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Abstract

In this paper, we describe a statistical deep syntacticsteamecoder that
is trained fully automatically on parsed bilingual corporBeep syntac-
tic transfer rules are induced automatically from the @stures of a LFG

parsed bitext corpus by automatically aligning local fistures, and induc-
ing all rules consistent with the node alignment. The trandecoder out-
puts the n-best TL f-structures given a SL f-structure asititqy applying

large numbers of transfer rules and searching for the bdgubusing a

log-linear model to combine feature scores. The decoddéndes a fully

integrated dependency-based tri-gram language model.ntliede an ex-
perimental evaluation of the decoder using different paysisambiguation
resources for the German data to provide a comparison of hewytstem
performs with different German training and test parses.

1 Introduction

In this paper, we describe a statistical deep syntactisteanecoder used as the
transfer component of a Transfer-Based Machine TranslétiBMT) system to
transfer source language (SL) deep structures to the farggiage (TL). Deep
syntactic transfer rules are induced automatically froenftimctional structures
of a Lexical Functional Grammar (LFG) (Kaplan and Bresn&82t Bresnan,
2001; Dalrymple, 2001) parsed bitext corpus. Firstly, Idestructures are au-
tomatically aligned, before all rules consistent with tleel@ alignment are in-
duced automatically. The transfer decoder applies largebeus of transfer
rules to the input SL f-structure and searches for the besiufput f-structure
using a log-linear model to combine feature scores.

The paper is structured as follows: in Section 1, we give oaotivation for
using deep syntax in MT, Section 2 describes the architealideep syntactic
Transfer-Based MT, Section 3 describes the main focus sfiduper, statistical
transfer between source and target deep syntactic stesctur Section 4, we
give an experimental evaluation of the transfer decoddrarcontext of a hybrid
system that uses LFG functional structures (f-structuessjhe intermediate
representation for transfer, training and testing theesystising two different
disambiguation models for the German data for German toi&nghanslation,
and Section 5 gives our plans for future work.

2 Motivation

In TBMT, among the different types of intermediate struetuused for trans-
fer are deep syntactic structures. For example, Bojar arji KB008) use
the Functional Generative Description (FGD) (Sgall et #86) Tectogram-
matical Layer (T-layer), labeled ordered dependency treddie Riezler and
Maxwell (2006) use the LFG f-structure, an attribute-vasieicture encoding
of bilexical labeled dependencies.



Deep syntactic structures are more language independamtotiher repre-
sentations used for MT such as surface form strings and @istascture trees,
and therefore should provide a better means of forming gdimations about
how to translate from one language to another. For examptejratic trans-
lation between very distant language pairs can require omp-ordering of
words between source and target. For many languages int@roed order in
TL output results in one of two problems; the output is eitfipungrammati-
cal or (i) grammatical with incorrect meaning. Since thempi¢ted word order
of a sentence in many languages is strongly influenced bydpentlency re-
lations between the words of the sentence, explicitelyuitiolg these relations
in the translation model should help produce correct TL wardkr, especially
when translating between very distant language pairs. ditiad, using a lan-
guage specific generator designed to generate from stegciarwhich these
relations between words are explicitely represented calslol help to produce
better quality output with respect to word order.

As well as dependency relations, many theories of deep swtsa include
morphological analysis, so that words in the surface forerepresented in the
deep syntactic structure in lemma form with a set of featare®ding grammat-
ical information, like case, person, number, tense, etqli€ly representing
this grammatical information may be important for transkatfrom morpho-
logically poor languages into morphologically richer onEsr example, when
translating from English into Germahe red winehas at least three possible
translations:der rote Weinden roten Weiranddem roten Weinlin this exam-
ple, the value of the featuasein the TL needs to be known in order to choose
the correct morphological inflection of the determigler and adjectiveot. If
the case of the noun in the English phrase is establishethfbrsnation should
help select the best phrase in German. Including this gramahanformation
present in the source and target deep syntactic structorddstherefore help
produce the correct morphology in the TL.

