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Abstract

In this paper, we describe a statistical deep syntactic transfer decoder that
is trained fully automatically on parsed bilingual corpora. Deep syntac-
tic transfer rules are induced automatically from the f-structures of a LFG
parsed bitext corpus by automatically aligning local f-structures, and induc-
ing all rules consistent with the node alignment. The transfer decoder out-
puts the n-best TL f-structures given a SL f-structure as input by applying
large numbers of transfer rules and searching for the best output using a
log-linear model to combine feature scores. The decoder includes a fully
integrated dependency-based tri-gram language model. We include an ex-
perimental evaluation of the decoder using different parsing disambiguation
resources for the German data to provide a comparison of how the system
performs with different German training and test parses.

1 Introduction

In this paper, we describe a statistical deep syntactic transfer decoder used as the
transfer component of a Transfer-Based Machine Translation (TBMT) system to
transfer source language (SL) deep structures to the targetlanguage (TL). Deep
syntactic transfer rules are induced automatically from the functional structures
of a Lexical Functional Grammar (LFG) (Kaplan and Bresnan, 1982; Bresnan,
2001; Dalrymple, 2001) parsed bitext corpus. Firstly, local f-structures are au-
tomatically aligned, before all rules consistent with the node alignment are in-
duced automatically. The transfer decoder applies large numbers of transfer
rules to the input SL f-structure and searches for the best TLoutput f-structure
using a log-linear model to combine feature scores.

The paper is structured as follows: in Section 1, we give our motivation for
using deep syntax in MT, Section 2 describes the architecture of deep syntactic
Transfer-Based MT, Section 3 describes the main focus of this paper, statistical
transfer between source and target deep syntactic structures, in Section 4, we
give an experimental evaluation of the transfer decoder in the context of a hybrid
system that uses LFG functional structures (f-structures)as the intermediate
representation for transfer, training and testing the system using two different
disambiguation models for the German data for German to English translation,
and Section 5 gives our plans for future work.

2 Motivation

In TBMT, among the different types of intermediate structures used for trans-
fer are deep syntactic structures. For example, Bojar and Hajič (2008) use
the Functional Generative Description (FGD) (Sgall et al.,1986) Tectogram-
matical Layer (T-layer), labeled ordered dependency trees, while Riezler and
Maxwell (2006) use the LFG f-structure, an attribute-valuestructure encoding
of bilexical labeled dependencies.



Deep syntactic structures are more language independent than other repre-
sentations used for MT such as surface form strings and phrase-structure trees,
and therefore should provide a better means of forming generalizations about
how to translate from one language to another. For example, automatic trans-
lation between very distant language pairs can require complex re-ordering of
words between source and target. For many languages incorrect word order in
TL output results in one of two problems; the output is either(i) ungrammati-
cal or (ii) grammatical with incorrect meaning. Since the permitted word order
of a sentence in many languages is strongly influenced by the dependency re-
lations between the words of the sentence, explicitely including these relations
in the translation model should help produce correct TL wordorder, especially
when translating between very distant language pairs. In addition, using a lan-
guage specific generator designed to generate from structures in which these
relations between words are explicitely represented couldalso help to produce
better quality output with respect to word order.

As well as dependency relations, many theories of deep syntax also include
morphological analysis, so that words in the surface form are represented in the
deep syntactic structure in lemma form with a set of featuresencoding grammat-
ical information, like case, person, number, tense, etc. Explicitly representing
this grammatical information may be important for translation from morpho-
logically poor languages into morphologically richer ones. For example, when
translating from English into Germanthe red winehas at least three possible
translations:der rote Wein, den roten Weinanddem roten Wein. In this exam-
ple, the value of the featurecasein the TL needs to be known in order to choose
the correct morphological inflection of the determinerder and adjectiverot. If
the case of the noun in the English phrase is established thisinformation should
help select the best phrase in German. Including this grammatical information
present in the source and target deep syntactic structure should therefore help
produce the correct morphology in the TL.

