5

Number of features

F0
.5

 sc
or

e

Van Noord
Sagot/Clergerie

Figure 8.1: F-scores after retrieving N features for ratio-based mining, iterative
mining on unigrams and iterative mining on uni- and bigrams.

The iterative miner of Sagot and de la Clergerie [2006] clearly outperforms
the miner of van Noord [2004], despite the fact that the latter has a more
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sophisticated feature extraction method. That this happens is understandable
— suppose that 60% of the occurrences of a frequent feature is in unparsable
sentences. In such a case, the ratio-based miner would assign a suspicion of 0.6.
But, since the feature is relatively frequent, it would still be ranked very high,
even though there is plenty of evidence that it is not responsible for parsing
errors. This also manifests itself in the performance of scoring functions —
the ratio-based miner was the only miner to perform best with the scoring
function in Equation 8.15. This indicates that relying too much on frequencies
is dangerous in ratio-based mining. However, relying purely on suspicion would
return many forms with a low frequency.

Another interesting characteristic of these results are that the performance
of the error miners seems to fit a logarithmic function. This is not surprising,
since it shows that there are some very frequent errors and a long tail of less
frequent errors. The fact that there is a long tail of infrequent parsing errors
does not make the task of the grammar engineer hopeless. Our preliminary
experiments with pattern mining that we discuss later in this section, shows
that quite often infrequent word n-gram patterns can be combined into more
frequent mixed patterns.

8.8.2 N-gram expansion

In our second experiment, we compare the performance of iterative mining
on uni- and bigrams with an iterative miner that uses the n-gram expansion
algorithm that was described in section 8.4. However, before carrying out this
experiment, we need a proper value of α for the expansion factor. Figure 8.2
shows the performance of the iterative miners with n-gram expansion with a
varying value of α. We also show the performance of the n-gram expansion
method without the use of an expansion factor.

As we can see, the use of an expansion factor is clearly useful. The iterative
miner that applies n-gram expansion without an expansion factor, chooses n-
grams that are too specific and thus less frequent. Its performance is worse
than that of the miners that use an expansion factor for the first 10,000 forms.
The choice of an α value also influences the performance of the miner quite a
bit. For the present experiment, we settled on α = 0.01, which provides good
performance across the board.

In Figure 8.3, we compare our miner (α = 0.01) that uses word n-gram
expansion with the miner of Sagot and de la Clergerie [2006]. Here, we see
clearly that the inclusion of longer n-grams is beneficial to error mining, as
long as we are careful to expand n-grams only when it is proved to be useful.
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Figure 8.2: F0.5-scores after retrieving N features in iterative mining using word
n-gram expansion, with different expansion factors.

8.8.3 Manual analysis

We found many interesting longer n-grams in the results of the miner proposed
in this chapter that could not have been captured by the miner of Sagot and
de la Clergerie [2006]. Many of these examples are idiomatic expressions in
Flemish that were not described in the Alpino lexicon. For example:

• had er (AMOUNT) voor veil [had (AMOUNT) for sale]

• (om de muren) van op te lopen [to get terribly annoyed by]

• Ik durf zeggen dat [I dare to say that]

• op punt stellen [to fix/correct something]

• de daver op het lijf [shocked]

• (op) de tippen (van zijn tenen) [being very careful]

• ben fier dat [am proud of]

• Nog voor halfweg [still before halfway]
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Figure 8.3: F-scores after retrieving N features for the miner of Sagot and de la
Clergerie [2006] and the miner proposed in this chapter (with and without the
use of an expansion factor).

• (om duimen en vingers) van af te likken [delicious]

We also found longer n-grams describing valid Dutch grammatical construc-
tions that were not described by the Alpino grammar. For example:

• Het stond in de sterren geschreven dat [It was written in the stars that]

• zowat de helft van de [about half of the]

• er zo goed als zeker van dat [almost sure of]

• laat ons hopen dat het/dit lukt [let us hope that it/this works]

8.8.4 Pattern expansion

We have done some preliminary experiments with pattern expansion, allowing
for patterns consisting of words and part-of-speech tags. For this experiment we
trained a Hidden Markov Model part-of-speech tagger on the Dutch Eindhoven
corpus using a small tag set. We then extracted 50000 unparsable and about
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495000 parsable sentences from the Flemish Mediargus corpus. We then used
iterative mining with a variant of our feature extractor that supports patterns.