3 Deep Syntactic Transfer-Based MT

Deep Syntactic Transfer-Based MT is composed of three ;p@rtparsing to
deep syntactic structure, (ii) transfer from SL deep stm&cto TL deep struc-
ture and (iii) generation of TL sentence (Figure 1). Eachesia the three stage
pipeline architecture could be carried out using fully auétically learned (sta-
tistical) resources, hand-crafted resources or a hybristaifstical and hand-
crafted resources. For example, for parsing Riezler andvwédix2006) use
hand-crafted grammars in addition to automatically lediisambiguation mod-
els. The parsing step in their system is therefore a hybridaod-crafted and
statistical methods. For transfer, they use mostly autioaibt induced trans-
fer rules as well as some hand-crafted rules. In additiogy tarry out hand-



SL deep structures TL deep structures

transfer
decoder
(statistical)

generate
(currently hybrid)

parse
(currently hybrid)

...... SL sentence .........

Figure 1: Deep Syntax Transfer-Based MT Pipeline Architesct

selected corrections of the word alignment prior to ruleutibn! They also

use a statistical search and statistical model to trangfetr8ctures to TL struc-
tures. The transfer component of their system thereforsasaahybrid. Finally,

for generation, they used a hand-crafted generation grarantha statistical
model, including a TL model, for example, to select the begpat. Thus the
generation step in their system is also a hybrid of handeulafind automatically
learned resources.

The focus of our work is to investigate methods of autombyid@arning how
to translate from training data. The transfer step in oulesyss trained fully au-
tomatically without any hand-crafted rules or human-gelgcorrections to any
part of the rules or word-alignmeAtOur system uses hand-crafted resources
for parsing and generation (Kaplan et al., 2004; Riezlet.e2@02). The bitext
training data is automatically parsed (Kaplan et al., 2G0®) the same type of
grammar is used for generation. The transfer stage of otersys fully sta-
tistical, but the experimental evaluation in this papenialeating the decoder
in the context of a hybrid system, using hand-crafted ressufor parsing and
generatior?. Figure 1 shows the Transfer-Based MT system pipeline with ea
stage labeled either statistical or hybrid for our system.

4 Statistical Transfer

4.1 Transfer Rule Induction

To induce transfer rules automatically from the parsed ugrgve use the RIA
rule induction tool (Graham and van Genabith, 2009). Figushows some

Through personal communication with John Maxwell.

2Note that results for our system should not be compared veitults reported in Rie-
zler and Maxwell (2006) since our transfer component isstteal while that of Riezler and
Maxwell (2006) is a hybrid.

3There are parsing and generation resources available férth&t are trained fully automat-
ically (Cahill et al., 2004; Cahill and van Genabith, 2008)e plan to use these resources with
our statistical transfer decoder to compare with the cttnghrid system in the near future.



a) Erist gut vorangekommen — He has progressed nicely

kommen progress

PRT-FORM  voran VTYPE main
VIYPE main STMT-TYPE decl
STMT-TYPE decl TENSE pres
TENSE past —-

Xn X1

X X

0 1

b) Wir halten das fiir gut — That is good

halten be

VIYPE pred VTYPE copular
STMT-TYPE decl STMT-TYPE decl
TENSE pres TENSE pres

X X

] 1

Figure 2: Example Transfer Rules

example transfer rules produced by the tool. The transferingduction algo-
rithm takes as input (i) a dependency structure pair ané @he-to-one set of
alignments between nodes of the dependency structure pair.

4.1.1 Local F-Structure Alignment

Prior to rule induction a set of one-to-one correspondehetseen the lo-
cal f-structures of each pair of parsed sentences in thagoidil corpus must be
established. For automatic alignment of local f-strucunes take the parsed
bilingual corpus and extract the predicate values from gawhof f-structures
to reconstruct a lemmatized version of the bitext. Figure@s an example of
a bitext corpus that is first parsed, then reconstructed fhenfi-structure repre-
sentation. The order of the predicates in the reconstruaeslon of the bitext
(Figure 3(c)) is determined by the location of the localrfssture within the
overall f-structure. The predicate values are ordered demh-first traversal
of the underlying dependency graph encoded in the f-streicieor example, the
order of the predicates in the reconstructed corpus (Fig{ap of the German
f-structure in Figure 3(b) iahneln und bill bolsince&hnelnis the predicate of
the main f-structure with daughtandthat in turn has daughtetsll andboh. In
order for the depth-first traversal not to loop if the f-sture contains instances
of reentrancy or argument sharing we temporarily ignoresdhgependencies
when reconstructing the corpus from the f-structures. Boenstructed bitext
is then input to Giza++ (Och et al., 1999) and automatic wdighenent is run



in both language directions. The output is then input to Mdsecompute the
symmetrization of the bidirectional alignment. We curhgoe the intersection
in order to get a reliable set of one-to-one correspondepetgeen words.