3 Deep Syntactic Transfer-Based MT

Deep Syntactic Transfer-Based MT is composed of three parts; (i) parsing to
deep syntactic structure, (ii) transfer from SL deep structure to TL deep struc-
ture and (iii) generation of TL sentence (Figure 1). Each stage in the three stage
pipeline architecture could be carried out using fully automatically learned (sta-
tistical) resources, hand-crafted resources or a hybrid ofstatistical and hand-
crafted resources. For example, for parsing Riezler and Maxwell (2006) use
hand-crafted grammars in addition to automatically learned disambiguation mod-
els. The parsing step in their system is therefore a hybrid ofhand-crafted and
statistical methods. For transfer, they use mostly automatically induced trans-
fer rules as well as some hand-crafted rules. In addition, they carry out hand-



Figure 1: Deep Syntax Transfer-Based MT Pipeline Architecture

selected corrections of the word alignment prior to rule induction.1 They also
use a statistical search and statistical model to transfer SL structures to TL struc-
tures. The transfer component of their system therefore is also a hybrid. Finally,
for generation, they used a hand-crafted generation grammar and a statistical
model, including a TL model, for example, to select the best output. Thus the
generation step in their system is also a hybrid of hand-crafted and automatically
learned resources.

The focus of our work is to investigate methods of automatically learning how
to translate from training data. The transfer step in our system is trained fully au-
tomatically without any hand-crafted rules or human-selected corrections to any
part of the rules or word-alignment.2 Our system uses hand-crafted resources
for parsing and generation (Kaplan et al., 2004; Riezler et al., 2002). The bitext
training data is automatically parsed (Kaplan et al., 2002)and the same type of
grammar is used for generation. The transfer stage of our system is fully sta-
tistical, but the experimental evaluation in this paper is evaluating the decoder
in the context of a hybrid system, using hand-crafted resources for parsing and
generation.3 Figure 1 shows the Transfer-Based MT system pipeline with each
stage labeled either statistical or hybrid for our system.

4 Statistical Transfer

4.1 Transfer Rule Induction

To induce transfer rules automatically from the parsed corpus, we use the RIA
rule induction tool (Graham and van Genabith, 2009). Figure2 shows some

1Through personal communication with John Maxwell.
2Note that results for our system should not be compared with results reported in Rie-

zler and Maxwell (2006) since our transfer component is statistical while that of Riezler and
Maxwell (2006) is a hybrid.

3There are parsing and generation resources available for LFG that are trained fully automat-
ically (Cahill et al., 2004; Cahill and van Genabith, 2006).We plan to use these resources with
our statistical transfer decoder to compare with the current hybrid system in the near future.



Figure 2: Example Transfer Rules

example transfer rules produced by the tool. The transfer rule induction algo-
rithm takes as input (i) a dependency structure pair and (ii)a one-to-one set of
alignments between nodes of the dependency structure pair.

4.1.1 Local F-Structure Alignment

Prior to rule induction a set of one-to-one correspondencesbetween the lo-
cal f-structures of each pair of parsed sentences in the bilingual corpus must be
established. For automatic alignment of local f-structures we take the parsed
bilingual corpus and extract the predicate values from eachpair of f-structures
to reconstruct a lemmatized version of the bitext. Figure 3 shows an example of
a bitext corpus that is first parsed, then reconstructed fromthe f-structure repre-
sentation. The order of the predicates in the reconstructedversion of the bitext
(Figure 3(c)) is determined by the location of the local f-structure within the
overall f-structure. The predicate values are ordered via adepth-first traversal
of the underlying dependency graph encoded in the f-structure. For example, the
order of the predicates in the reconstructed corpus (Figure3(c)) of the German
f-structure in Figure 3(b) is̈ahneln und bill bobsinceähnelnis the predicate of
the main f-structure with daughterundthat in turn has daughtersbill andbob. In
order for the depth-first traversal not to loop if the f-structure contains instances
of reentrancy or argument sharing we temporarily ignore these dependencies
when reconstructing the corpus from the f-structures. The reconstructed bitext
is then input to Giza++ (Och et al., 1999) and automatic word alignment is run



in both language directions. The output is then input to Moses to compute the
symmetrization of the bidirectional alignment. We currently use the intersection
in order to get a reliable set of one-to-one correspondencesbetween words.

The aligned parsed bitext is used as input to the rule induction step. We
use the RIA open source rule induction tool (Graham and van Genabith, 2009)
to induce transfer rules. For each input f-structure pair and its node alignment,
RIA induces all transfer rules consistent with the node alignment. The following
section provides the definition for consistent transfer rules.

