
THESIS

MODELING, SIMULATION, AND CONTROL OF SOFT ROBOTS

Submitted by

Ben Pawlowski

Department of Mechanical Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2019

Master’s Committee:

Advisor: Jianguo Zhao

Christian Puttlitz
Charles Anderson



Copyright by Ben Pawlowski 2019

All Rights Reserved



ABSTRACT

MODELING, SIMULATION, AND CONTROL OF SOFT ROBOTS

Soft robots are a new type of robot with deformable bodies and muscle-like actuations, which

are fundamentally different from traditional robots with rigid links and motor-based actuators. Ow-

ing to their elasticity, soft robots outperform rigid ones in safety, maneuverability, and adaptability.

With their advantages, many soft robots have been developed for manipulation and locomotion in

recent years. However, the current state of soft robotics has significant design and development

work, but lags behind in modeling and control due to the complex dynamic behavior of the soft

bodies. This complexity prevents a unified dynamics model that captures the dynamic behavior,

computationally-efficient algorithms to simulate the dynamics in real-time, and closed-loop control

algorithms to accomplish desired dynamic responses.

In this thesis, we address the three problems of modeling, simulation, and control of soft robots.

For the modeling, we establish a general modeling framework for the dynamics by integrating

Cosserat theory with Hamilton’s principle. Such a framework can accommodate different actuation

methods (e.g., pneumatic, cable-driven, artificial muscles, etc.). To simulate the proposed models,

we develop efficient numerical algorithms and implement them in C++ to simulate the dynamics of

soft robots in real-time. These algorithms consider qualities of the dynamics that are typically ne-

glected (e.g., numerical damping, group structure). Using the developed numerical algorithms, we

investigate the control of soft robots with the goal of achieving real-time and closed-loop control

policies. Several control approaches are tested (e.g., model predictive control, reinforcement learn-

ing) for a few key tasks: reaching various points in a soft manipulator’s workspace and tracking a

given trajectory. The results show that model predictive control is possible but is computationally

demanding, while reinforcement learning techniques are more computationally effective but re-

quire a substantial number of training samples. The modeling, simulation, and control framework

ii



developed in this thesis will lay a solid foundation to unleash the potential of soft robots for various

applications, such as manipulation and locomotion.

iii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Lie Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Screw Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Variational Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2 Soft Manipulator Kinematics and Statics . . . . . . . . . . . . . . . . . . . . 12
2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Strain Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 External Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Cable-Driven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.3 Fluidic Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.4 Artificial Muscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Constant Spatial Twist Solutions . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Numerical Implementations . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.1 Lie Group Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.2 Pseudospectral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7.1 Cantilevered Rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7.2 Fixed Ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7.3 Static Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 3 Soft Manipulator Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 External Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.3 Embedded Rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Explicit Variational Integrator . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Kirchhoff Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.3 Implicit Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.1 Dynamic Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iv



3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapter 4 Soft Manipulator Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1 Quasi-static Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Nonlinear Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.2 LQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.3 iLQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.1 Deep Deterministic Policy Gradient . . . . . . . . . . . . . . . . . . . 85
4.3.2 Guided Policy Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.1 MPC Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.2 Learning Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.3 DDPG Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.4 Control Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Appendix A Derivation of t′a,i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

v



LIST OF TABLES

2.1 Test Static Simulation Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 The Overall Control Scheme Performance. . . . . . . . . . . . . . . . . . . . . . . . . 102

vi



LIST OF FIGURES

2.1 Cosserat Rod Kinematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Cosserat Rod Statics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Static Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Static Numerical Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Static Workspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Cosserat Rod Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Spacetime square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Amplitude Convergence of Dynamic Cantilever Response. . . . . . . . . . . . . . . . 64
3.4 Frequency Convergence for Dynamic Cantilever Response. . . . . . . . . . . . . . . . 65
3.5 Dynamic Cantilever Reponse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6 Dynamic Trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.7 Dynamic Workspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.8 Workspace Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Quasi-static Reaching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Quasi-Static Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Dynamic Reaching Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4 Dynamic Reaching Error Trends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5 Dynamic Reaching Real-time Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6 Static Reaching Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.7 Static Reaching Error Trends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.8 Static Reaching Real-time Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.9 Trajectory Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.10 Trajectory Tracking Error Trends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.11 Trajectory Tracking Real-time Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vii



Chapter 1

Introduction

Soft robotics focuses on the design, actuation, modeling, and control of soft structures for use

in medical, personal, exploratory, and a potentially wide range of other applications [1–4]. These

robots diverge from traditional rigid robots by being innately compliant and highly flexible. This

compliance leads to several benefits over rigid robots as well as some challenges in their appli-

cation. One significant benefit is greater adaptability to their environment and contacts, allowing

them to take on more configurations and decrease the risk of damaging the objects they work

with [2]. The primary challenge present with these robots is their complex mechanics. Being soft,

they have infinite degrees of freedom allowing their dynamic behavior to be significantly more

complex than traditional robots.

Soft robots have found their uses in several fields. In medical applications they have been useful

for surgical devices [5], rehabilitation devices [6], and other applications [5, 7–9]. As surgical

devices they can lead to less invasive surgeries [5]. For rehabilitation they support more natural

motions of the body [6]. Soft robots can also mimic biological motions effectively, allowing for

easier study of behavior in creatures such as fish [10]. Several biological structures have been

inspiration for manipulator design such as octopus tentacles [11–14], elephant trunks [15, 16],

snakes [17,18], and several others [10,19–23]. There are also benefits to using soft structures when

exploring difficult environments, soft robots can be more adaptable to extreme conditions such as

high heat [24] or aquatics [25] and adapting to uncertain terrain. Other applications include new

takes on traditional robotics applications such as gripping [26, 27] and locomotion [19, 22, 24].

There are applications as well for reconfigurable robots which are robots that can adjust their

shape by controlling the stiffness of their components [28]. This shape change allows the robot to

perform different tasks simply by altering its geometry. Many applications are still in their early

stages and more diverse applications are being developed.

1



The primary difficulty with soft robots stems from the fact that they behave as continuums

rather than rigid bodies and thus their configurations have infinite degrees of freedom. While this

allows for many configurations, this also makes it difficult to model and control. Modeling the

dynamics of soft robots is complex due to need of continuum models of the physics [29] and

that there can be complex material properties to consider. As most control schemes rely [30] on

models of the dynamic behavior of the system, the computational complexity of the dynamics

highly restricts the potential to control these robots. Both modeling and control are necessary

for designing and applying these robots effectively. This has been a primary bottleneck for the

application of soft robots.

Actuation of soft robots is also an area of significant exploration. The actuators must be soft

to keep the benefits of the soft body which has led to a few primary actuation strategies. The most

common approaches are to use cables/tendons [13, 31] and fluidic actuators [15]. Both are rela-

tively simple to apply and are quite capable of actuating soft robots effectively. However, they both

require rigid parts to be useful; removing some of the utility of the soft robots and adding bulk.

As to cables, it is necessary to have motors and with fluidic actuators, compressors and valves.

While it currently does not seem possible to have totally soft robots, there are some actuation

strategies that reduce the necessary external components to just circuit boards and power supplies.

These actuation strategies come under the umbrella term of artificial muscles. These are devices

that generally actuate due to electrical power and include devices such as Shape Memory Alloys

(SMAs) [19, 21], Dielectric Elastomer Actuators (DEAs) [23, 26, 32], Ionic Polymer-Metal Com-

posites (IPMCs) [22, 33], and Twisted-and-Coiled actuators (TCAs) [34]. Beginning investigation

has shown some useful results, but more exploration is necessary.

Modeling the behavior is a very important topic for the soft manipulators as it influences the

design process and control. Generally, continuum models are rather complex inspiring the de-

velopment of simplified models. The most prominent of these being the constant curvature (CC)

approximation and its extensions [35]. The CC model assumes that the manipulator undergoes pure

bending and the resulting curvature of the body is constant. This can be a reasonable model in the

2



case of the statics when external loads are relatively constant, but breaks down whenever there

are significant out of plane loads (e.g., gravity and lateral contact) and dynamic behavior. Exten-

sions to this model include building the body out of many CC sections resulting in the Piecewise

Constant Curvature (PCC) [35] model which is more amenable to out of plane loads and dynamic

behavior. There has been a recent further generalization as the discrete Cosserat model [36] where

it assumes constant spatial twists, a more generalized deformation, so more deformation modes

can be considered rather than pure bending. These approaches conveniently allow for formalisms

similar to traditional rigid robots, such as DH-parameters [35] or Lagrangian models of serial ma-

nipulators [36], because it makes the constant sections akin to actuated joints in traditional robots.

There have also been more traditional continuum models for the soft robots, particularly slender

ones. Slender manipulators can be modelled effectively as rods or beams. Some approaches have

used the elastica [37],Euler-Bernoulli beams [38], Timoshenko beams [39], Kirchhoff rods [40],

and Cosserat rods [25,31,40]. The Cosserat rod approach is the most general of these as it models

extension, shear, torsion, and bending. Other more general rod models do exist [29, 41], but a use

case has not yet been found as the extra deformation modes do not appear to be significant. These

continuum models are generally more accurate, but are more computationally expensive. There

are also general approaches to modeling soft robots such as Finite Element Models (FEM) [42]

which generalize to non-slender robots and can use standard computational software.

For control many approaches exist [30], but there has been a strong restriction in the devel-

opment due to computational burden of the models. Quasi-static assumptions have been useful

for developing simple starting points for control schemes despite statics not truly being a control

problem [43]. For the dynamics several approaches have been used, but none have emerged as the

clear best choice. These approaches typically rely on the modelled behavior and therefore either

lose accuracy with simpler models or are limited by computational complexity. Due to these re-

strictions, machine learning approaches have been quite attractive [44]. Machine learning methods

are able to produce effective control policies that are computationally efficient at the expense of

potentially long training times. Considerable work has been focused on reducing the necessary

3



number of samples in machine learning [45–48]. One of the biggest challenges facing control is

the infinite degrees of freedom in the state space. Because of this, the configuration is only partially

represented, and the robot will always be inherently underactuated [49].

In this thesis we develop a general framework using Cosserat rod theory to model soft ma-

nipulators and include models for several common types of actuators and actuators gaining more

interest. We also develop several real-time simulations based on Cosserat and Kirchoff rod the-

ory. Not only are these real-time, but we have made sure the Lie group structure of the kinemat-

ics is always preserved and that no numerical damping is introduced into the simulations, which

have generally not been considered for soft robot simulations. We also explore real-time control

schemes for the soft manipulators. In the control we see that real-time Model Predictive Control

(MPC) is difficult to achieve, but can be done in a restricted case and the Reinforcement Learning

(RL) is effective for real-time control of the simulations. We will focus on the modeling of the soft

manipulators via the Cosserat rod model developing the kinematics and the statics (Chapter 2), and

the dynamics (Chapter 3). We will also discuss approaches to solving and simulating the behavior.

After modeling, the control approaches will be discussed and explored Chapter 4. Numerical ap-

proaches for real-time control will be discussed and machine learning techniques will be presented

that learn from the simulations and improve the real-time capabilities of the control schemes.

1.1 Preliminaries

Throughout this thesis ideas from Lie Theory [50], Screw Theory [51], and Variational Calcu-

lus [52] will be used. Some basic background knowledge will be presented for familiarity.

1.1.1 Lie Theory

Lie Theory [50] is a widely applicable field with lots of mathematical depth. Throughout the

thesis we will be using a few key definitions presented in this section. We will focus on the Special

Orthogonal group, SO(3) and the Special Euclidean group, SE(3), in matrix form.

4



SO(3) is a representation of 3D rotations, R ∈ R
3×3, as matrices. R ∈ SO(3) are required to

have det(R) = 1 and RTR = I . SE(3) represents general rigid body transformations meaning it

describes both rotations and translations, we will be representing them as homogeneous transfor-

mation matrices, g ∈ R
4×4, which are defined as:

g =







R p

0 1






(1.1)

where R is a rotation matrix and p ∈ R
3 is the position or translation vector. Throughout the thesis

SE(3) elements will be referred to as configurations.

Lie groups are always differentiable and can either be left or right-invariant:

left-invariant:
dg

dx
= ga (1.2)

right-invariant:
dg

dx
= bg (1.3)

where a and b are different forms of the Lie algebra associated with the Lie group g and x is a

parameter of the Lie group (e.g., time). We will be using the left-invariant form as the algebra

elements can be interpreted as the body frame velocities. This is convenient for the development

of the physics models later.

All Lie algebras are isomorphic to a vector space and we will denote the isomorphism from

vectors to matrices asˆ: Rn×n → R
p and the inverse asˇ: Rp → R

n×n. The algebras for SO(3)

and SE(3) are so(3) and se(3) respectively. Their representations and transformations are defined

as:

5



so(3): ω =













ω1

ω2

ω3













≃













0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0













(1.4)

se(3): ξ =







ω

ν






≃







ω̂ ν

0 0






(1.5)

where ω ∈ so(3) is a Lie algebra element for SO(3), ξ ∈ se(3) is a Lie algebra element for

SE(3), and ≃ means the objects are isomorphic. The form of so(3) is either R3 or R3×3 and the

form of se(3) is either R6 or R4×4. Using the fact that ξ can be split into angular, ω, and linear, ν,

components allows us to conveniently define the isomorphism in terms of the so(3) isomorphism.

