1,328 research outputs found

    Learning Inverse Statics Models Efficiently With Symmetry-Based Exploration

    Get PDF
    Learning (inverse) kinematics and dynamics models of dexterous robots for the entire action or observation space is challenging and costly. Sampling the entire space is usually intractable in terms of time, tear, and wear. We propose an efficient approach to learn inverse statics models—primarily for gravity compensation—by exploring only a small part of the configuration space and exploiting the symmetry properties of the inverse statics mapping. In particular, there exist symmetric configurations that require the same absolute motor torques to be maintained. We show that those symmetric configurations can be discovered, the functional relations between them can be successfully learned and exploited to generate multiple training samples from one sampled configuration-torque pair. This strategy drastically reduces the number of samples required for learning inverse statics models. Moreover, we demonstrate that exploiting symmetries for learning inverse statics models is a generally applicable strategy for online and offline learning algorithms. We exemplify this by two different learning approaches. First, we modify the Direction Sampling approach for learning inverse statics models online, in a plain exploratory fashion, from scratch and without using a closed-loop controller. Second, we show that inverse statics mappings can be efficiently learned offline utilizing lattice sampling. Results for a 2R planar robot and a 3R simplified human arm demonstrate that their inverse statics mappings can be learned successfully for the entire configuration space. Furthermore, we demonstrate that the number of samples required for learning inverse statics mappings for 2R and 3R manipulators can be reduced at least by factors of approximately 8 and 16, respectively–depending on the number of discovered symmetries

    Effizientes und stabiles online Lernen fĂĽr "Developmental Robots"

    Get PDF
    Recent progress in robotics and cognitive science has inspired a new generation of more versatile robots, so-called developmental robots. Many learning approaches for these robots are inspired by developmental processes and learning mechanisms observed in children. It is widely accepted that developmental robots must autonomously develop, acquire their skills, and cope with unforeseen challenges in unbounded environments through lifelong learning. Continuous online adaptation and intrinsically motivated learning are thus essential capabilities for these robots. However, the high sample-complexity of online learning and intrinsic motivation methods impedes the efficiency and practical feasibility of these methods for lifelong learning. Consequently, the majority of previous work has been demonstrated only in simulation. This thesis devises new methods and learning schemes to mitigate this problem and to permit direct online training on physical robots. A novel intrinsic motivation method is developed to drive the robot’s exploration to efficiently select what to learn. This method combines new knowledge-based and competence-based signals to increase sample-efficiency and to enable lifelong learning. While developmental robots typically acquire their skills through self-exploration, their autonomous development could be accelerated by additionally learning from humans. Yet there is hardly any research to integrate intrinsic motivation with learning from a teacher. The thesis therefore establishes a new learning scheme to integrate intrinsic motivation with learning from observation. The underlying exploration mechanism in the proposed learning schemes relies on Goal Babbling as a goal-directed method for learning direct inverse robot models online, from scratch, and in a learning while behaving fashion. Online learning of multiple solutions for redundant robots with this framework was missing. This thesis devises an incremental online associative network to enable simultaneous exploration and solution consolidation and establishes a new technique to stabilize the learning system. The proposed methods and learning schemes are demonstrated for acquiring reaching skills. Their efficiency, stability, and applicability are benchmarked in simulation and demonstrated on a physical 7-DoF Baxter robot arm.Jüngste Entwicklungen in der Robotik und den Kognitionswissenschaften haben zu einer Generation von vielseitigen Robotern geführt, die als ”Developmental Robots” bezeichnet werden. Lernverfahren für diese Roboter sind inspiriert von Lernmechanismen, die bei Kindern beobachtet wurden. ”Developmental Robots” müssen autonom Fertigkeiten erwerben und unvorhergesehene Herausforderungen in uneingeschränkten Umgebungen durch lebenslanges Lernen meistern. Kontinuierliches Anpassen und Lernen durch intrinsische Motivation sind daher wichtige Eigenschaften. Allerdings schränkt der hohe Aufwand beim Generieren von Datenpunkten die praktische Nutzbarkeit solcher Verfahren ein. Daher wurde ein Großteil nur in Simulationen demonstriert. In dieser Arbeit werden daher neue Methoden konzipiert, um dieses Problem zu meistern und ein direktes Online-Training auf realen Robotern zu ermöglichen. Dazu wird eine neue intrinsisch motivierte Methode entwickelt, die während der Umgebungsexploration effizient auswählt, was gelernt wird. Sie kombiniert neue wissens- und kompetenzbasierte Signale, um die Sampling-Effizienz zu steigern und lebenslanges Lernen zu ermöglichen. Während ”Developmental Robots” Fertigkeiten durch Selbstexploration erwerben, kann ihre Entwicklung durch Lernen durch Beobachten beschleunigt werden. Dennoch gibt es kaum Arbeiten, die intrinsische Motivation mit Lernen von interagierenden Lehrern verbinden. Die vorliegende Arbeit entwickelt ein neues Lernschema, das diese Verbindung schafft. Der in den vorgeschlagenen Lernmethoden genutzte Explorationsmechanismus beruht auf Goal Babbling, einer zielgerichteten Methode zum Lernen inverser Modelle, die online-fähig ist, kein Vorwissen benötigt und Lernen während der Ausführung von Bewegungen ermöglicht. Das Online-Lernen mehrerer Lösungen inverser Modelle redundanter Roboter mit Goal Babbling wurde bisher nicht erforscht. In dieser Arbeit wird dazu ein inkrementell lernendes, assoziatives neuronales Netz entwickelt und eine Methode konzipiert, die es stabilisiert. Das Netz ermöglicht deren gleichzeitige Exploration und Konsolidierung. Die vorgeschlagenen Verfahren werden für das Greifen nach Objekten demonstriert. Ihre Effizienz, Stabilität und Anwendbarkeit werden simulativ verglichen und mit einem Roboter mit sieben Gelenken demonstriert