The aligned parsed bitext is used as input to the rule inducsiep. We
use the RIA open source rule induction tool (Graham and varaith, 2009)
to induce transfer rules. For each input f-structure pairigginode alignment,
RIA induces all transfer rules consistent with the noderetignt. The following
section provides the definition for consistent transfeesul

4.1.2 Consistent Transfer Rules

As in Phrase-Based Statistical Machine Translation (PBFsMhere a word
alignment for each example sentence pair is first estallisafore phrases con-
sistent with that word alignment are extracted (Och et &99] Koehn et al.,
2003), we induce transfer rules that are consistent witmtge alignment. We
define a consistent transfer rule using a simplification efabtual training de-
pendency structures and temporarily consider them asiagyeph structures
by ignoring edges that cause cycles in the graph or edgesttaest an end node
with another edge. Definition 1 applied to a (simplified) degency structure
pair yields a set of rules containing no variables by constrg rule induction
using both the alignments between nodes and the positidmeafiades within
the two structures:

Definition 1.
Given a one-to-one set of alignments between nodes in dependency pair
(F,E), (f,e) is a rule consisting of nodegVy, N.), rooted at(rs,r.), with
descendent§Dy, D) of ry andr,. in F' and E respectively, if

Nf =ryU Df

Ne=r.UD,

Vfi€ Ny:(fisej;) € A—e; €N,
VejGN (fz,%)éA—)fZENf
Jdej € Ne: (ry,e5) €
ifi € Ny - (fure)

>>>>>

Definition 2.
For any rule(f,€) in dependency paifF, E) rooted at(r¢, r.) consisting of
nodesNy andN,, where(s, t) is also a rule in(F, E) rooted af(r, r;) consist-
ing of nodesN, and N, wherers # ry¢, ¢ # re, iff 7; € Ny andr; € N, there
is a rule(a, b) rooted at(ry,r.) with nodesr, andr; replaced by variabley,
where k is an index unique to the transfer rule, consistingooles:

N, : Np\N; Uy,

Ny : N,\N; U



Maria ass den Kuchen.
Der Bucheneinband ist schwarz.
Der elektrische Traktorschalter ist rot.

Der Olkannenhersteller hat seine Schliissel verloren.

Bill und Bob ahneln sich.

Mary ate the cake.

The book cover is black.

The tractor MM electrical switch is red.
The oil can manufacturer lost his keys.
Bill and Bob resemble each other.

PARSE

[PRED ahneln

w]
[ oneo oo |

— OORD-FORM and

[PRED

SuUBJ COORD

PRED resemble

E’RED Bill J
E’RED Bob J

COORD-FORM and

SUBJ | COORD

LoB) [PRED 'eachotheg

‘ RECONSTRUCT

<

c)

essen maria kuche die
sein band ein buch die schwarz
sein schalter elektrisch traktor die rot

verlieren hersteller kannen 6l die schllssel sein

ahneln und bill bob

eat Mary cake the

be cover book the black

be switch electrical tractor the red
lose manufacturer can oil the key his
resemble and bill bob each#other

d)

GIZA++

[PRED ahneln

[PRED Bill

\j’RED Bob

— OORD-FORM and —

SuBJ COORD

FPRED resemble

PRED  Bill ]

PRED Bob ]

COORD-FORM and

[el:]] [PRED ‘eachotheJ

Figure 3: Alignment of Local F-structures




Example Transfer Rules

a. Training Dependency Pair
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Figure 4: Consistent Transfer Rules

Definition 2 allows the introduction of variables into tréersrules. Any rule
that contains another rule nested within it can be used to mew rule by
replacing the nested rule with a single variable in its LH8 &HS. To help
visualize what is considered a consistent transfer rulgurei 4(b) shows the
example dependency structure in Figure 4(a) divided inttsgey a number of
boxes with corresponding parts of the dependency strugtirelabeled with
the numbers 1-6. Each consistent transfer rule can be eddbyg assigning a
binary value to each pair of boxes, so that boxes assigned ih@uded in the
rule and boxes assigned 0 are left out. Combinations of pivelties for nodes
are constrained and this can be visualized by only allowidigiaing boxes
in Figure 4(b) to be labeled 1 for any rule. Figures 4(c), 4di 4(e) show
example consistent rules with the binary value combinatibat encode them.