It is useful to note that the matrix form of so(3) are skew-symmetric matrices which make matrix-

vector multiplication act like the cross product (1.6).

a× b = âb (1.6)

For every Lie algebra we define the Lie bracket or commutator product, [·, ·], as:

[â, b̂] = âb̂− b̂â (1.7)

When working with vector forms of the algebra elements we can use the adjoint representation

to do the same multiplication:

[â, b̂] ≃ ada(b) (1.8)

where ada is the adjoint representation of a acting on b. For so(3) and se(3) we can write the

adjoints as matrices:

6



adω = ω̂ (1.9)

adξ =







ω̂ 0

ν̂ ω̂






(1.10)

There also exists the adjoint for the group defined by the group action as:

gâg−1 ≃ Adga (1.11)

where Adg is the adjoint representation for the group element g. For SO(3) and SE(3) we can

define them as:

AdR = R (1.12)

Adg =







R 0

p̂R R






(1.13)

A final useful concept for Lie groups and algebras are diffeomorphisms, primarily the expo-

nential map, which map an algebra element to a group element. Numerically the exponential map,

exp, is the matrix exponential. A diffeomorphism maps an algebra element to a group element

local to the identity of the group, which allows for operations like:

g1 = g0 exp(ξ̂) (1.14)

This allows us to move along the group manifold using algebra elements, which will be useful

in numerical simulations. The inverse operation is the natural logarithm, log, and maps group

elements to algebra elements.

7



1.1.2 Screw Theory

Screw Theory [51] is an approach to rigid body mechanics that unifies linear and angular

behavior into a single representation (e.g., moments and forces unify to a wrench). Screw Theory

uses SE(3) to describe rigid body motions and adds some useful terminology and concepts.

If we look at a rigid bodies’ motion in time we get:

ġ = gη̂ (1.15)

where ˙ is the derivative with respect to time and η is a combination of the angular, ψ, and linear,

κ, velocities in the body frame. This generalized velocity, η, is typically termed the twist of the

body. However, we will be working with twists not only defined by a time derivative, but a space

derivative when deriving the Cosserat rod model. To distinguish between them we will refer to

them as temporal and spatial twists throughout.

The group action can be interpreted as a frame transformation [51]. To transform a twist from

one frame to another we use:

η̂2 = T η̂1T
−1 (1.16)

where T ∈ SE(3) is the transformation from frame 2 to frame 1. This is equivalently written as:

η2 = AdTη1 (1.17)

Looking at power, P , we can define what a wrench is and use the frame invariance of power to

define the wrench frame transformation. Power is defined in the typical way:

P = 〈η,W 〉 (1.18)

where W is a wrench acting on the body and 〈·, ·〉 is the inner product. The wrench is made up

of a moment, M , and a force, F , as W = [M,F ]T . Using frame invariance we get the frame

transformation for wrenches:

8



W2 = AdTTW1 (1.19)

where the superscript T stands for transpose.

1.1.3 Variational Calculus

Variational Calculus (VC) or the Calculus of Variations [52] is a mathematical technique for

optimization problems and gives a way to determine the optimal trajectory function for a given

objective functional. Since the physics of mechanical systems can be written as optimization prob-

lems (e.g., Hamilton’s principle, Virtual Work, minimum potential energy, etc.) VC also has its

uses in modeling physical systems.

The concept behind VC is that in order to find the optimal trajectory for some objective the

trajectory must extremize (minimize or maximize) the given objective. This is equivalent to finding

maxima and minima along curves by taking derivatives, but extends the idea from points on curves

to trajectories on surfaces. The equivalent to finding where a derivative is 0 is finding where the

variation of the trajectory is 0 or stationary. To illustrate the idea we present how to derive the

Euler-Lagrange equations from Hamilton’s principle [53].

Hamilton’s principle [53] states the dynamic trajectory taken by a system is the one that ex-

tremizes the action integral. We define the action integral as the time integration of the Lagrangian.

S =

∫ τ

0

L(q, q̇)dt (1.20)

where L is the Lagrangian, q is the generalized coordinates for the system, q̇ are the generalized

velocities, and τ is the time horizon. With the boundary conditions q(0) and q(τ) defined the

dynamic system is fully specified. Hamilton’s principle is then trying to find q(t) that extremizes

S, so to find this using VC we perturb the trajectory q and find where S is stationary.

To perturb the trajectory q we introduce a perturbing trajectory δq and a parameter ǫ and rede-

fine q to make the action integral:

9



S(q + ǫδq) =

∫ τ

0

L(q + ǫδq, q̇ + ǫδ̇q)dt (1.21)

We need to enforce δq(0) = δq(τ) = 0 so that boundary conditions are respected for the

original problem.

To find the stationary point of S we are looking for the trajectory where a small perturbation

does not change S which can be stated as:

d

dǫ
S(q + ǫδq)|ǫ=0= 0 (1.22)

showing the similarities to finding minima and maxima using derivatives.

Applying this to the action integral we get:

∫ τ

0

(
∂L
∂q
δq +

∂L
∂q̇
δ̇q)dt = 0 (1.23)

We want to get rid of δ̇q so that we only have δq terms. This can be done with integration by

parts:
∂L
∂q̇
δq|τ0+

∫ τ

0

δq(
∂L
∂q
− d

dt

∂L
∂q̇

)dt = 0 (1.24)

where the first term will evaluate to 0 since we define δq(0) = δq(τ) = 0. Knowing that δq must

be arbitrary in time and that the integral must evaluate to 0 we know that the inner term must be 0:

∂L
∂q
− d

dt

∂L
∂q̇

= 0 (1.25)

these are the Euler-Lagrange equations derived from Hamilton’s principle.

We see that, once the objective is defined, using VC is a straightforward process to follow. We

can define the first variation, equivalent to the first derivative, as:

δ(f(x)) =
d

dǫ
f(x+ ǫδx)|ǫ=0 (1.26)

10



where we use δ() to mean the first variation and prepending a δ to a trajectory indicates the variation

of the trajectory. It is occasionally necessary to use higher order variations, but in this thesis only

the first variation is necessary.

There are a few special results when using VC on Lie groups and algebras. The variation of a

group element is defined as:

δ(g) =
d

dǫ
g exp(ǫδ̂h)|ǫ=0= gδ̂h (1.27)

This can then be used to define the variation of the algebra following the steps:

δ(ġ) = δ(gη̂) (1.28)

d

dt
(gδ̂h) = gδ̂hη̂ + gδ̂η (1.29)

gη̂δ̂h+ g
d

dt
δ̂h = g(δ̂hη̂ + δ̂η) (1.30)

δ̂η =
d

dt
δ̂h+ [η̂, δ̂h] (1.31)

δη =
d

dt
δh+ adηδh (1.32)

where (1.32) is the vector form of the variation for a Lie algebra.

11



Chapter 2

Soft Manipulator Kinematics and Statics

Modeling soft manipulators requires general continuum models of the bodies, but given that

the majority of soft manipulators are slender, much longer than they are thick. This allows us to

simplify from general continuum models to rod models. The main assumption for a rod model is

that the body has only one major spatial dimension along its axis. We know that the manipulators

will undergo significant body deformations, so the modeling approach will need to handle these

large deformations. One such approach is the Cosserat rod theory [25, 31, 54], where we are able

to model bending, torsion, shear, and extension. There exist other models for rods that incorporate

more [41] or less [39] modes of deformation, but the Cosserat model seems to sit at a good middle

ground for soft robotics.

The idea behind a Cosserat model is to assume that the body is made of infinitesimal rigid bod-

ies rather than point particles [55]. Rigid bodies means the configuration of the body is described

by a position and orientation rather than just a position. For the rod this means the cross sections

are the rigid bodies and are considered rigid planes. Cosserat models can also be referred to as mi-

cropolar theories as the microstructure [55] has both position and orientation. The other important

idea is the directed curve. This is the curve passing through the centroid of all the cross sections

of a rod, the centerline, and at every point along the curve there exists an orthonormal frame, the

directors. The directors act as the body frame for a cross section and allow us to relate the position

and orientation to the fixed frame. Note that the directors do not need to be orthonormal, if allowed

to vary more deformations of the microstructures can be modelled [41], but the added complexity

is not worth it in this case. The modeling will begin with the kinematics of the rods using SE(3)

to describe the configuration of the body and then derive the statics followed by the dynamics

including the relevant phenomena (e.g., inertia, strain, gravity, etc.).

12



Figure 2.1: A diagram for the kinematics of the Cosserat rod. Shows the centerline s ∈ [0, L] as the black
curve, the configuration g, the directors at a cross section, and the body of the rod in blue.

2.1 Kinematics

First we define the centerline, s ∈ [0, L], as the curve passing through the centroids of all the

cross sections where L is the length of the rod in its reference configuration. At every point s along

the centerline there exists the a set of directors. The z axis of the directors is tangent to s and the

x and y axes are assumed to be aligned with the principal axes of the cross sections. For each set

of directors we have a rotation and a translation relative to the fixed frame. We can describe the

rotation and translation by a homogeneous transformation matrix g ∈ SE(3) (1.1) as discussed in

the preliminaries. We always define the fixed frame to be at the base of the manipulator so that

g(0) = I4×4. Repeating the definition of g (1.1):

g =







R p

0 1






(2.1)

13



where R ∈ SO(3) is a rotation matrix and p ∈ R
3 is the position vector. g thus gives a description

of the position and orientation of all the points along the centerline and the configuration for the

cross sections.

In order to determine strains and deformations for any point in the body we need to describe

the kinematics of every point. With the centerline and its kinematics, g, already defined we can

locate any other point in the body as a translation, T ∈ SE(3), from the centerline. Here is where

we start using the rigid cross section assumption. By having the cross sections be rigid, any point

in the cross section is just a displacement, r, from the centerline.

G(s, x, y) = g(s)T (x, y) (2.2)

T (x, y) =







I3×3 r(x, y)

0 1






(2.3)

r(x, y) =













x

y

0













(2.4)

where G ∈ SE(3) is the configuration of any point in the body, x, y ∈ R denote the position in the

cross section along the principle axes, and I3×3 is the identity matrix. It is possible to have a more

complex T to accommodate structural features of the material or body, such as oriented fibers, but

in our case this is unnecessary.

Due to the centerline being defined as passing through the centroid of all the cross sections and

the displacement r being defined relative to the centroid we know that:

∫

rdA = 0 (2.5)

due to symmetry. This will be useful in later derivations.

For the centerline we can define the spatial twist, ξ ∈ R
6, as:

14



∂g

∂s
= g′ = gξ̂ = g







ω̂ ν

0 0






(2.6)

where ′ denotes differentiation with respect to s, ω ∈ R
3 is the angular component of ξ, and ν ∈ R

3

is the linear component. ξ can be viewed as the relative configuration change between adjacent

cross sections along the centerline. Later, ξ will be related to the strain and deformation in the

body and the change in ξ from its reference value ξ∗ will act as a measure of strain. ξ∗ comes from

the initial configuration of the rod and the most common case will be the rod is initially straight

giving ξ∗ = [0, 0, 0, 0, 0, 1]T . Other initial configurations (e.g., initially bent) can be defined as

well. Throughout we will refer to values in the reference configuration with a superscript ∗.

Later, we will be computing the strain energy and will need the definition for the deformation

gradient, F ∈ R
3x3, to determine the deformations and strains [54]. The components of F are ∂pG

∂xi

where xi = x, y, s and pG is the position component of G.

pG = Rr + p (2.7)

∂pG
∂x

= R~x (2.8)

∂pG
∂y

= R~y (2.9)

∂pG
∂s

= R(ν + ω̂r) (2.10)

F = R

[

~x ~y ν − r̂ω
]

(2.11)

where ~x = [1, 0, 0]T and ~y = [0, 1, 0]T are the unit vectors along the principal axes of the cross

sections. To simplify the notation some we define:

15



Γ = ν − r̂ω

= ∆ν + ν∗ − r̂(∆ω + ω∗)

= γ + γ∗

(2.12)

γ = ∆ν − r̂∆ω, γ∗ = ν∗ − r̂ω∗ (2.13)

which makes F = R[~x, ~y,Γ].

To measure the strains we will use the Green-Lagrange strain tensor [54], ε ∈ R
3x3. The Green-

Lagrange strain is a measure of finite strain, rather than infinitesimal strain, which is important

for cases of large deformations like in soft robots and is posed in the Lagrangian viewpoint of

the coordinates which is compatible with Hamilton’s principle used in the later derivations. The

Green-Lagrange strain tensor is defined as ε = 1
2
(F TF − (F ∗)TF ∗), or in component form εij =

1
2
(〈∂pG

∂xi
, ∂pG
∂xj
〉 − 〈∂p

∗

G

∂xi
,
∂p∗G
∂xj
〉).

εsx =
1

2
〈γ, ~x〉

εsy =
1

2
〈γ, ~y〉

εss =
1

2
〈γ, γ〉+ 〈γ, γ∗〉

εxx = εxy = εyy = 0

(2.14)

This defines the relevant kinematics dependent on the shape of the manipulator.

For the time dependence we define the temporal twist, or generalized velocity, as:

∂g

∂t
= ġ = gη̂ = g







ψ̂ κ

0 0






(2.15)

where ˙ is the derivative with respect to time, η ∈ R
6 is the temporal twist, ψ ∈ R

3 is the angular

velocity, and κ ∈ R
3 is the linear velocity. The temporal twist defines the velocities of the cross

sections in the body frame.