    Modeling, simulation, and control of soft robots

    Get PDF
    2019 Fall.Includes bibliographical references.Soft robots are a new type of robot with deformable bodies and muscle-like actuations, which are fundamentally different from traditional robots with rigid links and motor-based actuators. Owing to their elasticity, soft robots outperform rigid ones in safety, maneuverability, and adaptability. With their advantages, many soft robots have been developed for manipulation and locomotion in recent years. However, the current state of soft robotics has significant design and development work, but lags behind in modeling and control due to the complex dynamic behavior of the soft bodies. This complexity prevents a unified dynamics model that captures the dynamic behavior, computationally-efficient algorithms to simulate the dynamics in real-time, and closed-loop control algorithms to accomplish desired dynamic responses. In this thesis, we address the three problems of modeling, simulation, and control of soft robots. For the modeling, we establish a general modeling framework for the dynamics by integrating Cosserat theory with Hamilton's principle. Such a framework can accommodate different actuation methods (e.g., pneumatic, cable-driven, artificial muscles, etc.). To simulate the proposed models, we develop efficient numerical algorithms and implement them in C++ to simulate the dynamics of soft robots in real-time. These algorithms consider qualities of the dynamics that are typically neglected (e.g., numerical damping, group structure). Using the developed numerical algorithms, we investigate the control of soft robots with the goal of achieving real-time and closed-loop control policies. Several control approaches are tested (e.g., model predictive control, reinforcement learning) for a few key tasks: reaching various points in a soft manipulator's workspace and tracking a given trajectory. The results show that model predictive control is possible but is computationally demanding, while reinforcement learning techniques are more computationally effective but require a substantial number of training samples. The modeling, simulation, and control framework developed in this thesis will lay a solid foundation to unleash the potential of soft robots for various applications, such as manipulation and locomotion

    Feasibility of Multi-component Seismic for Mineral Exploration

    Get PDF
    Mineral industry uses potential-field methods to explore shallow-seated resources. As deposits are getting deeper, alternative technologies are needed. Seismic reflection is the only surface method reaching the desired depth. Utilising full-vector field may provide valuable information including better rock characterisation in term of composition, alternations and geotechnical properties for exploration. This research is hoped to add new knowledge along this path and inspire further multicomponent seismic studies in the mineral sector