4.2 Translation Model

As in PB-SMT, a Transfer-Based SMT translation model can éfendd as a
combination of several feature functions combined usiragdihear model:

plelf) = exp> Ahile, f)

i=1



4.2.1 Transfer Rule Probabilities

In PB-SMT the translation of an input sentence into an oufguitence is
modeled by breaking down the translation of the sentencetivd translation
of a set of phrases. Similarly, for Transfer-Based SMT, thadfer of the SL
structuref into a TL structuree can be broken down into the transfer of a set of

rules{f,e}:
I
p(filer) = [T s(file:)
i=1

We compute all rules from the training corpus and estimatdrtimslation prob-
ability distribution by relative frequency of the rules:

o(F,3) = i

count(e, f)
> j. count(e, f;)

This is carried out in both the source-to-target and taigestsurce direction and

each model is used as a feature.

4.2.2 Lexical Weighting

We adapt a standard lexical-weighting method used in PB-8&Milerarchi-
cal deep syntactic structure. In PB-SMT, lexical weighimgsed as a back-off
since it provides richer statistics and more reliable pbiitg estimates. Adapt-
ing this feature to deep syntax is straightforward. In PBISNE lexical trans-
lation probability of a phrase pair is calculated based ersfignment between
the words in the phrase pair. For deep syntax, we simply ledkthe same
probability via the alignment of lexical items in the LHS aR#iS of a trans-
fer rule. The lexical translation probability of a RH&,given the LHS,f, is
estimated as follows:

- length(€) 1
lex(e|f,a) Z:r[l Gl call v(g):eaw(ﬁz‘fj)
We use lexical weighting in both language directions.

4.2.3 A Dependency-Based Language Model

The overall system employs a language model at two diffes&ges; a tri-
gram dependency-based language model is used as a featheelog-linear
model by the transfer decoder and a standard trigram laegoeglel is used
after generation to select the single best TL output. Riezied Maxwell (2006)
used a dependency-based language model in their systethidoaais only done
after decoding by calculating dependency-based languagielnscores on the
n-best output of the decod&iwe take an approach that is more in keeping with
SMT and use language modeling during decoding. This sedgsoribes how

“Through personal communication with John Maxwell.



a) b) c)
P(d )= P(like | <s>)*

_Gubjy &comp like P( cat | <s>, like) *

d= sleep /\ P( the | like, cat) *
[ SUbS L1 P( </s> | cat, the) *
cat sleep P(sleep | <s>, like) *

P( </s> |like, sleep)

Figure 5: Dependency-Based Language Model Example foruetsire ofThe cat likes
to sleep

we have fully integrated a dependency-based language rimidehe transfer
decoder.

Since our statistical search produces dependency stegcivttere words are
organized in a graph as opposed to a standard language rhatiéleals with
linear sequences of words, we estimate the probability efp@ddency structure
using the preceding context of each word within the dependgnaph. In a
standard trigram language model, the probability ofithevord in the context
of its preceding i-1 words is approximated by the probabitif observing it
preceeded by its two preceding words:

P('U)l, 7w7TI) ~ H P(wi‘wi—27wi—1)
i=1
The dependency-based language model approximates thabgiybof each
word in the structure as the probability of observing it pexed by its parent
and grandparent words:

P(wy(ooywp)) = H P(wj|parent(parent(w;)), parent(w;))
i=1

If all dependency relations between local f-structureg daase either argu-
ment sharing or reentrancy are ignored, the underlying-pryg structure is
an acyclic graph. We ignore such dependency relations wkiacéng the
dependency-based language model so that each node in ubtustrcan be
assumed to have at most a single parent node. Figure 5(ay sirowxample
f-structure for the English sentendée cat likes to sleepFigure 5(b) shows
the simplified graph that used for language modeling wheze¢kntrancy in-
volving sleepandcatis ignored. As in standard language modeling, where the
start of a sentence is represented by the special syrbpl, we add a root
node to the structure with this symbol. We also add the endelto the leaf
nodes</s>. Figure 5(c) shows the probability approximation of therfisture
shown in Figures 5(a) and (b).