16



Using the symmetry of second order partial derivatives ( ∂
∂x

∂
∂y

= ∂
∂y

∂
∂x

) and computing the

partials of g we can also establish the relationship between twists:

ξ̇ = η′ + adξη (2.16)

This summarizes the important quantities in the kinematics: g, ξ, η, F , and ε. For the behav-

ior of the manipulators we develop the statics in the following section and the dynamics in the

following chapter.

2.2 Statics

Figure 2.2: A diagram for the statics of the Cosserat rod. Shows the rod (green) responding to a distributed
external load, W̄ext and a cable actuator embedded in the body.

To develop the statics we want to balance the internal loads due to deformation with the external

loads due to actuation, gravity, etc. We can use the principle of Virtual Work using VC to derive

the static balance between the internal strain energy, U , and the other sources of work, W . The

17



virtual work is written:

δ(W )− δ(U) = 0 (2.17)

where U ∈ R is the strain energy, W ∈ R is the applied work, and δ() is the first variation (1.26).

For the work we can define the variation as:

δ(W ) =

∫ L

0

〈δh, W̄ 〉ds (2.18)

where δh ∈ R
6 is the variation of the configuration and W̄ ∈ R

6 is the distributed wrench applied

to the body. Here we are using h to stand for the vector form of g which is comprised of 3

angles and 3 positions. Note that in the principle of Virtual Work the loads are not varied only the

displacements are hence why we only have δh. This is convenient for formulating arbitrary loads

as they can be included into W̄ without having to redo the calculations.

To finish Virtual Work we need to define the strain energy, U , and determine its variation.

2.3 Strain Energy

The internal strain energy for a body is defined as the integral of the stress times times the strain

over the whole body [54] giving:

U =
1

2

∫

∑

i,j∈{x,y,s}

σijεijdV (2.19)

where σ is the second Piola-Kirchhoff stress tensor [54] since it is conjugate tot the Green-Lagrange

strain. From the prior calculations of ε (2.14) the expression can be reduced to:

U =

∫

(σssεss + σsxεsx + σsyεsy)dV (2.20)

Expanding and rearranging the terms inside the integral we get:

18



U =
1

2
(

∫

(〈∆ν,
∫

(σss(γ + 2γ∗) + σsx~x+ σsy~y)dA〉ds)

+

∫

(〈∆ω,
∫

(r̂(σss(γ + 2γ∗) + σsx~x+ σsy~y))dA〉ds))
(2.21)

which can be represented more compactly as:

U =
1

2

∫

〈∆ξ,Ψ(ξ)〉ds (2.22)

where Ψ is the internal wrench due to the strain in the body and ∆ξ = ξ − ξ∗ is the change in ξ.

∆ξ will also be referred to as the strain in the rod due to its relationship to the strain energy.

To evaluate the integral and determine Ψ we need to define σ. σ is determined from the con-

stitutive law for the body material. It is desirable to use a simple constitutive model for the sake

of efficient simulations. Also, due to the rigid plane assumption some material properties do not

make sense, like Poisson’s Ratio, leading to a simpler model as well. In the simplest model of the

material behavior we have the linear relationships:

σss = Eεss (2.23)

σsx =
1

2
Gεsx (2.24)

σsy =
1

2
Gεsy (2.25)

σxx = σyy = σxy = 0 (2.26)

where E is the Young’s modulus of the body, G is the shear modulus, and the 1
2

factors are to

translate to the proper shear strains from the Green-Lagrange strains.

We can substitute in these definitions to determine the form for Φ(ξ); however, if we assume

that the second-order terms in the Green-Lagrange strain tensor are negligible (〈γ, γ〉 ≈ 0) we

get a simple matrix form for Ψ. Assuming an initially straight configuration, γ∗ = [0, 0, 1]T , the

quadratic terms are negligible, and that the constitutive law is linear elastic we get:

19



U =
1

2

∫

〈∆ν, EA∆νz +GA∆νy +GA∆νx〉ds

+
1

2

∫

〈∆ω,GJ∆ωz + EIy∆ωy + EIx∆ωx〉ds
(2.27)

where A is the cross sectional area, Ix and Iy are the second moments of area for the cross section,

and J is the polar second moment of area for the cross section. This used the centroid defini-

tion (2.5) for some simplifications. This can be simplified further to:

U =

∫

1

2
〈∆ξ,K∆ξ〉ds (2.28)

where K = textdiag([EIx, EIy, GJ,GA,GA,EA]) is the stiffness matrix for the rod. This

provides a simple and reasonably accurate form of the strain energy and is computationally ef-

ficient [56].

The variation of the strain energy can be found using the variation of ξ. The variation of ξ

follows from (1.32) and is:

δξ = δh′ + adξδh (2.29)

The variation of the strain energy, U , is then:

δ(U) =

∫ L

0

〈δh′ + adξδh,K∆ξ〉ds = 〈δh,K∆ξ〉|L0 +

∫ L

0

〈δh, adTξK∆ξ − (K∆ξ)′〉ds (2.30)

where integration by parts was used to get the rightmost representation.

Putting together (2.18) and (2.30) the statics can be written as:

−〈δh,K∆ξ〉|L0 +

∫ L

0

〈δh, W̄ − adTξK∆ξ + (K∆ξ)′〉ds = 0 (2.31)

which is the weak form of the statics. To get the strong form notice that (2.31) must hold for

arbitrary variations thus the strong form is:

20



W̄ − adTξK∆ξ + (K∆ξ)′ = 0 (2.32)

The full system of equations for the statics is (2.6), (2.32), and the relevant boundary conditions.

There are two basic types of boundary conditions: fixed and free. In the fixed case g is known

at the end, this makes δh at that end 0 in the weak form. For the free end we have K∆ξ = Wext

whereWext is the applied point wrench at the end, so in the case of no applied wrench the boundary

condition is ξ = ξ∗.

For the considered soft manipulators the system will typically have the base fixed and the tip

free which gives the following system of ODEs for the statics:

g′ = gξ̂ (2.33)

W̄ − adTξK∆ξ + (K∆ξ)′ = 0 (2.34)

with the boundary conditions of g(0) = I4×4 and K∆ξ(L) = Wext.

2.4 External Loading

All external loadings are components of W̄ . This includes effects like actuator loading and

gravity for the statics. In the formulation used, all distributed external loads have to be defined in

the body frame. For some loads this is straightforward to determine and for others it is easier to

transfer a fixed frame formulation to the body frame with:

W̄body = AdTg W̄fixed (2.35)

Some common and useful loads for the statics will be derived in the following subsections.

2.4.1 Gravity

The gravity formulation is fairly straightforward. The distributed load being applied at a given

cross section is the mass of the cross section, ρA, multiplied by the gravitational acceleration in

21



the body frame, RT gr, where ρ is the density of the body material and gr is the gravitational

acceleration vector. Putting this together the distributed wrench due to gravity is:

W̄grav = ρA







0

RT gr






(2.36)

If the manipulator is operated in a fluid, buoyancy can be included by making the substitution

ρ = ρbody − ρfluid.

2.4.2 Cable-Driven

Actuators that only exert axial loads (e.g., tension in cables) have the same general form for the

distributed wrench. First, begin by defining the wrench exerted by the actuator in the fixed frame.

Wact,fixed = F







p̂ata

ta






(2.37)

where F is the magnitude of the force, pa = Rra + p is the position of the actuator with ra the

displacement of the actuator from the centerline, and ta = p′a
‖p′a‖

is the unit tangent vector to the

actuator. To get the distributed wrench take the derivative of (2.37) with respect to s.

W̄act,fixed = F







p̂′ata + p̂at
′
a

t′a






+ F ′







p̂ata

ta






(2.38)

p′a = R(ν − r̂aω + r′a) (2.39)

p′′a = R(ω̂(ν − r̂aω + r′a) + ν ′ − r̂aω′ − r̂′aω + r′′a) (2.40)

ta =
p′a
‖p′a‖

(2.41)

t′a = −
(p̂′a)

2

‖p′a‖3
p′′a (2.42)

22



the derivation for t′a is found in Appendix A. Note that p̂′ata = 0 due to x̂x = 0 (1.6). This

simplifies to:

W̄act,fixed = F







p̂at
′
a

t′a






+ F ′







p̂ata

ta






(2.43)

To get back into the body frame we use the frame transformation (2.35).

W̄act =







RT −RT p̂

0 RT






(F







p̂at
′
a

t′a






+ F ′







p̂ata

ta






) (2.44)

which becomes:

W̄act = F







r̂RT t′a

RT t′a






+

F ′

‖ν − r̂aω + r′a‖







−p̂(ν − r̂aω + r′a)

ν − r̂aω + r′a






(2.45)

So, for cable like actuators we have (2.45) to define its distributed wrench. When there are

multiple cables the distributed wrenches can simply be summed together and if they only run

through part of the body then the load is piecewise over the relevant part of the body.

For a frictionless cable F = −T where T is the tension, which can easily be substituted

into (2.45).

In the case of a cable, it will always be fixed to some point in the body, typically the end, and

it will exert a point wrench due to the tension. This can be written in the body frame as:

Wact,point = F







r̂aR
T ta

RT ta






(2.46)

For the cables fixed at the end this contributes to the tip loading K∆ξ(L) = Wext. If the

cables only run through part of the body then the point loads can either be modelled as Dirac delta

distributions or the rod can be split into several rods in series.

23



If we were to apply this to a control scheme we would be considering the tensions to be the

inputs or control variables, but it is also possible to switch to using the displacement of the cables

as the control inputs. To measure the displacement of the cable we use:

∆L =

∫ L

0

‖p′a‖ds−
∫ L

0

‖(p∗a)′‖ds (2.47)

where ∆L is the displacement of the cable and this is the difference in the arc length in the current

configuration and the original configuration.

2.4.3 Fluidic Actuators

Frequently, soft manipulators make use of fluidic actuators where a fluid is used to inflate

an internal chamber. Here we demonstrate an approach to modeling them. Some simplifying

assumptions about the deformations will have to be assumed to maintain the rigid cross section

assumption.

First, the position of the centerline of the chamber is the same as with the tendon actuator,

pa = Rra + p. For the surface of the chamber the position can be described as:

pc = R(rc













cos(θ)

sin(θ)

0













+ ra) + p (2.48)

where rc is the radius of the fluidic chamber and θ is the angle around the center of the chamber.

To evaluate the distributed wrench in the fixed frame we can formulate it as the integral of the

pressure exerted along a section of the surface in the direction normal to the surface.

W̄act,fixed =

∫ 2π

0

Prc







p̂c~n

~n






dθ (2.49)

24



where P is the pressure in the chamber and ~n = [cos(θ), sin(θ), 0]T is the unit normal to the

surface. Evaluating this results in:

W̄act,fixed = −πPr2c







Rd

0






(2.50)

where d is a vector dependent on how the rotation, R, is parameterized. For example, if R is

the rotation matrix using xyz-Euler angles then d = [cos(θy) sin(θx), sin(θy), cos(θx) sin(θz) +

cos(θy) sin(θz) + cos(θz) sin(θx) sin(θy)]
T . Transforming this into the body frame gives:

W̄act = −πPr2c







d

0






(2.51)

defining the distributed wrench for the fluidic actuator. So there are no forces as there is nothing

to push against, but there is a moment that restores the cylinder back to being straight. Often the

moment can be neglected and there is no distributed load along the body.

When using a fluidic actuator there will always be a cap somewhere in the chamber, typically

at the end, and this will exert a point wrench due to the pressure acting on the cap. This can be

written in the body frame as:

Wact,point = Pπr2c







r̂aR
T ta

RT ta






(2.52)

where ta is the same as defined for the cable-like actuator.

Throughout, it was assumed that the pressure, P , is controlled; however, sometimes the volume

of the fluid in the chamber is controlled instead. The volume of the chamber is:

Vc =

∫ L

0

πr2cds (2.53)

For simulating it is still necessary to determine the pressure as a function of the volume, which

will depend on the fluid being used. The combination of Vc and P (Vc) can be seen as algebraic

25



constraints, or in a numerical solution as boundary conditions on P when Vc is treated as a state

variable.

2.4.4 Artificial Muscles

There has been development for other types of actuators that have potential to overcome the

weaknesses of cables and pneumatics. These come under the general term artificial muscles and

includes TCAs [34], SMAs [21], IPMCs [18], and DEAs [26]. Artificial muscles generally operate

by turning applied electrical power into deformation. These are then embedded within the bodies of

the soft manipulators. Artificial muscles can have some impressive properties, for example TCAs

can typically perform comparably to human muscle fibers in both deformation and strength [57].

One major benefit is they only require a power supply and a control circuit reducing the need for

extra rigid components. When using the artificial muscles they are embedded into the soft material

and there are several ways to do this. The most straightforward case is to embed the muscle during

the manufacturing of the soft body such that the muscle and the body are fully coupled, the motion

of the muscle and the body are linked together. The other option is to leave space in the body for

the muscle to be inserted into and then fixed at the ends. In this case the motions are not completely

coupled as the muscle has some freedom to move inside the body. It is also possible to have the

actuators external to the body, but we will not consider that case as it usually is not too useful

as the muscles need some structural support from the body. When a muscle is fully embedded

the coupling generally will not cause an issue with the numerical solution; however, in the case

when the actuator is inserted into the body the global deformations are coupled and this can cause

difficulties in the numerical solution process. When the artificial muscles’ performance depends

on a global deformation a loop develops where it is necessary to know the actuator deformation

to determine the body deformation, but it is necessary to know the body deformation to determine

the actuator deformation. We will demonstrate one way of dealing with this numerically.