We will give two short examples of patterns that were extracted to give
an impression how patterns can be useful. A frequent pattern was doorheen
Noun (‘through’ followed by a (proper) noun). In Flemish a sentence such
as We reden met de auto doorheen Frankrijk ‘We drove with the car through
France’ is allowed, while in standard Dutch the particle heen is separated from
the preposition door. Consequently, the same sentence in standard Dutch is
We reden met de auto door Frankrijk heen. Mining purely on word n-grams
provided hints for this difference in Flemish through features such as doorheen
Krottegem, doorheen Engeland, doorheen Hawai, and doorheen Middelkerke,
but the pattern provides a more general description with a higher frequency.

Another pattern that was found is wegens Prep Adj (‘because of’ followed by
a preposition and an adjective).3 This pattern captures prepositional modifiers
where wegens is the head and the following words within the constituent form
an argument, such as in the sentence:

(5) Dat
That

idee
idea

werd
became

snel
soon

opgeborgen
archived

wegens
because of

te
too

duur
expensive

That idea was quickly rejected, because it was too expensive

This pattern provided a more general description of features such as wegens
te breed ‘because it is too wide’, wegens te deprimerend ‘because it is too
depressing’, and wegens te ondraaglijk ‘because it is too unbearable’. In fact,
there were 120 such word n-gram features that are condensed into the pattern
wegens Prep Adj.

Including patterns as feature is attractive because: it more accurately points
to the error in the grammar; it can expose itself better, since it has a higher
frequency; and it is less work for the grammar engineer, because he has to
inspect only one feature rather than 120 different features.

Since we are still optimizing the pattern expansion preprocessor to scale
to large corpora, we have not performed an automatic evaluation using larger
fragments of the Mediargus corpus yet.

8.9 Conclusions

In this chapter, we have combined iterative error mining with a new feature
extractor that includes n-grams of an arbitrary length and that are long enough

3The preposition can be considered an incorrect tagging for adverbial, as we will see in
the following examples.
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to capture interesting phenomena, but not longer. We dealt with the problem
of data sparseness by introducing an expansion factor that softens when the
expanded feature is very frequent.

In addition to the generalization of iterative error mining, we have intro-
duced a method for automatic evaluation that is based on the precision and
recall scores commonly used in information retrieval. This allows us to test
modifications to error minings quickly without going through the tedious task
of ranking and judging the results manually.

Using this automatic evaluation method, we have shown that iterative error
mining improves well upon ratio-based error mining. We have also shown that
the use of a smart feature extraction method improves error miners substan-
tially. The inclusion of longer n-grams captures many interesting problems that
could not be found if a miner restricted itself to words and word bigrams.

We have also shown preliminary work on a feature extractor that does not
just expand to word n-grams, but allows for more general patterns that can
incorporate additional information, such as part-of-speech tags and lemmas.
Our initial experiments with this feature extractor showed promising results.
However the performance of this extractor needs to be improved in order to be
able to use it on large corpora, such as the Mediargus corpus.

The error mining methods described in this chapter are generic, and can
be used for any grammar or parser, as long as the sentences within the corpus
can be divided into a list of parsable and unparsable sentences.
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Chapter 9

Conclusion

The overarching objective of this thesis is to demonstrate that it is possible to
make a system where a parser and generator share not only one grammar and
lexicon, but also one statistical model for parse disambiguation and fluency
ranking. To ensure that the development of such a formalism is not merely
a theoretical exercise, we stated that any proposal for a reversible statistic
model should fulfill two requirements: (1) the model should perform as well as
carefully developed parse disambiguation and fluency ranking models; and (2)
there should be a certain amount of integration between the tasks within that
model.