4.1.2 Consistent Transfer Rules

As in Phrase-Based Statistical Machine Translation (PB-SMT), where a word
alignment for each example sentence pair is first established before phrases con-
sistent with that word alignment are extracted (Och et al., 1999; Koehn et al.,
2003), we induce transfer rules that are consistent with thenode alignment. We
define a consistent transfer rule using a simplification of the actual training de-
pendency structures and temporarily consider them as acyclic graph structures
by ignoring edges that cause cycles in the graph or edges thatshare an end node
with another edge. Definition 1 applied to a (simplified) dependency structure
pair yields a set of rules containing no variables by constraining rule induction
using both the alignments between nodes and the position of the nodes within
the two structures:

Definition 1.
Given a one-to-one set of alignmentsA between nodes in dependency pair
(F,E), (f , e) is a rule consisting of nodes(Nf ,Ne), rooted at(rf , re), with
descendents(Df ,De) of rf andre in F andE respectively, if

Nf = rf ∪ Df∧
Ne = re ∪ De∧
∀fi ∈ Nf : (fi, ej) ∈ A → ej ∈ Ne∧
∀ej ∈ Ne : (fi, ej) ∈ A → fi ∈ Nf∧
∃ej ∈ Ne : (rf , ej) ∈ A∧
∃fi ∈ Nf : (fi, re) ∈ A

Definition 2.
For any rule(f , e) in dependency pair(F,E) rooted at(rf , re) consisting of
nodesNf andNe, where(s, t) is also a rule in(F,E) rooted at(rs, rt) consist-
ing of nodesNs andNt wherers 6= rf , rt 6= re, iff rs ∈ Nf andrt ∈ Ne, there
is a rule(a, b) rooted at(rf , re) with nodesrs andrt replaced by variablexk,
where k is an index unique to the transfer rule, consisting ofnodes:

Na : Nf\Ns ∪ xk

Nb : Ne\Nt ∪ xk



Figure 3: Alignment of Local F-structures



Figure 4: Consistent Transfer Rules

Definition 2 allows the introduction of variables into transfer rules. Any rule
that contains another rule nested within it can be used to form a new rule by
replacing the nested rule with a single variable in its LHS and RHS. To help
visualize what is considered a consistent transfer rule, Figure 4(b) shows the
example dependency structure in Figure 4(a) divided into parts by a number of
boxes with corresponding parts of the dependency structurepair labeled with
the numbers 1-6. Each consistent transfer rule can be realised by assigning a
binary value to each pair of boxes, so that boxes assigned 1 are included in the
rule and boxes assigned 0 are left out. Combinations of binary values for nodes
are constrained and this can be visualized by only allowing adjoining boxes
in Figure 4(b) to be labeled 1 for any rule. Figures 4(c), 4(d)and 4(e) show
example consistent rules with the binary value combinations that encode them.

4.2 Translation Model

As in PB-SMT, a Transfer-Based SMT translation model can be defined as a
combination of several feature functions combined using a log-linear model:

p(e|f) = exp
n∑

i=1

λihi(e, f)



4.2.1 Transfer Rule Probabilities

In PB-SMT the translation of an input sentence into an outputsentence is
modeled by breaking down the translation of the sentence into the translation
of a set of phrases. Similarly, for Transfer-Based SMT, the transfer of the SL
structuref into a TL structuree can be broken down into the transfer of a set of
rules{f̄ , ē}:

p(f̄ I
1 |ē

I
1) =

I∏

i=1

φ(f̄i|ēi)

We compute all rules from the training corpus and estimate the translation prob-
ability distribution by relative frequency of the rules:

φ(f̄ , ē) =
count(ē, f̄)

∑
f̄i

count(ē, f̄i)

This is carried out in both the source-to-target and target-to-source direction and
each model is used as a feature.

4.2.2 Lexical Weighting

We adapt a standard lexical-weighting method used in PB-SMTto hierarchi-
cal deep syntactic structure. In PB-SMT, lexical weightingis used as a back-off
since it provides richer statistics and more reliable probability estimates. Adapt-
ing this feature to deep syntax is straightforward. In PB-SMT the lexical trans-
lation probability of a phrase pair is calculated based on the alignment between
the words in the phrase pair. For deep syntax, we simply calculate the same
probability via the alignment of lexical items in the LHS andRHS of a trans-
fer rule. The lexical translation probability of a RHS,ē, given the LHS,f̄ , is
estimated as follows:

lex(ē|f̄ , a) =

length(ē)∏

i=1

1

|{j|(i, j) ∈ a}|

∑

∀(i,j)∈a

w(ei|fj)

We use lexical weighting in both language directions.