To keep the model fairly general we will treat the artificial muscles as rods that generate a load.

The load is then dependent on a generalized displacement, ∆, the spatial twist in the actuator, ξa,

26



and an input q. ∆ will represent a global deformation of the muscle, some overall deformation of

the actuator, while ξa will be related to local deformations or strains in the muscles. To start we

can write the location of the muscle relative to the body with:

ga = gT, T =







Ra ra

0 1






(2.54)

where ga is the configuration of the muscle and T is the relative displacement from g to ga with

Ra as the relative orientation and ra the relative translation from the centroid of the cross sections.

This is similar to how the general kinematics was setup (2.2), but allows for arbitrary orientations

and is only locating a single point.

We can then define the spatial twist in the muscle as:

g′a = gaξ̂a (2.55)

where ξa can be determined from (2.54) by:

g′a = gξ̂T + gT ξ̂T (2.56)

gaξ̂a = g(ξ̂T + T ξ̂T ) (2.57)

ξ̂a = T−1ξ̂T + ξ̂T (2.58)

ξa = AdT−1ξ + ξT (2.59)

where ξT is the spatial twist for the displacement T and is defined by how the muscle is embedded

into the body. If T is simply a constant displacement then ξT = 0. With ξ and ξT known the spatial

twist of the muscle is determined.

It is also necessary to know the derivative of ξa for the stiffness of the muscles. We may

determine that as:

27



T ξ̂a = ξ̂T + T ξ̂T (2.60)

T ξ̂T ξ̂a + T ξ̂′a = ξ̂′T + ξ̂T ξ̂T + T ξ̂T ξ̂T + T ξ̂′T (2.61)

ξ̂′a = T−1ξ′T + T−1ξ̂T ξ̂T + ξ̂T ξ̂T + ξ̂′T − ξ̂T ξ̂a (2.62)

which does not happen have a nice simplified form.

To model the physics of the artificial muscle we need to include the muscles’ stiffness and its

generated load, so we use the Cosserat rod approach again.

W̄gen(q, ξa,∆) + W̄body − adTξaKa∆ξa + (Ka∆ξa)
′ = 0 (2.63)

where W̄gen is the generated distributed wrench, W̄body is the distributed wrench due to the body of

the manipulator, and q is the input to the muscle (e.g., voltage). Using a frame transformation and

substituting for W̄body = W̄ in the body model we get:

−adTξK∆ξ + (K∆ξ)′ + AdTT (ad
T
ξaKa∆ξa − (Ka∆ξa)

′ − W̄gen) + W̄ = 0 (2.64)

If the generated distributed wrench is not dependent on a global deformation then this can be

integrated similarly to the regular statics case, it is just necessary to determine ξa and ξ′a from ξ

and ξ′. In this situation all the deformation information is local.

If there is a dependence on the global deformation, ∆, then we have to work to uncouple the

problem so that it can be integrated. The issue arises because the actuator load needs to know the

global displacement, but we don’t know the global displacement until the system is integrated and

we cannot integrate without the actuator loads. Generally the global deformation, ∆, will take on

a form similar to:

∆ =

∫ L

0

f(g, ξ, s)ds (2.65)

where f is some function for measuring the deformation. For example, if we need the total length

of the actuator we can integrate to find its arclength as:

28



∆ =

∫ L

0

‖p′a‖ds =
∫ L

0

‖ν − r̂aω‖ds (2.66)

We can see that in order to determine ∆ we need to know the configuration and spatial twist

over the entire body, but to determine that we need to know the generated load which requires

knowing ∆.

To deal with the coupling we add boundary conditions and ODEs to the system of existing

equations. Since, we need a ∆ to perform the integration we provide a guess, ∆guess, that is used

throughout the integration process. Then we need to make sure that the guess was correct, so we

add the boundary condition that the guess and the integrated value must match, ∆guess = ∆int. To

integrate we get the ODE for ∆ and add it to the system of equations.

∆′ = f(g, ξ, s) (2.67)

Essentially the process adds another state variable ∆ to the system of equations, and unknown

initial condition ∆guess, an ODE ∆′ = f(g, ξ, s), and a boundary condition ∆ = ∆guess. This fixes

the coupling issue by providing a ∆ to be used in computing the actuator loads during integration

and sets up conditions to make sure the right ∆ is used in the computations via the boundary

condition and ODE. The downside to this would typically be that the system is now a boundary

value problem (BVP) which is a harder to solve than an initial value problem (IVP), but the statics

already was a BVP due to mixed boundary conditions, so very little computational complexity is

incurred.

2.5 Constant Spatial Twist Solutions

The statics generally does not have an analytic solution; however, given that it is common and

useful to assume a constant ξ [35, 36] we can see what is the required loads for the assumption to

hold. Assuming that ξ is constant and substituting into the statics (2.32) we get:

29



W̄ = adTξK∆ξ (2.68)

A constant ξ therefore implies that the distributed wrench must be constant as well.

When the ends are free and ξ is constant then the applied wrenches at the ends must be:

Wext = K∆ξ (2.69)

If an end is fixed it doesn’t influence the solution, though if both ends are fixed then the tip

and base configuration, g(L) and g(0), need to be consistent with the constant ξ definition. Un-

fortunately there appears to be no analytic solution for g even in the constant ξ case. For example

consider the assumed solution:

g(s) = g0 exp(θ(s)), θ(0) = 0 (2.70)

where θ(s) is a dummy variable that needs to be solved for. Taking the derivative we get:

g′ = g0 exp(θ(s)) dexp−θ(s) θ
′ = g0 exp θ(s))ξ̂ (2.71)

where dexp is the differential of the exponential map. For SE(3) dexp has an analytic form [58].

30



dexpξ = I + a(θ)adξ + c(θ)ad2ξ + (ωTν)







0 0

Q(ω) 0






(2.72)

θ = ‖ω‖ (2.73)

a(θ) =
sin(θ)

θ
(2.74)

b(θ) =
1− cos(θ)

θ2
(2.75)

c(θ) =
1− a(θ)

θ2
(2.76)

Q(ω) =
a(θ)− 2b(θ)

θ2
ω̂ +

b(θ)− 3c(θ)

θ2
ω̂2 (2.77)

Solving dexp−θ(s) θ
′ = ξ does not appear to have an analytic solution. However, the first and

second order Taylor expansions of dexp both give:

g = g0 exp(ξs) (2.78)

which is a fairly simple and convenient form. Higher order approximations do not seem obvious

to solve for the general case, but the low order approximation is a decent starting point.

To give a more concrete form to this assume that the rod is initially straight and that it is a

cylinder, we have ξ∗ = [0, 0, 0, 0, 0, 1]T and K = diag([EI,EI,GJ,GA,GA,EA]) with I , J , and

A being the relevant definitions for a circular cross section. For a constant ξ solution we have:

31



W̄ =

































GAνyνz − EAνy(νz − 1) + EIωyωz −GJωyωz

EAνx(νz − 1)−GAνxνz − EIωxωz +GJωxωz

0

GAνyωz − EAωy(νz − 1)

EAωx(νz − 1)−GAνxωz

GA(νxωy − νyωx)

































(2.79)

Wext =

































EIωx

EIωy

GJωz

GAνx

GAνy

EA(νz − 1)

































(2.80)

where the components of ξ been used, ξ = [ωx, ωy, ωz, νx, νy, νz]
T .

Some interesting cases arise when we look for ξ where W̄ = 0. There appear to be two cases:

pure bending and the combination of torsion and extension. These constant deformations can be

achieved with only point loads at the tip. For bending, as long as only a moment about the x or

y-axis is applied it will be pure bending. For torsion and extension, only a torsional moment and

an axial force may be applied. All other situations need some sort of constant distributed wrench

to satisfy the constant ξ assumption.

2.6 Numerical Implementations

To solve the statics we need to integrate the system of ODEs and we want them to be as accurate

as possible. One consideration to be careful of is the integration of the rotation matrix, R. Rotation

matrices have the property det(R) = 1; however, if we were to integrate the ODE R′ = Rω̂ with

a standard Runge-Kutta (RK) integrator the determinant would drift and cause the rotation to not

be proper and gradually become more inaccurate [59]. In order to preserve the properties of R we

32



need to use an integrator designed to preserve them. One class of methods are Lie group integrators

that are designed to preserve the structure of the group elements. As with all numerical methods

we only preserve the structure up to numerical precision.

2.6.1 Lie Group Integrators

Lie groups generally have some structural restrictions placed on them, such as SO(3) =

{R|RTR = RRT = I, det(R) = 1} which integrators will only maintain when designed to.

With the rotation example we have R′ = Rω̂ and if this were integrated with the explicit Euler

scheme we get:

Ri+1 = Ri(I +∆sω̂) (2.81)

which shows that det(Ri) 6= 1 making the rotation no longer proper. This feature is present in all

RK integrators.

For integration schemes that preserve the Lie group structure we use Lie group integrators.

There have been several approaches to tackling the structure preserving problem, but the basic

idea is to use the group action (for matrix Lie groups this is just multiplication) to preserve the

structure between steps and to generate an element of the group for the stepping [60]. So, it will

look something like:

Ri+1 = RiAi (2.82)

where Ai ∈ SO(3) is constructed to be a group element. One way to guarantee that Ai belongs to

the group is to use local diffeomorphisms and the Lie algebra. Since the algebra elements make up

a vector space the elements will always remain a member of the algebra with the arithmetic used

and the diffeomorphisms guarantee the algebra is mapped to a group. So, working with the algebra

and then mapping to the group structure when needing to step the integrator will always preserve

the group structure.

One approach to integrating Lie groups are the Runge-Kutta-Munthe-Kaas (RKMK) integra-

tors [60, 61]. RKMK integrators are an extension of RK methods that preserve the Lie group

33



structure. The general idea is as stated above, do the integration on the algebra and transform the

algebra elements to the group elements. For the rod system this begins with approximating g as:

g = gi exp(θ), θ(0) = 0 (2.83)

which states that g local to gi can be approximated by the diffeomorphism, exp, with the algebra

element, θ, making sure that at θ(0) we have g = gi. Taking the derivative and using (2.6) we get:

θ′ = dexp−1
−θ ξ (2.84)

as we did before in the constant ξ example in the statics discussion.

Since θ ∈ se(3) it can be integrated with an RK scheme just fine and the result can be used

to integrate g. Often dexp will either not have an analytic form or is too expensive to compute,

so an approximate form will be used. Given that the underlying RK scheme already has a given

accuracy we want the approximation of dexp to not influence it. For an RK scheme of order p then

the dexp approximation order, q, must be q ≥ p− 2 to maintain the order of the RK scheme [59].

For example, this means for 2nd-order RK schemes we can use dexp ≈ I , which is quite useful as

it can save some computation time.

The RKMK scheme thus preserves the group structure by using group multiplication and the

diffeomorphism to map algebra elements to group elements. Any integration can then be done on

the algebra and still maintain the structure.

For the static rod system the process is to integrate ξ′ and θ′ using the same RK scheme and

using the exponential map and group multiplication to preserve g. As an example if the implicit

midpoint scheme is used (yi+1 = yi +∆tf(ti +∆t/2, (yi+1 + yi)/2)) the resulting scheme is:

34



ξi+1 = ξi +∆sξ′(si +
∆s

2
, ξ̃, g̃) (2.85)

θ = ∆sθ′(θ̃, ξ̃) (2.86)

gi+1 = gi exp(θ) (2.87)

ξ̃ = ξi +
∆s

2
ξ′(si +

∆s

2
, ξ̃, g̃) (2.88)

θ̃ =
∆s

2
θ′(θ̃, ξ̃) (2.89)

g̃ = gi exp(θ̃) (2.90)

where˜stands for intermediate values in the integration process.

Using the approximation dexp ≈ I , since this is a 2nd-order scheme, we get:

ξi+1 = ξi +∆sξ′(si +
∆s

2
,
∆s

2
(ξi+1 + ξi), gi exp(

∆s

4
(ξi+1 + ξi))) (2.91)

gi+1 = gi exp(
∆s

2
(ξi+1 + ξi)) (2.92)

All RK schemes can be turned into an RKMK scheme [61] and in the tests we will show the

results of several schemes.

2.6.2 Pseudospectral Methods

In numerical integration there is always the concern of how close the solution is to the correct

answer and what is the discretization necessary for getting a desired accuracy. One method that

typically gives the best or near best accuracy per number of sample points is the pseudospectral

(PS) method [62]. PS methods are very similar to Galerkin or spectral methods except the resulting

integrals are evaluated using Gaussian quadrature rather than analytically. The idea for PS methods

are to pose the problem in weak form and assume that both the solution and variation, or test

function, are a family of basis functions. Then to find the coefficients associated with the basis

functions the resulting integrals are evaluated by Gaussian quadrature, which is determined from

35



the choice of basis functions. The benefit to using PS methods are that high accuracy is achieved

with a low number of discrete points [62].