4.2.4 Other Features

Other features included in the log-linear model for ranKirg hypothesis
structures include:

e Word Penalty

Phrase Penalty

Fragmented Structure Penalty

Fragmented Rule Penalty

Grammatical Mismatch Penalty

The word penalty and phrase penalty are taken almost dirotih PB-SMT.
The word penalty is used to counterbalance the dependasadblanguage
model’s bias for shorter TL structures and the phrase pemalised to coun-
terbalance the bias of transfer rule probabilities towandlter rules. All other
things being equal, it is better to transfer the structuregusrge transfer rules,
as the chunk of structure that forms the RHS was already wbdeogether in
the corpus and therefore can be assumed to cause no probiémegard to
creating unusual TL word combinations, which can happenmdaambining
smaller rules. In addition, as the system can produce stesthat are missing
dependency relations between two nodes in the TL structheefragmented
structure penalty is used to allow the model to bias towardsencomplete
structures. A fragmented rule penalty is also used to dispreles that were
induced from training data that had received a fragmentepfosn the parser.
These rules tend to lead to bad TL structures that causegonsifior the gener-
ator. It would be possible to completely filter out such ruteensure they were
never used, but in theory it is better to leave them in andetiiee system to bias
against their use as it is still possible in some cases thagatented rule leads
to the best solution for a given input, for example when no-fragmented rule
is available to translate the word. Finally, the grammaéaticsmatch penalty is
used to penalize rules by the amount of mismatching grancaiatiformation
in the LHS of the rule and the SL structure. All else being égqudes that
have a small amount of LHS grammatical information matchirag of the SL
structure are dispreferred.

4.3 Decoding
4.3.1 Top-down Transfer Rule Application

Decoding takes a single SL structure as input and involvéatistical search
for the n-best TL structures. TL solutions are created vipadtown application

of transfer rules to the SL structure beginning at the rootain) f-structure.
When the LHS of a rule unifies with the SL structure, the RHSdpoes a



Transfer rules TL structure after each rule application
b) c)
schlafen o hke[ : 0: like
v > S -
X, gern X, sleep 1 3: sleep '
d) e 0: like
SL structure Katze cat 1: cat 3: sleep :
[ — [ 28]
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0:  schlafen 0 X, X, 2:
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9
1 Katze | 3: gemn 0: like
]
Gub[> Ecomp
Zdi[e] 1: cat y 3: sleep[ i
die —= the 2: the
L (o8] (o8]

Figure 6: Example top-down application of transfer rules

portion of the TL structure. Figure 6 shows an example appba of three
rules to the dependency structure for the German sentere&atze schift
gern‘The cat likes to sleep’ shown in Figure 6(a). Figure 6(b)vesdhe first
transfer rule to be applied to the root hode of the SL striectoiproduce the TL
structure portion shown in Figure 6(c). Transfer rule Valga map arguments
in the SL structure to the desired position when creating asdlution. For
example, variableXy in Figure 6(b) maps theubjectof schlafento thesubject
of like in the TL structure labeled with id numb&rshown in Figure 6(c). Next
Katzein the SL structure is translated (Figures 6(d) and 6(eforbdinally die
is translated (Figures 6(f) and 6(g)).

4.3.2 Beam Search

As with all SMT systems, the number of possible output trainshs given
a single SL input is too large to exhaustively rank each pésgutput. We
therefore employ a standard search algorithm, beam sdarghoduce the n-
best TL solutions.