4.2.3 A Dependency-Based Language Model

The overall system employs a language model at two differentstages; a tri-
gram dependency-based language model is used as a feature inthe log-linear
model by the transfer decoder and a standard trigram language model is used
after generation to select the single best TL output. Riezler and Maxwell (2006)
used a dependency-based language model in their system, butthis was only done
after decoding by calculating dependency-based language model scores on the
n-best output of the decoder.4 We take an approach that is more in keeping with
SMT and use language modeling during decoding. This sectiondescribes how

4Through personal communication with John Maxwell.



Figure 5: Dependency-Based Language Model Example for F-structure ofThe cat likes
to sleep

we have fully integrated a dependency-based language modelinto the transfer
decoder.

Since our statistical search produces dependency structures where words are
organized in a graph as opposed to a standard language model that deals with
linear sequences of words, we estimate the probability of a dependency structure
using the preceding context of each word within the dependency graph. In a
standard trigram language model, the probability of theith word in the context
of its preceding i-1 words is approximated by the probability of observing it
preceeded by its two preceding words:

P (w1, ..., wm) ≈
m∏

i=1

P (wi|wi−2, wi−1)

The dependency-based language model approximates the probability of each
word in the structure as the probability of observing it preceeded by its parent
and grandparent words:

P (w1(..., wm)) ≈
m∏

i=1

P (wi|parent(parent(wi)), parent(wi))

If all dependency relations between local f-structures that cause either argu-
ment sharing or reentrancy are ignored, the underlying pred-only structure is
an acyclic graph. We ignore such dependency relations when extracting the
dependency-based language model so that each node in the structure can be
assumed to have at most a single parent node. Figure 5(a) shows an example
f-structure for the English sentenceThe cat likes to sleep. Figure 5(b) shows
the simplified graph that used for language modeling where the reentrancy in-
volving sleepandcat is ignored. As in standard language modeling, where the
start of a sentence is represented by the special symbol<s>, we add a root
node to the structure with this symbol. We also add the end symbol to the leaf
nodes</s>. Figure 5(c) shows the probability approximation of the f-structure
shown in Figures 5(a) and (b).



4.2.4 Other Features

Other features included in the log-linear model for rankingTL hypothesis
structures include:

• Word Penalty

• Phrase Penalty

• Fragmented Structure Penalty

• Fragmented Rule Penalty

• Grammatical Mismatch Penalty

The word penalty and phrase penalty are taken almost directly from PB-SMT.
The word penalty is used to counterbalance the dependency-based language
model’s bias for shorter TL structures and the phrase penalty is used to coun-
terbalance the bias of transfer rule probabilities toward smaller rules. All other
things being equal, it is better to transfer the structure using large transfer rules,
as the chunk of structure that forms the RHS was already observed together in
the corpus and therefore can be assumed to cause no problems with regard to
creating unusual TL word combinations, which can happen when combining
smaller rules. In addition, as the system can produce structures that are missing
dependency relations between two nodes in the TL structure,the fragmented
structure penalty is used to allow the model to bias towards more complete
structures. A fragmented rule penalty is also used to disprefer rules that were
induced from training data that had received a fragment parse from the parser.
These rules tend to lead to bad TL structures that cause problems for the gener-
ator. It would be possible to completely filter out such rulesto ensure they were
never used, but in theory it is better to leave them in and allow the system to bias
against their use as it is still possible in some cases that a fragmented rule leads
to the best solution for a given input, for example when no non-fragmented rule
is available to translate the word. Finally, the grammatical mismatch penalty is
used to penalize rules by the amount of mismatching grammatical information
in the LHS of the rule and the SL structure. All else being equal, rules that
have a small amount of LHS grammatical information matchingthat of the SL
structure are dispreferred.

4.3 Decoding

4.3.1 Top-down Transfer Rule Application

Decoding takes a single SL structure as input and involves a statistical search
for the n-best TL structures. TL solutions are created via a top-down application
of transfer rules to the SL structure beginning at the root (or main) f-structure.
When the LHS of a rule unifies with the SL structure, the RHS produces a



Figure 6: Example top-down application of transfer rules

portion of the TL structure. Figure 6 shows an example application of three
rules to the dependency structure for the German sentenceDie Katze schl̈aft
gern ‘The cat likes to sleep’ shown in Figure 6(a). Figure 6(b) shows the first
transfer rule to be applied to the root node of the SL structure to produce the TL
structure portion shown in Figure 6(c). Transfer rule variables map arguments
in the SL structure to the desired position when creating a TLsolution. For
example, variableX0 in Figure 6(b) maps thesubjectof schlafento thesubject
of like in the TL structure labeled with id number1 shown in Figure 6(c). Next
Katzein the SL structure is translated (Figures 6(d) and 6(e)), before finally die
is translated (Figures 6(f) and 6(g)).