Another view of PS methods is to consider the PS method as a finite difference method with

only one segment and a high order interpolating polynomial rather than several segments with

low order polynomials. This interpretation allows the solution process to be posed like a finite

difference method where the difference matrix is dense rather than sparse.

The basic idea behind a Galerkin method [62] is to take an ODE, ẏ = f(y, t), and write it in

weak form:

〈u, ẏ〉 = 〈u, f〉 (2.93)

where u is some function that satisfies the boundary conditions imposed on y and the inner product

here is on functions, 〈a(x), b(x)〉 =
∫

a(x)b(x)dx. Using a basis of orthonormal functions, φ,

approximate u =
∑

φi and y =
∑

αiφi where αi are the coefficients for y’s approximation. If the

basis functions are well selected these integrals can be evaluated analytically and the coefficients,

αi, can be solved for with high accuracy. This is the Galerkin method; however, most problems

will not have nice integrals and will need to be numerically integrated.

A common and highly accurate technique for numerical integration is Gaussian quadrature

which approximates an integral as:

∫ 1

−1

f(x)dx ≈
N
∑

i=0

wif(xi) (2.94)

where wi are weighting coefficients, xi are the sample points, and N is the number of points

used. Then, to determine the weights and sample points find the wi and xi that exactly integrate

polynomials up to order 2N + 1. It is important to note that Gaussian quadrature is defined on the

domain [−1, 1] and anytime it is used the domain of the function needs to be adjusted to this range.

Combining these techniques results in the pseudospectral method which has nearly the accu-

racy of a Galerkin method [62], but is more computationally feasible. For problems where the

domain is finite and the boundary conditions are not periodic, such as the rod, the best choice

36



for basis functions are Chebyshev polynomials of the first kind, Tn(x) [62]. The sample points

are then xi = cos( iπ
N
), i = 0, . . . , N the Chebyshev-Lobatto grid. Another choice for the sample

points is viable; however, this grid is more convenient to use given the boundary conditions. The

Chebyshev polynomials are defined as:

Tn(cos(x)) = cos(nx) (2.95)

or an equivalent recursive definition:

T0(x) = 1 (2.96)

T1(x) = x (2.97)

Ti(x) = 2xTi−1(x)− Ti−2(x) (2.98)

While it is possible to directly expand the functions in terms of Tn it is a bit more convenient

to use the equivalent cardinal basis [62] in the finite difference interpretation:

y(x) =
N
∑

i=0

yiCi(x) (2.99)

Ci(xj) =















1 i = j

0 i 6= j

(2.100)

where Ci are the cardinal basis functions and the xj are the Chebyshev nodes mentioned before.

Using these approximations we can write the ODE as:

Dy = f(y, t) (2.101)

where D is the differentiation matrix for the cardinal basis on the Chebyshev nodes and all the

function, f(y, t), evaluations occur at the nodes. The differentiation matrix is:

37



D =















































1+2N2

6
i = j = 0

−1+2N2

6
i = j = N

− xj

2(1−x2
j )

i = j, 0 < i, j < N

(−1)i+j pi
pj(xi−xj)

i 6= j

(2.102)

where p0 = pN = 2, pj = 1 otherwise [62].

To incorporate boundary conditions into the system we replace the rows of D and f corre-

sponding to the endpoints and set them to be the boundary conditions (e.g., making the tip load

balance). This replacement happens for the boundary conditions on ξ and θ individually.

For the static rod equations this amounts to:

Dξ =
L

2
K−1(adTξK∆ξ − W̄ ) (2.103)

Dθ = dexp−1
−θ ξ (2.104)

gi = g0 exp(θi) (2.105)

where the D matrices are modified to incorporate the boundary conditions and L
2

is a scaling factor

from changing the domain of s from [0, L] to [−1, 1]. It is important to note that these are nonlinear

and thus must be iteratively solved for ξ and θ. To make sure there is no degradation in the solution

the analytic form of dexp is used (2.72).

2.7 Results

In the implementation of the statics we want to compare the performance between RKMK

schemes and PS. Since all RK schemes can be converted to RKMK schemes we will compare

several versions of RKMK as well with different orders of accuracy and solving approaches. We

expect that the pseudospectral method is the most accurate for the number of points, the higher

order RKMK schemes are more accurate than the low order schemes, and the explicit schemes are

38



Cantilever Fixed Ends Cable Driven

Figure 2.3: The cases considered for the static manipulator. We have the cantilever case, the fixed ends
case, and the cable-driven case.

the fastest to compute. To compare the choices we use a cantilevered rod subject to gravity and a

rod with both ends fixed as test problems. We also report the cable-driven static case for the sake

of establishing the workspace.

For the RKMK schemes we will compare the explicit Euler, implicit Euler, explicit midpoint,

and implicit midpoint. The Euler methods are of order 1 and the midpoints are 2nd-order. The

discretization schemes are:

explicit Euler: yi+1 = yi +∆tf(ti, yi) (2.106)

implicit Euler: yi+1 = yi +∆tf(ti +∆t, yi+1) (2.107)

explicit midpoint: yi+1 = yi +∆tf(ti +∆t/2, yi +∆t/2f(ti, yi)) (2.108)

implicit midpoint: yi+1 = yi +∆tf(ti +∆t/2,
yi + yi+1

2
) (2.109)

First we will review the physics for the cantilevered rod and the rod with fixed ends and then

give the numerical results. Throughout we assume a cylindrical rod that is initially straight (ξ =

[0, 0, 0, 0, 0, 1]T ) with the properties found in Table 2.1.

39



2.7.1 Cantilevered Rod

A cantilevered rod is a rod that has been fixed to a wall at one end and the other end left to hang

freely due to gravity. Here the rod is fixed to a wall such that it is perpendicular to the direction of

gravity.

The physics for a cantilevered rod can be stated as:

0 = W̄grav − adTξK∆ξ + (K∆ξ)′ (2.110)

g(0) = I (2.111)

ξ(L) = ξ∗ (2.112)

We will make the z-axis horizontal and have gravity be pointing in the x-direction, gr =

[−9.81, 0, 0]T .

For the cantilevered rod the boundary conditions are that the base is fixed, g(0) = I , and that

the tip is free, ξ(L) = ξ∗. Due to the mixed boundary conditions the RKMK schemes need to

use a shooting method to solve the problem. The procedure begins by guessing the value for ξ at

the base, integrating over s using the RKMK scheme, checking if ξ(L) = ξ∗, and repeating until

convergence. For the PS method the boundary conditions simply have to be added to D and F and

the system solved.

2.7.2 Fixed Ends

For the rod with both ends fixed we will consider a system with no external forces for simplicity

and the tip configuration being a translation from the neutral position. The system is thus:

40



0 = (K∆ξ)′ − adTξK∆ξ (2.113)

g(0) = I (2.114)

g(L) =







I3×3 pL

0 1






, pL =













0.1L

0

L













(2.115)

With both ends fixed the RKMK integrator still needs the shooting method to solve, but we

need to define the error in the tip configuration error. The error is made of both the position error

and the orientation error, the position error is perr = p(L) − pdes and the orientation error can be

defined as φerr = log(RT
desR(L))

ˇ. For the PS method the normal computations are used, but one

row of the equations is replaced by the configuration error.

Results

In testing the static solvers of the RKMK integrators and the PS scheme we want to see how

many points are necessary for convergence and if the solutions are the same. Testing the solutions

for the cantilevered rod and the fixed ends rod are found in Figure 2.4. The midpoint methods

converged faster than the Euler methods on all tests as they are second order methods compared

first order, as expected. The PS method converged very quickly in the cantilever case, but not

quite as quickly in the fixed ends case. Only one solution failed to solve which was the fixed ends

implicit midpoint scheme with N = 15, which could be fixed by an improved initial guess for

ξ(0). It is also notable that the determinants of the rotations are preserved as expected, the largest

deviation measured for all schemes was about 5 × 10−16 which is within numerical precision, so

all schemes can be considered to preserve the group structure.

As for computation speed, although it isn’t too important for the statics, the explicit schemes are

a bit faster than PS schemes and the implicit RKMK schemes are the slowest. Deciding between

using an explicit RKMK scheme and the PS scheme is a toss up and mostly preference. However,

looking ahead to the dynamics simulations the RKMK integrators are more amenable to dynamics

41



(a) Cantilever, explicit Euler. (b) Fixed ends, explicit Euler.

(c) Cantilever, implicit Euler. (d) Fixed ends, implicit Euler.

(e) Cantilever, explicit midpoint. (f) Fixed ends, explicit midpoint.

(g) Cantilever, implicit midpoint. (h) Fixed ends, implicit midpoint.

(i) Cantilever, pseudospectral. (j) Fixed ends, pseudospectral.

Figure 2.4: The solutions and convergence of the various different schemes for the cantilever hanging under
gravity and the beam with both ends fixed.

42



formulations while the PS method has some complications with the implementation and derivation

of a dynamic numerical scheme and loses its appeal for use in the dynamics.

2.7.3 Static Workspace

Traditionally robots have what is known as a workspace, the region in which they can move

their end-effector, which is useful for characterizing the behavior and limitations of the robot.

Workspaces don’t always have easy to compute forms, but a decent representation can usually be

obtained using something like a convex hull. However, the equivalent workspace for soft robots

has no analytic form and is not convex making it more difficult to quantify. Traditional robots have

their workspace determined by the limits of their geometry; however, soft robots do not have the

same geometric restrictions and without limits on their actuators can have theoretically unbounded

workspaces ignoring material limits. We need some definition of the workspace for the sake of

coming up with feasible control tasks. To quantify the workspace we need actuator limits. For our

testing we use cables and assume that the tensions cannot exceed 0.5 N to develop an approximate

analytic form of the workspace.

To define the workspace we could simply sample the workspace and find a surface that bounds

the sampled points. However, the workspace will not be convex making it harder to define the sur-

face and not having an analytic form for the workspace makes it harder to determine and generate

points inside and outside the workspace. To establish a workspace we pick a simplified model of

the manipulator that has an analytic tip position and sample the workspace to solve the parameters

that bound the workspace.

For the simplified model we assume the primary deformations are bending and extension then

we model the workspace using a rod with constant bending and constant extension with no other

deformations. This gives:

43



R = Rx(ωs) (2.116)

ξ =

































0

ω

0

0

0

ǫ+ 1

































(2.117)

where ω is the bending deformation, ǫ is the stretch, and Rx is a rotation about the x-axis. Then if

we assume that there is rotational symmetry about the z-axis we get:

R = Rz(φ)Rx(ωs) (2.118)

p′ = R













0

0

ǫ+ 1













(2.119)

where φ is the angle about the z-axis. The tip position can be solved for:

ptip =













2sin(ωL
2
)2sin(φ)

−2sin(ωL
2
)2cos(φ)

sin(ωL)













1 + ǫ

ω
(2.120)

thus the workspace is established when the bounds for ω and ǫ are determined. We know that φ ∈

[0, 2π] and due to symmetry ω ∈ [−ωbound, ωbound]. For the stretch it will typically be asymmetric

because either the actuators compress the body or extend it, ǫ ∈ [ǫlow, ǫhigh]. It is important to note

that there is an assumed symmetry in the placement of the actuators that should hold true in our

testing, but will not hold for a general manipulator. To establish a rough workspace we need to

determine ωbound, ǫlow, and ǫhigh so that the workspace encapsulates all the statically reachable tip

positions. This can be done through sampling the workspace and finding the necessary boundaries.

44



Then the workspace coordinates (ω, φ, ǫ) need to be found in terms of the Cartesian positions.

φ = atan(−px
py

) (2.121)

ω =
2

L
atan(

√

p2x + p2y
pz

) (2.122)

ǫ =
pzω

sin(ωL)
− 1 (2.123)

where px, py, and pz are the components of the tip position.

Both the workspace and the workspace coordinates have an issue when ω = 0, in the limit

these expressions become:

ptip =













0

0

L(1 + ǫ)













(2.124)

ω = 0 (2.125)

φ = 0 (2.126)

ǫ = pz/L− 1 (2.127)

To sample the workspace we solve the statics for several inputs covering the range of valid

input tensions and expand the bounds of the workspace to encompass all the sampled points, the

resulting workspace can be seen in Figure 2.5. This formulation will always give an umbrella

shaped volume for the workspace akin to a warped and relatively flat cylinder.

It is worth noting that this overestimates the workspace, but it doesn’t seem to cause any sig-

nificant problems in our use cases of sampling points and testing the control.

2.8 Summary

In this chapter we developed the kinematics and statics for the Cosserat rod, discussed different

actuator loadings, and demonstrated the numerical implementations for the system. The kinematics

45



Table 2.1: The relevant assumed material properties and geometry of the soft rod used in the static solver
tests.

E(MPA) G(MPa) ρ(kg/m3) D(cm) L(cm)

1 0.33 1000 1 10

Figure 2.5: The workspace for the static manipulator driven by cables and limited to a tension of 0.5 N.

46



for the system are described by the centerline s, the directors, and the configurations using the rigid

body displacements of SE(3). The statics are determined using the principle of virtual work to

balance the internal strain and the external loading. The most common types of actuators, cables

and pneumatics, were discussed and the forms of the loading derived. We also discussed the

usage of artificial muscles and some potential difficulties with the numerical implementation due

to different types of coupling. Finally, we discussed how to solve the static rod system as it is a

boundary value problem and how to preserve the Lie group structure, primarily rotations R, during

the integration process.