Partial translations (or translation hypotheses) aretogacted by applying
transfer rules to the SL structure. While TL translations @onstructed, beam
search manages the large search space by ranking trandigpotheses and
pruning the search by dropping lower scoring hypothesesumber of stacks
are used to organize translation hypotheses into groupsnaparable hypothe-



ses, according to the portion of SL structure that has ajrésen translated

to produce each hypothesis, i.e. hypothesis stdaktores TL translation hy-
potheses witiN nodes covered in the SL structure. For example, Figure 7(a)
shows the hypothesis stacks for decoding the f-structui@i®fKatze sclidft
gern containing 4 nodes and therefore requiring stacks 1-4 foodieg, each
stack storing translation hypotheses for solutions cagedne to four nodes,
respectively.

Transfer rules are indexed by root node so that they can teved quickly
to translate SL structure nodes. For example, in Figure th@yules rooted
at nodeKatzeare stored together. Since rules are applied top-down t&the
structure (see Section 4.3.1) rules beginning at the rodé wbthe SL structure
(or main SL f-structure) are first used to construct hypatkegor example, in
Figure 7(b) the rule that translates the root node of the Bicsitreschlafenas
dozeis first used to construct a hypothesis and since it coverssarmeode it is
stored in hypothesis stack 1. Figure 7(c) shows the next thypotheses that are
constructed:snoozesleepandlike sleep Hypotheses are ordered within each
stack according to their score, high-to-low from bottorrteép. We currently
use histogram pruning. When a stack becomes full, lowelrsg@olutions are
pruned by being popped off the top of the stack.

For efficiency, each partial translation is only stored omcenemory even
though it may be part of several different future hypothedas example, hy-
pothesis stack 2 in Figure 7(d) contains four translatiammstructed by expand-
ing hypothesislozeby four different rules, each translating the watdtzeinto
a different TL word. These new hypotheses are representaddfgrence to the
most recently applied transfer rule (rules translakagze and a reference back
to the previous hypothesis. Figure 6 shows an example ofdileg.oFigure 7(e)
shows an example of how per single completed translatienstiiucture fothe
lion likes to dozeis represented in the hypothesis stacks and Figure 7(#ysho
all hypotheses are represented when the decoder has cethplabslating a
single SL input structure. The n-best translated strustoam be retrieved from
the final stack.

4.3.3 Efficient Dependency-Based Language Modeling

An important feature in an SMT decoder is the language mauttirstegrat-
ing one can be a more challenging task than other featuree #e language
model score of a translation hypothesis cannot be calcllagesimply com-
bining the language model scores of the phrases (or rulas)ttts composed
of.

Although the search space is limited by beam search, dugagding large
numbers of TL hypothesis structures need to be ranked. Ategsansion of a
translation hypothesis (via joining of an existing hypaikewvith a new rule) a
language model score for the newly created hypothesis rieduks calculated.
Since this is carried out very many times per single decodingit is vital that
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the method of calculating this score is highly efficient.

In our system, we pre-compute a dependency-based languadye score for
each transfer rule prior to beam search. This score is edmilonly once for
each rule even though a single rule may be part of several#iton hypotheses.
Then during decoding, when a translation hypothesis isredgad by adding a
new rule, the new hypothesis score can be calculated quigkbombining the
score of the old hypothesis, the rule score and a score atddubased on the
probabilities of trigrams where the old hypothesis and joie together. The
probability of a TL hypothesis;,,, that was produced by combining hypothesis
h,—1 and ruler can be calculated as follows:

hyp-score(hy,) = hyp_score(hn_1) * join_score(hn_1,7) * rule_score(r)

Sincehyp_score(h,—1) andrule_score(r) are already computed, only
join_score(hy,—_1,7) needs to be computed whépp_score(h,,) is computed.

Figure 8 shows how the language model scores are efficieatbulated
when decoding the f-structure for the German sentddieeWWerbung spiegelt
die Vielfalt der britischen Universit wider ‘The advertisement reflects the di-
versity of the British university’. We begin with the Germfatructure graph
shown in Figure 8(a) with nodes labeled by id numbers. Figdio¢ shows the
initial empty translation hypothesis that has probability

Figures 8(c), 8(f) and 8(i) show example transfer rules tizett be applied
to the German f-structure. Dependency-based languagel mootes are pre-
computed for each rule by identifying all trigrams withiretRHS structure and
calculating the product of their individual probabilitytiesations retrieved from
the language model; we will call this the ruseore (see Figure 8(d) f&tule A
Figure 8(g) forRule Band Figure 8(j) forRule Q. In addition, for each rule,
n-grams located at the RHS root node and frontier nodes aceded. For ex-
ample,Rule Bin Figure 8(g) has a single root node bigraivertisement the
located at nod@ while Rule Ain Figure 8(d) has two frontier bigrams s >,
reflectanddiversity, oflocated at node® and6, respectively. This information
is used to calculate the language model score of joiningeaamdl a hypothesis.