4.3.2 Beam Search

As with all SMT systems, the number of possible output translations given
a single SL input is too large to exhaustively rank each possible output. We
therefore employ a standard search algorithm, beam search,to produce the n-
best TL solutions.

Partial translations (or translation hypotheses) are constructed by applying
transfer rules to the SL structure. While TL translations are constructed, beam
search manages the large search space by ranking translation hypotheses and
pruning the search by dropping lower scoring hypotheses. A number of stacks
are used to organize translation hypotheses into groups of comparable hypothe-



ses, according to the portion of SL structure that has already been translated
to produce each hypothesis, i.e. hypothesis stackN stores TL translation hy-
potheses withN nodes covered in the SL structure. For example, Figure 7(a)
shows the hypothesis stacks for decoding the f-structure ofDie Katze schl̈aft
gern containing 4 nodes and therefore requiring stacks 1-4 for decoding, each
stack storing translation hypotheses for solutions covering one to four nodes,
respectively.

Transfer rules are indexed by root node so that they can be retrieved quickly
to translate SL structure nodes. For example, in Figure 7(a)the rules rooted
at nodeKatzeare stored together. Since rules are applied top-down to theSL
structure (see Section 4.3.1) rules beginning at the root node of the SL structure
(or main SL f-structure) are first used to construct hypotheses. For example, in
Figure 7(b) the rule that translates the root node of the SL structureschlafenas
dozeis first used to construct a hypothesis and since it covers oneSL node it is
stored in hypothesis stack 1. Figure 7(c) shows the next three hypotheses that are
constructed:snooze, sleepand like sleep. Hypotheses are ordered within each
stack according to their score, high-to-low from bottom-to-top. We currently
use histogram pruning. When a stack becomes full, lower scoring solutions are
pruned by being popped off the top of the stack.

For efficiency, each partial translation is only stored oncein memory even
though it may be part of several different future hypotheses. For example, hy-
pothesis stack 2 in Figure 7(d) contains four translations constructed by expand-
ing hypothesisdozeby four different rules, each translating the wordKatzeinto
a different TL word. These new hypotheses are represented bya reference to the
most recently applied transfer rule (rules translatingKatze) and a reference back
to the previous hypothesis. Figure 6 shows an example of decoding. Figure 7(e)
shows an example of how per single completed translation, the structure forthe
lion likes to doze, is represented in the hypothesis stacks and Figure 7(f) shows
all hypotheses are represented when the decoder has completed translating a
single SL input structure. The n-best translated structures can be retrieved from
the final stack.

4.3.3 Efficient Dependency-Based Language Modeling

An important feature in an SMT decoder is the language model and integrat-
ing one can be a more challenging task than other features since the language
model score of a translation hypothesis cannot be calculated by simply com-
bining the language model scores of the phrases (or rules) that it is composed
of.

Although the search space is limited by beam search, during decoding large
numbers of TL hypothesis structures need to be ranked. At each expansion of a
translation hypothesis (via joining of an existing hypothesis with a new rule) a
language model score for the newly created hypothesis needsto be calculated.
Since this is carried out very many times per single decodingrun, it is vital that



Figure 7: Beam Search Decoding



the method of calculating this score is highly efficient.
In our system, we pre-compute a dependency-based language model score for

each transfer rule prior to beam search. This score is calculated only once for
each rule even though a single rule may be part of several translation hypotheses.
Then during decoding, when a translation hypothesis is expanded by adding a
new rule, the new hypothesis score can be calculated quicklyby combining the
score of the old hypothesis, the rule score and a score calculated based on the
probabilities of trigrams where the old hypothesis and rulejoin together. The
probability of a TL hypothesis,hn, that was produced by combining hypothesis
hn−1 and ruler can be calculated as follows:

hyp score(hn) = hyp score(hn−1) ∗ join score(hn−1, r) ∗ rule score(r)

Sincehyp score(hn−1) andrule score(r) are already computed, only
join score(hn−1, r) needs to be computed whenhyp score(hn) is computed.