47



Chapter 3

Soft Manipulator Dynamics

Figure 3.1: A diagram representing the change of the configuration between time t1 and t2 due to momen-
tum, Mη.

The dynamics for the Cosserat rod can be derived from Hamilton’s principle (HP) [53]. HP

states that the path taken by a dynamic system extremizes the action of the system or in other

words the path taken is the one that leaves the variation of the action stationary. This means that

the dynamics of the system can be derived using VC. Technically this applies only to conservative

systems, but it can be modified to nonconservative systems using the principle of Virtual Work and

is referred to as the Lagrange-D’Alembert principle [63]. Using VC, the Lagrange-D’Alembert

principle (which will be referred to as Hamilton’s principle) can be stated as:

δ(

∫ τ

0

Ldt) +
∫ τ

0

〈δh,W 〉dt = 0 (3.1)

48



where L is the Lagrangian of the system and τ is the time horizon of the problem. We consider

the Lagrangian to be L = T − U where T is the kinetic energy and U is the strain energy (2.28)

as defined in the statics. We also need to recall that the boundary conditions in time cannot be

perturbed so δh(0) = δh(τ) = 0.

3.1 Kinetic Energy

For the kinetic energy, T , we have the total kinetic energy of every point in the body which can

be viewed as the integral of the kinetic energy per unit volume over the entire volume of the body.

T =

∫

1

2
〈ṗG, ρṗG〉dV (3.2)

where V is the volume of the body and ρ is the density of the body. Rearranging the equations,

assuming the density is constant, and using the fact that κ and ψ are only dependent on s (not x or

y) we get:

T =
1

2
ρ

∫

(A〈κ, κ〉 − 〈ψ, (
∫

r̂2dA)ψ〉 − 2〈v, (
∫

r̂dA)w〉)ds (3.3)

Then since the centerline is defined to pass through the centroid of the cross sections terms like

x or xy will integrate to 0 due to symmetry (2.5) and the kinetic energy simplifies to:

T =
1

2
ρ

∫

(A〈κ, κ〉+ 〈ψ, (
∫













x2 0 0

0 y2 0

0 0 x2 + y2













dA)ψ〉)ds (3.4)

which can be rewritten in matrix form as:

T =
1

2

∫

〈η,Mη〉ds (3.5)

where M = ρ ∗ diag(Ix, Iy, J, A,A,A) is the inertia matrix for a cross section.

49



To evaluate the variation we use essentially the same process as the derivation for the statics.

The variation of η derives from the variation of the configuration and the definition of the temporal

twist (1.32).

δη = ˙δh+ adηδh (3.6)

Using δη, HP (3.1), the previously defined variation of the strain energy (2.30), and work (2.18)

the weak form of the dynamics becomes:

0 =

∫ τ

0

(〈δh,K∆ξ〉|L0 +

∫ L

0

〈δh, adTηMη − Ṁη − adTξK∆ξ + (K∆ξ)′ + W̄ 〉ds)dt (3.7)

where integration by parts has been used as well as δh(0) = δh(τ) = 0 to simplify the expression.

The strong form is:

adTηMη − Ṁη − adTξK∆ξ + (K∆ξ)′ + W̄ = 0 (3.8)

The full description of the dynamics is then made up of (2.15), (2.16), and either (3.7) or (3.8)

with the associated boundary and initial conditions.

One thing we note from (3.8) is that the transpose of the adjoint is the coadjoint map which

implies that Mη and K∆ξ are the conjugate momenta to η and ξ respectively. The conjugate

momenta can be interpreted as the momentum, µ = Mη, and the stress, λ = K∆ξ, and we can

write the dynamics as:

(adTη −
d

dt
)µ− (adTξ −

d

ds
)λ+ W̄ = 0 (3.9)

This could be a useful observation for stating the dynamics as a Hamiltonian system; however,

we don’t make use of it.

50



3.2 External Loading

Like in the statics all loads that do not derive from the kinetic or strain energy are included as

external load components of W̄ . In the dynamics we have more effects such as viscosity and drag

or dynamic behaviors of the actuators. Here a few common loads are presented.

3.2.1 Viscosity

The viscosity effects are dependent on the the time rate change of the strain in the body and

there exists many different approaches to modeling the effect. Here we will use the equivalent

of the Kelvin-Voigt model following the derivation in [64]. The derivation is very similar to the

stiffness derivation where we assume a linear model of the viscosity and integrate over the body.

The elastic term is already included in the model as K∆ξ, so the viscosity term is:

W̄vis = V ξ̇ (3.10)

where V = α ∗ diag([3Ix, 3Iy, J, A,A, 3A]) with α as the shear viscosity of the material and using

Trouton’s ratio to say that the extensional viscosity is three times the shear viscosity.

3.2.2 Drag

For drag effects there are typically two regimes to consider: laminar and turbulent. For laminar

drag the force is proportional to the speed and applies when the Reynolds number is small and

turbulent drag is proportional to the square of the speed when the Reynolds number is high. The

drag coefficients usually have to be found empirically, but the forms of the drag can be represented

as:

W̄drag,lam = −ρfluidDlamη (3.11)

W̄drag,turb = −ρfluidDturb‖v‖η (3.12)

51



where D are the drag matrix. Typically no moment will be produced by the drag which should be

reflected in the drag matrices.

3.2.3 Embedded Rod

For the behavior of an actuator embedded in the body a fairly general approach is to consider

the actuator as a rod that generates its own internal wrench. This allows for the inclusion of the

actuator’s stiffness and inertia naturally into the system and would be the process for extending the

actuator formulations in the statics to the dynamics.

For the kinematics of the embedded rod the configuration will typically just be a translation

from the main rod’s centerline.

gact = gTact = g







I3×3 ract

0 1






(3.13)

where ract is the displacement from the centerline. The twists follow as:

g′act = gactξ̂act (3.14)

ġact = gactη̂act (3.15)

The dynamics of the actuator are then the same form as the body dynamics.

adTηactMactηact −Mactη̇act − adTξactKact∆ξact + (Kact∆ξact)
′ + W̄gen + W̄body = 0 (3.16)

where W̄gen is the distributed wrench generated by the actuator and W̄body will be the distributed

wrench due to the main body. The distributed wrench due to the actuator in the body, W̄act, can

then be written as:

W̄act = AdT
T−1
act
W̄body (3.17)

which allows the actuator dynamics to be incorporated into the dynamics of the body.

52



To relate the actuator twists and body twists we can derive them as:

g′act = gactξ̂act = gTactξ̂act = g(ξ̂Tact + Tactξ̂T ) (3.18)

ξact = AdT−1
act
ξ + ξT (3.19)

where ξT is the spatial twist associated with Tact. The temporal twist follows similarly except we

know that Ṫact = 0 since the location in the body should not be changing.

ηact = AdT−1
act
η (3.20)

3.3 Numerical Simulations

Just like in the statics we do not have analytic solutions to the behavior and thus need numerical

simulations. For the numerical simulations we also have the concern of preserving the Lie group

structure and have the new objective of accurately mimicking the physics of the system. Primarily

what this means is that we do not want to introduce artificial damping to the simulations. Typically

numerical integrators that are not designed for preserving energy will introduce some amount of

numerical damping leading to the energy either dissipating from the system or growing to infinity

even when the physics is conservative [59]. Now, our system will have dissipation from viscosity

and other nonconservative loads, but we do not want to introduce numerical damping so that the

simulations can match the described behavior as best as possible. This motivates us to use special

types of integrators known as symplectic integrators [59].

Symplectic integrators preserve the symplectic structure of the system, which means that the

Hamiltonian or total energy is preserved. There are various techniques for creating these types of

integrators, but one convenient approach is variational integrators [59].

In this section we will develop several integrators. The first will be an explicit variational

integrator for the Cosserat rod. Next, we will impose the Kirchhoff restriction to reduce numerical

stiffness. Finally, we will develop an implicit scheme similar to [40].

53



3.3.1 Explicit Variational Integrator

The appeal of variational integrators is the fact that they are naturally symplectic [59]. Varia-

tional integrators typically start with Hamilton’s principle (or the Lagrange-D’Alembert principle

when nonconservative), discretize the integrals, and take the variation of the discrete equations to

extremize the system. This process then defines the integration scheme.

An example derivation starts with the Lagrange-D’Alembert principle (3.1):

δ(

∫ T

0

L(q, q̇, t)dt) +
∫ T

0

〈δq,W 〉dt = 0 (3.21)

where L is the Lagrangian, q are the generalize coordinates, q̇ the generalized velocities, δq the

variation of q, and W the external loads. Next, over a short time span, ∆t, approximate the

integrals:

LD(qi, qi+1) ≈
∫ ti+∆t

ti

L(q, q̇, t)dt (3.22)

〈δqi,W−
i (qi, qi+1)〉+ 〈δqi+1,W

+(qi, qi+1)〉 ≈
∫ ti+∆t

ti

〈δq,W 〉dt (3.23)

where LD is the approximation of the action, and W− and W+ are chosen such that they approxi-

mate the virtual work. Taking the variation, LD becomes:

δ(LD) =
∂LD

∂qi
δqi +

∂LD

∂qi+1

δqi+1 (3.24)

Using the fact that the summation of the variation of these approximated integrals,
∑LD,

should be 0 and rearranging to collect terms dependent on δqi the resulting equation is:

0 =
∂LD(qi, qi+1)

∂qi
+
∂LD(qi−1, qi)

∂qi
+W−(qi, qi+1) +W+(qi−1, qi) (3.25)

which gives an implicit definition for the time integration scheme, qi+1 = f(qi−1, qi).

54



For formulating a variational integrator for the Cosserat rod we want to preserve the Lie group

structure. For this we use an RKMK integrator for the kinematics and derive the variational integra-

tor from there. Here we will develop a low order integrator in space and time following similarly

to [63].

For the kinematics we have stepping in space and stepping in time, for both we will be using

explicit Euler RKMK integrators.

gji+1 = gji exp(∆tη̂
j
i ) (3.26)

gj+1
i = gji exp(∆sξ̂

j
i ) (3.27)

where the subscripts denote the point in time and the superscripts denote the point in space. Next,

we want to discretize the Lagrange-D’Alembert principle (3.1) for the rod. For this discretization

over space and time we will discretize over a square of space-time due to the double integra-

tion, Figure 3.2. To approximate the integrals we will use the lower left corner values ηji and

ξji .

LD(η
j
i , ξ

j
i ) = ∆t∆s(

1

2
〈ηji ,Mηji 〉 −

1

2
〈∆ξji , K∆ξji 〉) (3.28)

where a Riemann integration from the lower left corner has been used to approximate the double

integral.

As a simple approximation to the virtual work term we can use:

∫ ti+∆t

ti

∫ sj+∆s

sj

〈δh, W̄ 〉dsdt ≈ ∆t∆s〈δhj+1
i+1 , W̄

j
i 〉 (3.29)

this is a convenient form as the resulting scheme will be explicit and simple to compute allowing

for a fairly efficient implementation.

Evaluating the variation of the discrete Lagrange-D’Alembert principle comes to:

55



Figure 3.2: This represents the discretization of space and time in the variational integration scheme.

0 = ∆t∆s
∑

i

∑

j

(〈δηji ,Mηji 〉 − 〈δξji , K∆ξji 〉+ 〈δhj+1
i+1 , W̄

j
i 〉) (3.30)

To determine the variations of η and ξ we can use the variations of the kinematics (3.26)

and (3.27). First we define the variation of the discrete configuration:

δgji = gji δ̂h
j

i (3.31)

then taking the variations of (3.26) and (3.27) we get [63]:

gji+1δ̂h
j

i+1 = gji δ̂h
j

i exp(∆tη̂
j
i ) + gji dexp∆tηji

∆tδ̂η
j

i exp(∆tη̂
j
i ) (3.32)

gj+1
i δ̂h

j+1

i = gji δ̂h
j

i exp(∆sξ̂
j
i ) + gji dexp∆sξji

∆sδ̂ξ
j

i exp(∆sξ̂
j
i ) (3.33)

which can be rearranged to:

56



δηji =
1

∆t
dexp∆tηji

(−δhji + Adexp(∆tηji )
δhji+1) (3.34)

δξji =
1

∆s
dexp∆sξji

(−δhji + Adexp(∆sξji )
δhj+1

i ) (3.35)

The variations are substituted into (3.30). Reordering terms and using the fact that δhji must be

an arbitrary value, we get that the variational dicretization scheme for the rod is:

0 =
1

∆t
(−µj

i + AdT
exp(∆tηji−1

)
µj
i−1)−

1

∆s
(−λji + AdT

exp(∆sξj−1

i )
λj−1
i ) + W̄ j−1

i−1 (3.36)

where we define the discrete conjugate momenta µj
i = dexp−T

∆tηji
Mηji and λji = dexp−T

∆sξji
K∆ξji . µ

can be viewed as the momentum of the body and λ as the internal stress on the body. To complete

the scheme we can relate ξ and η together using multiple applications of (3.26) and (3.27) and

eliminating the g’s.

exp(∆tηj−1
i ) exp(∆sξj−1

i+1 ) = exp(∆sξj−1
i ) exp(∆tηji ) (3.37)

Using (3.27), (3.36), (3.37), and the definitions of µ and λ one time step of the integrator is

defined by:

ξji+1 =
1

∆s
log(exp(−∆tηji ) exp(∆sξji ) exp(∆tηj+1

i )) (3.38)

gj+1
i+1 = gji+1 exp(∆sξ̂

j
i+1) (3.39)

λji+1 = dexp−T

∆sξji+1

K∆ξji+1 (3.40)

µj
i+1 = AdT

exp(∆tηji )
µj
i −

∆t

∆s
(−λji+1 + AdT

exp(∆sξj−1

i+1
)
λj−1
i+1 ) + ∆tW̄ j−1

i (3.41)

µj
i+1 = dexp−T

∆tηji+1

Mηji+1 (3.42)

where all the equations are explicit except for (3.42) which is used to implicitly solve for ηji+1

making this scheme semi-implicit. We note that a first order approximation of dexp can be used and

still preserve the accuracy which makes it possible to solve (3.42) easily using Newton iteration.