Figure 8(e) shows the translation hypothesis establishapplyingRule Ato
the German structure. The language model score for thestevis established
by combining the score of the previous hypothesis (sinceistthe first rule for
this hypothesis, the previous hypothesis is the empty Ingsig and is therefore
1), the join score (since we are joining the rule with the gmiptpothesis this
score is also 1) and the rule score (see Figure 8(d)).

Figure 8(h) shows the translation hypothesis created bgrekpgH ypothes-
is1 by Rulep. Since this expansion involved adding a rule at n@da the
TL structure, the joining trigrams are derived by creatiistsl of words via all
possible combinations of the frontier bigrams belongingtgpothesis; la-
beled2 and the root bigrams oRulep, also labeled® (see root n-grams in
Figure 8(g)). For this example, this results in a single wegduence<s >re-
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Figure 8: Efficient Dependency-based Language Modeling




flect advertisement therhich forms two trigrams<s >-reflect-advertisement
andreflect-advertisement-th&he score folH ypothesis, is then calculated by
combining the hypothesis score féfypothesisy, the join score and the pre-
computed rule score fdRule B

5 Experimental Evaluation

In our experimental evaluation of the system, we investighe effects of the
disambiguation model used to select the best parse. RezateMaxwell (2006)
used an English disambiguation model for parsing both then@e and En-
glish data when translating from German to English. If a lemfisambiguation
model is used for both languages, the f-structures of a gbanof training
sentences are likely to be quite similar, and this may hedprtie induction
process. However, another approach is to use languag#ispigambiguation
models for parsing. In this case, it is more likely that #wtual best f-structure
for each sentence of the training data is selected. Altha@ugiore authentic
German parse may help the overall MT system, at the samelisstikely to
increase the dissimilarity between the parses of the Gefemgtish sentences
pairs, which may increase the difficulty of transfer.

We conduct an empirical investigation into which approachieves better
machine translation output for our system, by training assling the system
using (i) an English disambiguation model (Kaplan et alQ£2®Riezler et al.,
2002) to select the best parse for both German and Englisbresss, and com-
pare with results when (ii) a German disambiguation modeigf 2007) is used
for selecting the best German parse and an English disaatibgumodel (Ka-
plan et al., 2004; Riezler et al., 2002) is used to select #st parse for the
English sentences.

5.1 Training

The system was trained separately for each configuratiainifg data for both
configurations used data restricted by sentence lengthléf werds from the
Europarl (Koehn et al., 2005) and Newswire parallel corp@raich resulted
in approximately 360,000 German-English sentence pamd,aaheld-out de-
velopment set of 500 sentences pairs. Both sides of tharigagorpus were
parsed with the XLE parse engine (Kaplan et al., 2002). FarfiGoration 1,
an English disambiguation model (Kaplan et al., 2004; Rieet al., 2002) was
used when parsing both the German and English data. For Qeetiign 2, a
German disambiguation model (Forst, 2007) was used whesingathe Ger-
man data and the English disambiguation model (Kaplan e2@04; Riezler
et al., 2002) for the English data. The single best parsedoh sentence, ac-
cording to the appropriate disambiguation model, was usettdining for both
configurations.