In this thesis, we proposed the Reversible Stochastic Attribute-Value Gram-
mar formalism (Chapter 5), that combines attribute-value grammar with one
model that can be used in parse disambiguation and fluency ranking. We also
demonstrated that Reversible Stochastic Attribute-Value Grammar satisfies the
aforementioned requirements. In the experiments of Chapter 5, we showed that
the reversible component does not perform significantly differently from com-
ponents that were specifically developed and trained for parse disambiguation
and fluency ranking. In Chapter 7 we isolated the most discriminative features
of reversible models and showed that features that are used in both directions
are used in reversible models. In fact, even more so than in directional models,
showing that there is indeed integration between both tasks.

To come to this conclusion, however, we needed a system that provides an
attribute-value grammar, a parser, a generator, and methods to find discrimina-
tive features. The Alpino system [van Noord, 2006] provides an attribute-value
grammar (Chapter 2) and parser for Dutch.

After providing an overview of attribute-value grammar in Alpino in Chap-
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ter 2, we introduced our generator for the Alpino grammar in Chapter 3. One
of the difficult challenges of generation is to reduce the search space enough
to make generation tractable. In this chapter, we introduced a new method
for top-down guidance in generation, semantic restriction. This method unifies
lexical items with the relevant portions of the input in order to guide genera-
tion. As a result, the construction of spurious items is nipped in the bud at
the earliest possible moment, namely during unification.

We introduced our fluency ranking model in Chapter 4. This model uses
maximum entropy modeling to exploit features that describe a derivation, such
as word and tag trigram models, rule enumerations, and deep syntactic features.
We evaluated the ranker and conducted an error analysis that shows that most
of the remaining errors were caused by limitations of the input representation,
rather than the ranker. We also provided a survey of methods to estimate the
probability of sentences, abstract representations and derivations in the training
data. We showed that the method that uses a uniform distribution for sentences
and abstract representations and binary quality indicators for events performed
significantly better than the other methods. As an additional benefit, this
method does not skew the training data in favor of parse disambiguation or
fluency ranking in reversible models.

To verify which features are effective in parse disambiguation, fluency rank-
ing, and reversible models, we applied feature selection. In Chapter 6, we
compared our own correlation selection method and four other selection meth-
ods. The grafting method [Perkins et al., 2003] was shown to be the most
effective feature selection method in both parse disambiguation and fluency
ranking. We then used this method to provide an extensive analysis of the
most discriminative features in fluency ranking and showed that the fluency of
a sentence can be described by a small number of features that model word and
part-of-speech trigram distributions, topicalization, modifier adjoining, and or-
dering in the middle field.

Finally, in Chapter 8 we proposed a generalized error miner, that can detect
shortcomings in a grammar or lexicon by using a large number of sentences that
were not manually annotated. Our proposal differs from previous work in that
it extracts mixed patterns of an arbitrary length and is well-equipped to deal
with data sparsity. We compare this error miner with other error miners using
a new quantitative evaluation method that takes the concerns of grammar
engineers into account. Using this evaluation method, we show that our error
miner consistently outperforms the competition.
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Samenvatting in het
Nederlands

Het overkoepelende doel van dit proefschrift is aan te tonen dat het mogelijk
is een systeem te maken waarin een zinsontleder en zinsgenerator niet alleen
een grammatica en lexicon delen, maar ook één statistisch model voor disam-
biguatie van ontleedde zinnen (parse disambiguatie) en het naar vloeiendheid
ordenen van gegenereerde zinnen (fluency ranking). Om te voorkomen dat de
ontwikkeling van een dergelijk formalisme slechts een theoretische exercitie is,
verwachten we dat zo’n reversibel statistisch model voldoet aan twee vereisten:
(1) het model moet even goed presteren als modellen die specifiek voor parse
disambiguatie en fluency ranking ontwikkeld zijn; en (2) er moet enige mate
van integratie zijn tussen deze taken in een reversibel model.