57



In fact, typically the Newton iteration converges within 2 steps to a tolerance of 1 × 10−14 which

effectively makes this semi-implicit scheme fully explicit in terms of computation time given the

quickness of convergence. In this scheme it is necessary to compute the tip ξ from the tip boundary

condition and to specify the g and η at the base.

Due to the variational integrator being effectively explicit it is quite efficient to compute a

time step; however, due to the system being hyperbolic it is heavily restricted by the Courant-

Friedrichs-Lewy (CFL) condition [65]. The CFL condition essentially says that the space and time

discretizations need to be the proper resolution to propagate a wave at most one spatial step at each

time step, which can be stated as:
∆s

∆t
≥ c (3.43)

where c is the wave speed for the material. The wave speed can be approximated as c =
√

E
ρ

for

the rod. Using a factor of safety we can compute the time step from the spatial discretization and

the material properties as:

∆t = 0.1∆s

√

ρ

E
(3.44)

where 0.1 is the factor of safety determined from testing the simulation stability. The result is

that smaller space discretizations and stiffer materials cause the maximum time step to decrease.

Unfortunately, this restricts the ability of the simulation to being real-time only for small num-

bers of discretizations (e.g., < 20) and for soft materials (e.g., Ecoflex). After implementing the

simulation in C using the GNU Scientific Library (gsl) for the matrix and vector manipulation the

simulations can run in real-time under the discussed restrictions, the details of the timing will be

considered further in the control section.

3.3.2 Kirchhoff Restriction

The CFL condition is a difficult restriction to overcome especially when the simulated system

is numerically stiff [65]. Numerical stiffness of a system comes from the transient components of

the system vibrating at different frequencies and the bigger the difference the more stiffness that is

58



Given: gi, ξi, ηi, µi, λi ;
Base conditions: g0i+1 = I4×4, η0i+1 = 0, µ0

i+1 = 0 ;
Tip conditions: ξNi+1 = K−1Wext + ξ∗, λNi+1 = dexp−T

∆sξNi+1

K∆ξNi+1;

Set: ξ0i+1 =
1
∆s

log(exp(−∆tη0i ) exp(∆sξ0i ) exp(∆tη1i ));
λ0i+1 = dexp−T

∆sξ0i+1

K∆ξ0i+1 ;

for j=1..N-1 do

ξji+1 =
1
∆s

log(exp(−∆tηji ) exp(∆sξji ) exp(∆tηj+1
i ));

λji+1 = dexp−T

∆sξji+1

K∆ξji+1 ;

gji+1 = gj−1
i+1 exp(∆sξ̂

j−1
i+1 );

µj
i+1 = AdT

exp(∆tηji )
µj
i − ∆t

∆s
(−λji+1 + AdT

exp(∆sξj−1

i+1
)
λj−1
i+1 ) + ∆tW̄ j−1

i ;

Solve ηji+1: µj
i+1 = dexp−T

∆tηji+1

Mηji+1;

end

Set: gNi+1 = gN−1
i+1 exp(∆sξ̂N−1

i+1 );
µN
i+1 = AdT

exp(∆tηNi )
µN
i − ∆t

∆s
(−λNi+1 + AdT

exp(∆sξN−1

i+1
)
λN−1
i+1 ) + ∆tW̄N−1

i ;

Solve ηNi+1: µN
i+1 = dexp−T

∆tηNi+1

MηNi+1;

Algorithm 1: Variational dynamics simulation

present. Stiffness causes an issue because all the waves need to be resolved properly to be stable,

but often the small and fast vibrations are insignificant to the overall behavior. For the Cosserat rod

the linear deformations (shear and extension) are far stiffer than the angular deformations (bending

and torsion) causing the linear deformations to vibrate much faster than the angular ones. The

stiffness comes from the diameter, D, being relatively small for a rod. Since the linear stiffness

is proportional to D2 and the angular stiffness proportional to D4 the linear stiffnesses can be

significantly larger. However, the linear deformations are typically insignificant to the overall

behavior of the rod which means the simulations are being restricted to small time steps because

of insignificant phenomena. Since in some cases we can ignore the linear deformation we could

benefit by having a less restrictive CFL condition in the simulations. When it is possible to ignore

linear deformations we can use a Kirchhoff rod model. The Kirchhoff rod is the same as the

Cosserat rod except it is assumed that there is no shear or extension. The reduction is made simply

by:

ν = ν∗ (3.45)

59



Which means the linear portion of the spatial twist never changes. The relevant changes to the

dynamic equations are rather minimal, but a tip boundary condition only deals with moments as

only the angular portion of ξ can vary.

Making this simplification in the simulations is fairly straightforward. It does not influence the

running time much since most of the same computations are still carried out, but the safety factor

greatly increases in the time step. We found that the safety factor can be increased from 0.1 to 0.9

and will remain stable due to the reduced numerical stiffness. The Kirchhoff simplification loses

some qualities of the behavior, primarily the extension, but they are likely minimal, especially with

stiffer materials, and significantly improve the potential to reach real-time simulations and control.

3.3.3 Implicit Schemes

While it is possible to achieve real-time simulations with the presented variational integra-

tors the CFL condition for the explicit schemes is very limiting for stiff materials and fine spa-

tial discretizations. One way to avoid the CFL condition is to use implicit time discretization

schemes [65]. The CFL condition comes from the need for propagating waves to be properly re-

solved. In a numerical simulation for a propagating wave the peak of the wave cannot skip past

a spatial point or else it will be unstable, so to guarantee that a wave moves at most one spatial

point in a given time step the CFL condition must be met [66]. This can be seen as the propagation

of information in the system is restricted to the wave speed. The reason why an implicit scheme

avoids the CFL condition is because all the information at every point in the domain is available

to every other point meaning there is effectively no limit on how fast the information can move in

the system. This means there is no CFL condition for stability and larger time steps can be taken.

However, implicit schemes generally need to solve a large system of equations which is quite an

expensive computation limiting the utility of the scheme for real-time implementations. Recently,

it was noticed that for soft manipulators if the PDEs are first discretized implicitly in time to get

ODEs in space the equation solving can be simplified to just one equation [40] rather than an equa-

tion at every spatial point. This approach gets the benefit of avoiding the CFL restriction and stays

60



fairly computationally efficient due to only having to solve one equation, or 6 components of one

vector equation. This presents a possibly large benefit for real-time simulations and control.

The mentioned implicit scheme works by implicitly discretizing in time to get ODEs in space

and then a shooting method is used to integrate the ODEs in space and solve the boundary condi-

tions. One time step is similar to the statics if the inertia terms are viewed as an external load. For

this approach it is easy to preserve the Lie group structure through the RKMK technique; how-

ever, preserving energy isn’t as straightforward. Due to the explicit integration in space there will

possibly be some energy dissipation in the integration, but it will be quite small considering that

the integration will be over a relatively short domain (the length of the rod). So, the dissipation

in space is negligible and that means the time scheme needs to preserve energy if we want the

simulation to be symplectic like the variational integrators were.

It turns out that the implicit scheme observation is not compatible with the discussed variational

integrator, as a full system of equations is always needed to be solved for rather than a single equa-

tion when going through the derivation. Luckily there are several kinds of integrators that meet the

requirement of being implicit and symplectic that can be used instead of the variational integrators.

For example all integrators using Gauss-Legendre quadrature are implicit and symplectic [59]. The

simplest Gauss-Legendre scheme is the implicit midpoint rule, xi+1 = xi +∆tẋi+1/2.

Using this approach we will make a simulation that uses the implicit RKMK midpoint rule

in time and an explicit RKMK scheme in space. To begin we can restate the important dynamic

equations:

(− d

dt
+ adTη )µ− (− d

ds
+ adTξ )λ+ W̄ = 0 (3.46)

ξ̇ = (
d

ds
+ adξ)η (3.47)

µ =Mη (3.48)

λ = K∆ξ (3.49)

61



where µ and λ are the conjugate momenta which correspond to momentum and stress respectively.

Using the implicit midpoint rule we approximate the time derivatives as:

ẋi+1/2 =
xi+1 − xi

∆t
(3.50)

where the subscripts denote the time step. The half denotes being halfway between the next and

previous time steps. In order to stay consistent the ODEs in space will be evaluated at the half step

as:

λ′i+1/2 =
µi+1 − µi

∆t
− adTηi+1/2

µi+1/2 + adTξi+1/2
λi+1/2 − W̄i+1/2 (3.51)

η′i+1/2 =
ξi+1 − ξi

∆t
− adξi+1/2

ηi+1/2 (3.52)

In order to integrate these equations we need to know the initial conditions. The initial con-

dition for η is known since the base is assumed fixed; however, we do not know ξ because we

only have a condition for ξ at the tip, K∆ξ = Wext. So, just like the statics the spatial ODEs

can be integrated using a shooting method where ξ(0) is guessed, the system integrated, and then

K∆ξ(L) = Wext checked to see if the system is solved. This describes how the system is implicit

in only one equation, the tip condition.

The half step values can be solved for using a shooting method, but those need to be used to

step forward in time. In order to use the half step values to step forward in time they need to be

related to the next time step. This can be done by considering the half step to just be the average

between the previous and next time steps (e.g., ηi+1/2 = ηi+1+ηi
2

). This allows for the next time

step values to be computed from the half step values. After integration, stepping forward in time

is done by:

ηi+1 = 2ηi+1/2 − ηi (3.53)

ξi+1 = 2ξi+1/2 − ξi (3.54)

62



Using the explicit RKMK Euler scheme to integrate in space and the implicit RKMK midpoint

scheme in time, the RKMK in time is for stepping g, we get a symplectic Lie integrator for the

manipulators that can take long time steps. It is important to note that implicit schemes rather

than having a maximum time step instead have a limit on how short the time step can be. This is

due to dividing by small numbers causing ill-conditioning of the equations in the equation solving

step. This lower bound is usually found empirically [40]. The computational efficiency will be

discussed further in the control section.

Given: gi, ξi, ηi ;
Assume the ξ0i+1 = ξ0i ;
while Tip condition not solved do

Integrate with explicit Euler RKMK:
λ′i+1/2 = 2

µi+1/2−µi

∆t
− adTηi+1/2

µi+1/2 + adTξi+1/2
λi+1/2 − W̄i+1/2 ;

η′i+1/2 = 2
ξi+1/2−ξi

∆t
− adξi+1/2

ηi+1/2 ;

g′i+1/2 = gi+1/2ξ̂i+1/2 ;
Set:
ξi+1 = 2ξi+1/2 − ξi
ηi+1 = 2ηi+1/2 − ηi
gi+1 = gi exp(∆tηi+1/2);
compute boundary condition error;
update ξ0i+1 by root finding method;

end

Algorithm 2: Implicit dynamics scheme

3.4 Computational Results

To compare the behavior of the schemes we try the simple cases of a cantilever rod vibrat-

ing with gravity and a cable driven manipulator responding to a sequence of step inputs. Due

to similarities in the responses we compare the explicit and implicit Cosserat dynamics for the

cantilevered rod and the explicit Cosserat and Kirchhoff in the cable driven manipulator.

For the cantilevered rod we look at the response with some viscosity (α = 300 Pa·s) for 10s.

We compare the convergence due to adjusting the spatial discretization and the time steps. When

increasing the number of spatial steps for the integration we see that the amplitude of the vibrations

63



decrease, Figure 3.3, effectively showing that increasing the size of the spatial steps softens the

body. By adjusting the number of nodes we see that convergence to a consistent amplitude happens

around N = 20. For the time discretization we see that in the implicit scheme that at larger

time steps there is an extra secondary periodic wave present in the vibration that should not be

there, but as we decrease the time step this goes away, around ∆t = 0.01s is when this becomes

unnoticeable, Figure 3.4. We also note that the number of spatial points in the implicit scheme is an

important consideration for lowering the time step, for example the approximate lower bound on

the time step for the implicit scheme for N = 20 is ∆t = 0.04s. Here we also show a comparison

in the response for the cantilever between implicit and explicit schemes forN = 20 and the implicit

time step is ∆t = 0.05s. We see that the amplitudes and frequencies are the same, but given the

different resolutions the responses are slightly different, Figure 3.5

Figure 3.3: Using the explicit variational Cosserat we show the convergence of the amplitude with respect
to the number of spatial points used. Here N = 5, 10, 15, 20 are shown and we see convergence around
N = 15 to N = 20 after N = 20 changes are insignificant. Only the lower asymptote is shown as the upper
asymptote does not change much.