    Essays on the economics of networks

    Get PDF
    Networks (collections of nodes or vertices and graphs capturing their linkages) are a common object of study across a range of fields includ- ing economics, statistics and computer science. Network analysis is often based around capturing the overall structure of the network by some reduced set of parameters. Canonically, this has focused on the notion of centrality. There are many measures of centrality, mostly based around statistical analysis of the linkages between nodes on the network. However, another common approach has been through the use of eigenfunction analysis of the centrality matrix. My the- sis focuses on eigencentrality as a property, paying particular focus to equilibrium behaviour when the network structure is fixed. This occurs when nodes are either passive, such as for web-searches or queueing models or when they represent active optimizing agents in network games. The major contribution of my thesis is in the applica- tion of relatively recent innovations in matrix derivatives to centrality measurements and equilibria within games that are function of those measurements. I present a series of new results on the stability of eigencentrality measures and provide some examples of applications to a number of real world examples

    Techniques of replica symmetry breaking and the storage problem of the McCulloch-Pitts neuron

    Full text link
    In this article the framework for Parisi's spontaneous replica symmetry breaking is reviewed, and subsequently applied to the example of the statistical mechanical description of the storage properties of a McCulloch-Pitts neuron. The technical details are reviewed extensively, with regard to the wide range of systems where the method may be applied. Parisi's partial differential equation and related differential equations are discussed, and a Green function technique introduced for the calculation of replica averages, the key to determining the averages of physical quantities. The ensuing graph rules involve only tree graphs, as appropriate for a mean-field-like model. The lowest order Ward-Takahashi identity is recovered analytically and is shown to lead to the Goldstone modes in continuous replica symmetry breaking phases. The need for a replica symmetry breaking theory in the storage problem of the neuron has arisen due to the thermodynamical instability of formerly given solutions. Variational forms for the neuron's free energy are derived in terms of the order parameter function x(q), for different prior distribution of synapses. Analytically in the high temperature limit and numerically in generic cases various phases are identified, among them one similar to the Parisi phase in the Sherrington-Kirkpatrick model. Extensive quantities like the error per pattern change slightly with respect to the known unstable solutions, but there is a significant difference in the distribution of non-extensive quantities like the synaptic overlaps and the pattern storage stability parameter. A simulation result is also reviewed and compared to the prediction of the theory.Comment: 103 Latex pages (with REVTeX 3.0), including 15 figures (ps, epsi, eepic), accepted for Physics Report

    Techniques of replica symmetry breaking and the storage problem of the McCulloch-Pitts neuron

    Full text link
    In this article the framework for Parisi's spontaneous replica symmetry breaking is reviewed, and subsequently applied to the example of the statistical mechanical description of the storage properties of a McCulloch-Pitts neuron. The technical details are reviewed extensively, with regard to the wide range of systems where the method may be applied. Parisi's partial differential equation and related differential equations are discussed, and a Green function technique introduced for the calculation of replica averages, the key to determining the averages of physical quantities. The ensuing graph rules involve only tree graphs, as appropriate for a mean-field-like model. The lowest order Ward-Takahashi identity is recovered analytically and is shown to lead to the Goldstone modes in continuous replica symmetry breaking phases. The need for a replica symmetry breaking theory in the storage problem of the neuron has arisen due to the thermodynamical instability of formerly given solutions. Variational forms for the neuron's free energy are derived in terms of the order parameter function x(q), for different prior distribution of synapses. Analytically in the high temperature limit and numerically in generic cases various phases are identified, among them one similar to the Parisi phase in the Sherrington-Kirkpatrick model. Extensive quantities like the error per pattern change slightly with respect to the known unstable solutions, but there is a significant difference in the distribution of non-extensive quantities like the synaptic overlaps and the pattern storage stability parameter. A simulation result is also reviewed and compared to the prediction of the theory.Comment: 103 Latex pages (with REVTeX 3.0), including 15 figures (ps, epsi, eepic), accepted for Physics Report
    • …
    corecore