In dit proefschrift introduceren we het Reversible Stochastic Attribute-
Value Grammar formalisme (Hoofdstuk 5). Dit model combineert attibuut-
waarde grammatica’s met één model voor parse disambiguatie en fluency rank-
ing. We tonen aan dat Reversible Stochastic Attribute-Value Grammar aan
de bovengenoemde voorwaarden voldoet. In de experimenten in Hoofdstuk 5
laten we zien dat het omkeerbare component niet significant anders presteert
dan componenten die specifiek voor parse disambiguatie en fluency ranking
ontwikkeld zijn. In Hoofdstuk 7 isoleren we de meest onderscheidende eigen-
schappen van omkeerbare modellen. Aan de hand hiervan tonen we aan dat
eigenschappen die zowel in parse disambiguatie als in fluency ranking actief
zijn, daadwerkelijk in het omkeerbare model gebruikt worden.

Om tot deze conclusie te kunnen komen hadden we echter een systeem
nodig dat een attribuut-waarde grammatica, een parser en een generator biedt,
alsmede methodes om onderscheidende eigenschappen in modellen te vinden.
Het Alpino systeem [van Noord, 2006] biedt een attribuut-waarde grammatica
(Hoofdstuk 2) en ontleder voor het Nederlands.
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Nadat we in Hoofdstuk 2 het attribuut-waarde grammatica formalisme in
Alpino hebben beschreven, introduceren we in Hoofdstuk 3 onze generator voor
de Alpino grammatica. Eén van de uitdagingen van generatie is de zoekruimte
zodanig te beperken dat generatie uitvoerbaar is. In dit hoofdstuk introduc-
eren we een nieuwe methode voor het begeleiden van generatie, semantische
restrictie. Deze methode unificeert lexicale items met de relevante delen van de
invoer om generatie te sturen. Het resultaat is dat de constructie van incorrecte
items zo vroeg mogelijk afgebroken wordt, namelijke gedurende unificatie.

In Hoofdstuk 4 introduceren we ons model voor fluency ranking. Dit model
gebruikt zogenaamdemaximum entropy modellen om features te kunnen benut-
ten die een derivatie beschrijven, zoals: woord en tag trigram modellen, opsom-
mingen van grammaticaregels en diepe syntactische eigenschappen. We hebben
de rangschikker geëvalueerd en hebben een foutanalyse uitgevoerd, die aantoont
dat de meeste van de overblijvende fouten veroorzaakt zijn door beperkingen
van de invoerrepresentatie. We hebben ook verschillende methodes vergeleken
voor het schatten van waarschijnlijkheden van zinnen, abstracte representaties,
en derivaties in de trainingsdata. We hebben aangetoond dat de methode die
een uniforme distributie voor zinnen en abstracte representaties gebruikt signif-
icant beter werkt dan de andere methods. Een bijkomstig voordeel is dat deze
methode de trainingsdata niet vervormt ten gunste van parse disambiguatie of
fluency ranking in omkeerbare modellen.

Om te controleren welke features effectief zijn in parse disambiguatie, flu-
ency ranking en omkeerbare modellen, hebben we feature selectie toegepast. In
Hoofdstuk 6 hebben we onze correlatie-selectie methode en vier andere meth-
odes vergeleken. We hebben aangetoond dat de grafting methode [Perkins
et al., 2003] de meest effectieve methode is voor zowel parse disambiguatie als
fluency ranking. We hebben deze methode vervolgens gebruikt om een uitge-
breide analyse te maken van de meest onderscheidende eigenschappen in flu-
ency ranking. Deze analyse toont aan dat de vloeiendheid van een zin geschat
kan worden met een klein aantal eigenschappen, zoals eigenschappen die de
distributie van woord en part-of-speech trigrammen, topicalisatie, de ordening
van adjuncten en de ordening in het middenveld beschrijven.

Tenslotte hebben we in Hoofstuk 8 een error miner voorgesteld die teko-
rtkomingen en fouten in een grammatica of een lexicon kan detecteren met
behulp van een groot aantal ongeannoteerde zinnen. Ons voorstel verschilt van
voorgaand werk, omdat het gemengde patronen van een arbitraire lengte kan
vinden en goed om kan gaan met schaarste in de data. We vergelijken onze en
andere error miners met behulp van een nieuwe kwantitatieve evaluatiemeth-
ode, die rekening houdt met de behoeften van grammatica-ontwikkelaars. Ver-
volgens tonen we met behulp van deze evaluatiemethode aan dat onze error
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miner consistent beter presteert dan de competitie.