Figure 8 shows how the language model scores are efficiently calculated
when decoding the f-structure for the German sentenceDie Werbung spiegelt
die Vielfalt der britischen Universität wider ‘The advertisement reflects the di-
versity of the British university’. We begin with the Germanf-structure graph
shown in Figure 8(a) with nodes labeled by id numbers. Figure8(b) shows the
initial empty translation hypothesis that has probability1.

Figures 8(c), 8(f) and 8(i) show example transfer rules thatcan be applied
to the German f-structure. Dependency-based language model scores are pre-
computed for each rule by identifying all trigrams within the RHS structure and
calculating the product of their individual probability estimations retrieved from
the language model; we will call this the rulescore (see Figure 8(d) forRule A,
Figure 8(g) forRule Band Figure 8(j) forRule C). In addition, for each rule,
n-grams located at the RHS root node and frontier nodes are recorded. For ex-
ample,Rule Bin Figure 8(g) has a single root node bigramadvertisement the
located at node2 while Rule Ain Figure 8(d) has two frontier bigrams< s >,
reflectanddiversity, of located at nodes2 and6, respectively. This information
is used to calculate the language model score of joining a rule and a hypothesis.

Figure 8(e) shows the translation hypothesis established by applyingRule Ato
the German structure. The language model score for the structure is established
by combining the score of the previous hypothesis (since this is the first rule for
this hypothesis, the previous hypothesis is the empty hypothesis and is therefore
1), the join score (since we are joining the rule with the empty hypothesis this
score is also 1) and the rule score (see Figure 8(d)).

Figure 8(h) shows the translation hypothesis created by expandingHypothes-
is1 by RuleB . Since this expansion involved adding a rule at node2 in the
TL structure, the joining trigrams are derived by creating lists of words via all
possible combinations of the frontier bigrams belonging toHypothesis1 la-
beled2 and the root bigrams ofRuleB , also labeled2 (see root n-grams in
Figure 8(g)). For this example, this results in a single wordsequence<s >re-



Figure 8: Efficient Dependency-based Language Modeling



flect advertisement thewhich forms two trigrams<s >-reflect-advertisement
andreflect-advertisement-the. The score forHypothesis2 is then calculated by
combining the hypothesis score forHypothesis1, the join score and the pre-
computed rule score forRule B.

5 Experimental Evaluation

In our experimental evaluation of the system, we investigate the effects of the
disambiguation model used to select the best parse. Riezlerand Maxwell (2006)
used an English disambiguation model for parsing both the German and En-
glish data when translating from German to English. If a single disambiguation
model is used for both languages, the f-structures of a givenpair of training
sentences are likely to be quite similar, and this may help the rule induction
process. However, another approach is to use language-specific disambiguation
models for parsing. In this case, it is more likely that theactualbest f-structure
for each sentence of the training data is selected. Althougha more authentic
German parse may help the overall MT system, at the same time this is likely to
increase the dissimilarity between the parses of the German-English sentences
pairs, which may increase the difficulty of transfer.

We conduct an empirical investigation into which approach achieves better
machine translation output for our system, by training and testing the system
using (i) an English disambiguation model (Kaplan et al., 2004; Riezler et al.,
2002) to select the best parse for both German and English sentences, and com-
pare with results when (ii) a German disambiguation model (Forst, 2007) is used
for selecting the best German parse and an English disambiguation model (Ka-
plan et al., 2004; Riezler et al., 2002) is used to select the best parse for the
English sentences.

5.1 Training

The system was trained separately for each configuration. Training data for both
configurations used data restricted by sentence length of 5-15 words from the
Europarl (Koehn et al., 2005) and Newswire parallel corpora, which resulted
in approximately 360,000 German-English sentence pairs, and a held-out de-
velopment set of 500 sentences pairs. Both sides of the training corpus were
parsed with the XLE parse engine (Kaplan et al., 2002). For Configuration 1,
an English disambiguation model (Kaplan et al., 2004; Riezler et al., 2002) was
used when parsing both the German and English data. For Configuration 2, a
German disambiguation model (Forst, 2007) was used when parsing the Ger-
man data and the English disambiguation model (Kaplan et al., 2004; Riezler
et al., 2002) for the English data. The single best parse for each sentence, ac-
cording to the appropriate disambiguation model, was used for training for both
configurations.