For node alignment, Giza++ (Och et al., 1999) was run in batigliage



Config. | BLEU | NIST | Coverage| Connected TL structure
1 0.1121| 3.5685| 92.2% 33.4%
2 0.0730| 2.6643| 91.8% 47.2%

Table 1: Machine Translation System Results for Configanati English disambigua-
tion model for both German and English data, and Configuna2ioGerman disam-
biguation model for German data and English disambiguatiodel for English data

directions and the intersection was obtained using Mosesl{K et al., 2007).
We used both a dependency-based language model from thed pBsside

of the Europarl corpus and a conventional language modefusiver-cased
TL sentences, both trained on approximately 1,250,00@8eas. The SRILM
toolkit (Stolcke, 2002) was used for both language modelsniftlm Error

Rate Training (Och, 2003) was carried out using ZMERT (Zaj@®09) to train
weights for each configuration on 500 randomly selected-betdievelopment
set sentences optimizing for Bleu.

5.2 Testing

The system was tested in a single language direction, Geiortamglish on 500
randomly selected held-out test set German sentences argintijie best TL
translation produced by the system was evaluated usingnatitbmetrics with
a single reference translation.

For each configuration, the German sentences were parshdhgitsame
parsing engine and grammar as was used for training, andrigke est f-
structure according to the disambiguation model was s&leas input to the
decoder.

TL decoder output structures can be fragmented, and we atitatly re-
pair them if necessary. Automatic repair involves addingesd(in the form
of FIRST/REST equations with nodes ordered via the positibtheir trans-
lations in the SL structure) to any TL structure that does algady form a
single connected graph. For each test sentence, the 10Uibdecoder output
structures were repaired automatically, before beingtitgpthe generator and
a maximum of 50,000 sentences were generated per test cent&rstandard
language model was used to select the final TL output.

5.3 Results

The Bleu (Papineni et al., 2002) and NIST (Doddington, 2G@@res for both
system configurations on the test set are shown in Table lordicg to the au-
tomatic metrics, Configuration 1 achieves a Bleu score dfZl butperforming
Configuration 2, which achieves 0.073, almost 4 Bleu poiotgel than Con-
figuration 1. Configuration 1 also has higher system coveriageit was able
to produce at least some output for 92.2% of the test setev@ohfiguration 2



achieves 91.8% coverage. The number of TL structures ofrgputthe decoder
that already formed a single connected graph and therefdneod require any
repair was, however, higher for Configuration 2 (47.2%) t@amfiguration 1
(33.4%).

5.4 Discussion

The results obtained in the experimental evaluation arga&gnto our initial ex-
pectations. With the current system translating from Eigto German, using
the English disambiguation model for both languages ofdp®s automatic
evaluation results when the system is run on parse data bigaated by lan-
guage specific models. We had expected that the more authmares for
the German data should lead to an overall increase in ttaorsleesults, even
if the difficulty of transfer is increased slightly by thegddit increase in non-
isomorphism across the f-structure representations &pé#nsed sentence pairs
in the training data. The transfer rule induction algoritisnadesigned to induce
rules that capture non-isomorphism, and therefore inorgasn-isomorphism
should not effect the system to this degree. One suspectest @d the prob-
lems for Configuration 2 may lie in the grammar used with tligsuhbiguation
model. The number of features in the grammar is higher thanahthe Ger-
man grammar used with the English disambiguation model offiGoration 1.
When the data is parsed this leads to the German f-struat@ii@€enfiguration
2 containing far more atomic features than those of Conftgural. In fact,
for the German development set parses, the ratio of numbéurés in the f-
structures for Configuration 1 compared to Configuration agproximately
1:4. We suspect that due to the higher number of features ofigtoation 2,
transfer rules do not generalize as well to unseen data. Lledsnic features
are used in our system to guide the selection of transfes.rdibe smaller set
of features of Configuration 1 may be a better guide for trfan the larger
set of Configuration 2.

6 Future Work

The size of the training corpus used in the evaluation islstoatpared to cor-
pora usually used for training SMT systems. We would like éof@rm fur-
ther extrinsic evaluation of the two disambiguation modeffeen the system is
trained on a larger corpus not restricted by sentence lenfiis would pro-
vide each configuration with richer statistical estimated higher coverage of
transfer rules on unseen SL structures.

7 Conclusion

We presented a SMT transfer decoder that uses deep syrstrattures, as the
intermediate representation for transfer that applige-stithe-art methods of
PB-SMT to deep syntactic transfer. In the experimentaluatadn the decoder



achieves better results using an English disambiguatiatkeirfor parsing Ger-
man data, than when a German disambiguation model is used.
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