202 SAMENVATTING IN HET NEDERLANDS



Groningen Dissertations in
Linguistics (Grodil)

1. Henriëtte de Swart (1991). Adverbs of Quantification: A Generalized Quantifier
Approach.

2. Eric Hoekstra (1991). Licensing Conditions on Phrase Structure.

3. Dicky Gilbers (1992). Phonological Networks. A Theory of Segment Representation.

4. Helen de Hoop (1992). Case Configuration and Noun Phrase Interpretation.

5. Gosse Bouma (1993). Nonmonotonicity and Categorial Unification Grammar.

6. Peter Blok (1993). The Interpretation of Focus: an epistemic approach to pragmatics.

7. Roelien Bastiaanse (1993). Studies in Aphasia.

8. Bert Bos (1993). Rapid User Interface Development with the Script Language Gist.

9. Wim Kosmeijer (1993). Barriers and Licensing.

10. Jan-Wouter Zwart (1993). Dutch Syntax: A Minimalist Approach.

11. Mark Kas (1993). Essays on Boolean Functions and Negative Polarity.

12. Ton van der Wouden (1994). Negative Contexts.

13. Joop Houtman (1994). Coordination and Constituency: A Study in Categorial
Grammar.

14. Petra Hendriks (1995). Comparatives and Categorial Grammar.

15. Maarten de Wind (1995). Inversion in French.

16. Jelly Julia de Jong (1996). The Case of Bound Pronouns in Peripheral Romance.

17. Sjoukje van der Wal (1996). Negative Polarity Items and Negation: Tandem
Acquisition.

18. Anastasia Giannakidou (1997). The Landscape of Polarity Items.

19. Karen Lattewitz (1997). Adjacency in Dutch and German.

20. Edith Kaan (1997). Processing Subject-Object Ambiguities in Dutch.

21. Henny Klein (1997). Adverbs of Degree in Dutch.

22. Leonie Bosveld-de Smet (1998). On Mass and Plural Quantification: The Case of
French ‘des’/‘du’-NPs.

23. Rita Landeweerd (1998). Discourse Semantics of Perspective and Temporal Structure.

203



204 GRODIL

24. Mettina Veenstra (1998). Formalizing the Minimalist Program.

25. Roel Jonkers (1998). Comprehension and Production of Verbs in Aphasic Speakers.

26. Erik F. Tjong Kim Sang (1998). Machine Learning of Phonotactics.

27. Paulien Rijkhoek (1998). On Degree Phrases and Result Clauses.

28. Jan de Jong (1999). Specific Language Impairment in Dutch: Inflectional Morphology
and Argument Structure.

29. Hae-Kyung Wee (1999). Definite Focus.

30. Eun-Hee Lee (2000). Dynamic and Stative Information in Temporal Reasoning:
Korean Tense and Aspect in Discourse.

31. Ivilin Stoianov (2001). Connectionist Lexical Processing.

32. Klarien van der Linde (2001). Sonority Substitutions.

33. Monique Lamers (2001). Sentence Processing: Using Syntactic, Semantic, and
Thematic Information.

34. Shalom Zuckerman (2001). The Acquisition of “Optional” Movement.

35. Rob Koeling (2001). Dialogue-Based Disambiguation: Using Dialogue Status to
Improve Speech Understanding.

36. Esther Ruigendijk (2002). Case Assignment in Agrammatism: a Cross-linguistic
Study.

37. Tony Mullen (2002). An Investigation into Compositional Features and Feature
Merging for Maximum Entropy-Based Parse Selection.

38. Nanette Bienfait (2002). Grammatica-onderwijs aan allochtone jongeren.

39. Dirk-Bart den Ouden (2002). Phonology in Aphasia: Syllables and Segments in Level-
specific Deficits.

40. Rienk Withaar (2002). The Role of the Phonological Loop in Sentence
Comprehension.

41. Kim Sauter (2002). Transfer and Access to Universal Grammar in Adult Second
Language Acquisition.

42. Laura Sabourin (2003). Grammatical Gender and Second Language Processing: An
ERP Study.

43. Hein van Schie (2003). Visual Semantics.
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