For node alignment, Giza++ (Och et al., 1999) was run in both language



Config. BLEU NIST Coverage Connected TL structure
1 0.1121 3.5685 92.2% 33.4%
2 0.0730 2.6643 91.8% 47.2%

Table 1: Machine Translation System Results for Configuration 1: English disambigua-
tion model for both German and English data, and Configuration 2: German disam-
biguation model for German data and English disambiguationmodel for English data

directions and the intersection was obtained using Moses (Koehn et al., 2007).
We used both a dependency-based language model from the parsed TL side
of the Europarl corpus and a conventional language model using lower-cased
TL sentences, both trained on approximately 1,250,000 sentences. The SRILM
toolkit (Stolcke, 2002) was used for both language models. Minimum Error
Rate Training (Och, 2003) was carried out using ZMERT (Zaidan, 2009) to train
weights for each configuration on 500 randomly selected held-out development
set sentences optimizing for Bleu.

5.2 Testing

The system was tested in a single language direction, Germanto English on 500
randomly selected held-out test set German sentences and the single best TL
translation produced by the system was evaluated using automatic metrics with
a single reference translation.

For each configuration, the German sentences were parsed with the same
parsing engine and grammar as was used for training, and the single best f-
structure according to the disambiguation model was selected as input to the
decoder.

TL decoder output structures can be fragmented, and we automatically re-
pair them if necessary. Automatic repair involves adding edges (in the form
of FIRST/REST equations with nodes ordered via the positionof their trans-
lations in the SL structure) to any TL structure that does notalready form a
single connected graph. For each test sentence, the 100-best TL decoder output
structures were repaired automatically, before being input to the generator and
a maximum of 50,000 sentences were generated per test sentence. A standard
language model was used to select the final TL output.

5.3 Results

The Bleu (Papineni et al., 2002) and NIST (Doddington, 2002)scores for both
system configurations on the test set are shown in Table 1. According to the au-
tomatic metrics, Configuration 1 achieves a Bleu score of 0.1121 outperforming
Configuration 2, which achieves 0.073, almost 4 Bleu points lower than Con-
figuration 1. Configuration 1 also has higher system coverage, i.e. it was able
to produce at least some output for 92.2% of the test set, while Configuration 2



achieves 91.8% coverage. The number of TL structures outputfrom the decoder
that already formed a single connected graph and therefore did not require any
repair was, however, higher for Configuration 2 (47.2%) thanConfiguration 1
(33.4%).

5.4 Discussion

The results obtained in the experimental evaluation are contrary to our initial ex-
pectations. With the current system translating from English to German, using
the English disambiguation model for both languages outperforms automatic
evaluation results when the system is run on parse data disambiguated by lan-
guage specific models. We had expected that the more authentic parses for
the German data should lead to an overall increase in translation results, even
if the difficulty of transfer is increased slightly by the slight increase in non-
isomorphism across the f-structure representations for the parsed sentence pairs
in the training data. The transfer rule induction algorithmis designed to induce
rules that capture non-isomorphism, and therefore increasing non-isomorphism
should not effect the system to this degree. One suspected cause of the prob-
lems for Configuration 2 may lie in the grammar used with this disambiguation
model. The number of features in the grammar is higher than that of the Ger-
man grammar used with the English disambiguation model of Configuration 1.
When the data is parsed this leads to the German f-structuresof Configuration
2 containing far more atomic features than those of Configuration 1. In fact,
for the German development set parses, the ratio of number features in the f-
structures for Configuration 1 compared to Configuration 2 isapproximately
1:4. We suspect that due to the higher number of features of Configuration 2,
transfer rules do not generalize as well to unseen data. The SL atomic features
are used in our system to guide the selection of transfer rules. The smaller set
of features of Configuration 1 may be a better guide for transfer than the larger
set of Configuration 2.

6 Future Work

The size of the training corpus used in the evaluation is small compared to cor-
pora usually used for training SMT systems. We would like to perform fur-
ther extrinsic evaluation of the two disambiguation modelswhen the system is
trained on a larger corpus not restricted by sentence length. This would pro-
vide each configuration with richer statistical estimates and higher coverage of
transfer rules on unseen SL structures.

7 Conclusion

We presented a SMT transfer decoder that uses deep syntacticstructures, as the
intermediate representation for transfer that applies state-of-the-art methods of
PB-SMT to deep syntactic transfer. In the experimental evaluation the decoder



achieves better results using an English disambiguation model for parsing Ger-
man data, than when a German disambiguation model is used.
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