64



(a) ∆t = 0.1s. (b) ∆t = 0.05s.

(c) ∆t = 0.02s.

Figure 3.4: The time discretization leads to errors in the period of the wave, we see multiple different waves
rather than a single vibration. Using the implicit integrator we show how the spurious waves disappear with
smaller discretization. All used 100 spatial points.

Figure 3.5: Shows the dynamic response by recording the tip displacement through time for the implicit
and explicit Cosserat schemes. Uses 20 spatial points for both simulations, for the implicit simulation a
∆t = 0.05s is used as much lower leads to numerical ill-conditioning for this amount of spatial points.

65



Responding to cable actuation what we see is something somewhat surprising, the trajectories

of the tip between the Cosserat and Kirchhoff models end up being significantly different, Fig-

ure 3.6. The main difference is that the Cosserat rod vibrates in the axial direction when respond-

ing to the change in actuation and this slows down the overall motion while the Kirchhoff rod does

not vibrate anywhere near as much and responds much quicker. This shows that the Kirchhoff

model can become inaccurate depending on the system being modelled, typically it isn’t as good

for softer materials and actuation that applies large forces axially. This also reveals a significant

consideration in the control of the rods, the extra axial vibrations in the Cosserat rod will result in

control being more difficult as discussed in the control later.

3.4.1 Dynamic Workspace

Like traditional robots, soft robots have a workspace to represent its possible configurations;

however, the soft robots had a few extra considerations as discussed in the Statics. As a result we

used an approximate form of the rod to characterize the workspace. For the dynamics we have a

new consideration that is not present in traditional robots. Soft robots can reach outside their static

workspace by taking advantage of their flexibility and using dynamic motions. This has interesting

implications in terms of control as building up momentum is a valid strategy for reaching desired

points, but these points cannot be held. So, we need to characterize the dynamic workspace as well

as the static workspace to differentiate between points that can be reached and held and only those

that can be reached.

For the representation of the workspace we keep the same form as the statics. This form

seems to be a reasonable estimate for the workspace. In order to sample the workspace we do not

have a guaranteed way of determining representative states, so we instead give random inputs to

the simulation and determine the workspace that encapsulates all the points. The inputs are held

constant for several steps so that momentum can be built up. The resulting workspace can be seen

in Figure 3.7 and a comparison between static and dynamic can be seen in Figure 3.8.

66



(a) Cosserat response. (b) Kirchhoff response.

(c) Cable tensions.

Figure 3.6: The dynamic responses for changing step inputs for a cable manipulator modelled as a Cosserat
rod (left) and a Kirchhoff rod (center). The blue lines represent the centerline of the rod and the black line
tracks the tip position. The cable tensions are a series of step inputs shown on the right.

67



Figure 3.7: Show the dynamic workspace for the cable driven manipulator with the tension limited to 0.5
N.

68



Figure 3.8: Compares the static (blue) and dynamic (red) workspaces.

69



3.5 Summary

In this chapter we extended the statics to the dynamics by applying Hamilton’s principle, con-

sidered some new loading cases, and developed the numerical simulations for the dynamics. For

the dynamics Hamilton’s principle allowed us to extend the principle of virtual work from the

statics to the dynamics by including the kinetic energy. Due to the dynamic motion we now have

dynamic effects such as viscosity and the dynamics of the embedded actuators. For the numerical

simulations we discussed how we want to eliminate numerical damping and continue to preserve

the Lie group structure as was done in the statics. For this we implement a variational integrator

for the dynamics, but due to the CFL condition we are heavily restricted in the size of the time

step. Then, we present an implicit scheme that has no numerical damping, preserves the Lie group

structure, and avoids the CFL condition to compare with the variational integrator.

70



Chapter 4

Soft Manipulator Control

The goal of control is to determine the inputs to the soft manipulator that will achieve a certain

objective. In general, control can be quite a hard problem to address and for soft robots this holds

true. Controlling soft robots suffers from two primary problems: the configurations have infinite

degrees of freedom and the computational complexity of the models. There are a variety of possible

control tasks, but the simplest one which will be looked at is the control of the tip position of the

manipulator.

An important consideration for soft robots is the existence of both a static and dynamic workspace.

Tasks defined in the static workspace are fundamentally different from those in the dynamic

workspace as static points can be held stably, while dynamic points can only be reached tem-

porarily. Soft robots are also inherently underactuated, there are more degrees of freedom than

inputs, making the dynamics a much more important feature of the control [49].

The general framework for conceptualizing a control problem is to find the actions that min-

imize the total cost related to the objective. The actions are also subject to the dynamics of the

system and the constraints imposed on the system. This can be stated as:

min
u

J = Cend(xf ) +

∫ tf

t0

C(x, u, t)dt (4.1)

subject to: ẋ = f(t, x, u) (4.2)

B(x0, xf ) = 0 (4.3)

A(x, u) ≤ 0 (4.4)

where J is the total cost, Cend is the cost of the end point, C is the one step cost, f is the system

dynamics, B are the boundary conditions, A are other system constraints, x are the state variables,

71



and u are the inputs to the system. In general solving this is not a simple task and usually involves

either solving a nonlinear programming problem or a complex boundary value problem [49].

Due to the difficulty of optimal control problems many techniques exists for solving them [49].

Here we will go over some approaches to controlling the soft manipulator. We will start with a

simple quasi-static approach, move to Model Predictive Control (MPC) approaches, and then turn

to machine learning techniques.

Throughout all the control tests the programs are ran on a single thread of i7-2.10GHz CPU

with 8GB ram, the simulations are implemented in C, the optimization based control schemes are

implemented in Matlab, and the learning algorithms are implemented in python. Time has been

taken to optimize the simulations a bit, but the other algorithms are not necessarily optimized for

time efficiency.

4.1 Quasi-static Control

Typically control problems deal with dynamic systems; however, if we assume the system to

undergo quasi-static motion we can pose a control problem as solving the inverse statics [43]. The

inverse statics is given a desired steady state tip configuration solve for the actuator forces.

To start, the system of equations for the statics can be summarized as:

g′ = gξ̂ (4.5)

ξ′ = f(s, q, g, ξ) (4.6)

b(q, g, ξ) = 0 (4.7)

where q is the actuation inputs, f is the statics ODE, and b stands for the boundary conditions. If

we then define the error, e(q, ξ0), we can determine an iterative scheme for finding e = 0.

To start, the differential of e is:

72



de =
de

dq
dq +

de

dξ0
dξ0

= Eqdq + Eξdξ0

(4.8)

where Eq and Eξ are the error jacobians.

Also evaluating the differential of the boundary condition gives:

db =
db

dq
dq +

db

dξ0
dξ0

= Bqdq +Bξdξ0

(4.9)

where Bq and Bξ are the boundary condition jacobians.

Due to the boundary always needing to be satisfied we know that db = 0 which allows us to

rearrange to get:

de = (Eq − EξB
−1
ξ Bq)dq

= Jdq

(4.10)

where J is the overall jacobian.

Using (4.10) we could determine the q necessary to make e = 0; however, analytic forms for

the jacobians generally won’t exist so it is necessary to discretize (4.10).

∆e = J∆q (4.11)

where the components of J (Eq, Eξ, Bq, and Bξ) are computed by perturbing a known solution to

the statics and approximating the jacobians using finite differences. This gives an iterative scheme

for determining q, ∆q = J−1∆e. Note that generally a gain factor needs to included into the

update, qi+1 = qi− 0.2J−1
i ei, to remain stable when the desired point is far from the current point.

This essentially gives a quasi-static control scheme where it is assumed that dynamic effects

are negligible as the q can be updated when the objective changes or iteratively updated to get the

desired configuration.

73



To test the effectiveness of this scheme we see how many steps it takes to get within 1% tip

error of a randomly selected point in the static workspace. We also see how effectively it tracks a

circular trajectory in the static workspace.

For the reaching test we do 100 randomly sampled points and record the number of steps it

takes to reach them. The mean number of steps was 9.33 and the standard deviation was 3.24. The

sampled points can be seen in Figure 4.1.

Figure 4.1: The dots represent the randomly sampled points to be reached within the static workspace.

For the tracking we attempt to track 3 different circles with different radii. The radii are 0.5 cm,

1 cm, and 1.5 cm with the heights selected so that all the points are within the static workspace.

In general the tracking error was quite low, less than 1% for all circles, and the reason it is higher

for the larger radii seems to be due to the sweeping speed of the larger circle being a bit faster and

therefore a bit harder to keep up with.

It seems unlikely that soft manipulators will act quasi-statically, but it provides a starting place

and a comparison.

4.2 Model Predictive Control

One of the main concerns with controlling the soft manipulator is the computational cost of

the simulations. Having simulations that are computationally expensive makes achieving real-time

74



(a) Quasi-static Tracking Paths. (b) Quasi-static Tracking Errors.

Figure 4.2: The quasi-static tracking of the circular paths. The manipulator starts at its reference and tracks
the circle. The dashed black lines represent the desired circles.

control is difficult because each evaluation of the simulations will slow down the optimization rou-

tine. In general a global solution to a problem will be impractical to compute, but a local solution

is viable. Local solutions typically work by looking over a finite time horizon and optimizing the

trajectory over that horizon, taking the initial step, and then redoing the optimization again. It is

also common to make simplifications to the local cost and the local dynamics of the system to

further improve computation speed. Another concern is the state space, a soft manipulator has

infinite degrees of freedom and so needs a finite representation of the state space. Then, the finite

state space can still be fairly large making optimization more difficult. In the simulations there

is also the trade-off that more accurate representations are slower to compute and can restrict the

length of the time steps taken. So, the considerations to balance with the control problem are:

the time horizon in the control process, the resolution of the state space, and the resolution of the

simulation.

One popular approach for control is Model Predictive Control (MPC). The idea behind MPC

is to optimize the trajectory of the system over some finite time horizon and then to command

the initial action of that trajectory, once the step is taken the optimization is done again with the

time horizon shifted forward one step. MPC does not give a global optimal solution, but it gives a

75



local optimal solution which is generally satisfactory with less computational burden and an easier

ability to integrate it into a real-time system.

At a time step the MPC routine can be described as:

min
u

J(x, u) =
N
∑

i=0

C(xi, ui, ti) (4.12)

subject to: xi+1 = f(xi, ui, ti) (4.13)

where N is the number of time steps to look into the future, x0 is the current state, f is the discrete

dynamics, and extra constraints are not considered. Once the system is solved u0 is taken, the

system is measured, and then the process repeats shifted one time step into the future. In general

for a nonlinear problem the optimization can be done by techniques such as least squares fitting.

One thing that can be done in the finite horizon with discrete steps is to formulate the problem

as a dynamic programming problem. This starts by defining the cost-to-go function, V , as:

V (x, i) = min
U
J(x, U) (4.14)

which makes the cost-to-go the accumulated cost of the trajectory after step i. Using V (x,N) =

C(xN), since the final state cannot accumulate more future cost, the cost-to-go can be restated as:

V (x, i) = min
u
C(x, u) + V (f(x, u), i+ 1) (4.15)

which is the Bellman equation [67]. The significance of the Bellman equation is that the optimiza-

tion now occurs at only the current state rather than all states simultaneously. However, what V

actually is can be difficult to compute leading to other techniques of optimization and approxima-

tion to determine V . The Bellman equation also shows up in machine learning techniques, but it is

more typically phrased as a value function where rewards instead of costs are accumulated.

The main restriction when trying to apply control techniques is whether or not the computation

is real-time. For something to be real-time the computation of the control command must be faster

76



than the time step of the system. First, we can quantify the real-time performance of the simulation

itself, using the explicit Cosserat scheme as the example. If we define T (n) as the time it takes to

do one step of the integration with n spatial points then we can define the real-time ratio, τsim, as:

τsim =
T (n)

∆t
=
T (n)

√
E(n− 1)

0.1L
√
ρ

(4.16)

where ∆t is the time step of the simulation, E is the elastic modulus of the rod, L is the length of

the rod, and ρ is the density of the rod. The value 0.1 is an empirical safety factor for stability of

the simulation. The simulation is then real-time if τ < 1 and soft real-time when τ = 1 (real-time,

but noise may make some steps lag behind). It is apparent that achieving real-time is much easier

when the material is softer (wave speed is lower) and when the spatial resolution is low.

For the control scheme to be real-time the optimization time must be less than the one-step

command. This can be seen as evaluating many steps of the simulation and then acting on only

one, which makes the real-time ratio of the control scheme, τ , approximately:

τ ≈ mτsim (4.17)

where m is the rough number of evaluations of the simulation the optimization routine needs to

do. Other computations need to be involved in the optimization, but the main computational cost

is the simulation. Then, if the number of steps in the trajectory is N we get m = NS where S are

the number of sampled trajectories. This will give a rough estimate of the possible time horizons

and the iterations of the optimization that can be done.

To do some reasoning about real-time factors of the control schemes we first measure T (n).

The result is that the computation time is nearly linear with n and is roughly T (n) = 4.9× 10−5 +

6.5× 10−6n seconds over the range n = 10, . . . , 100 on a single thread of an i7-2.10GHz CPU for

the explicit schemes. This shows that the individual steps are fairly fast to compute, but the CFL

condition is still quite restrictive over the material properties. The real-time ratio for the simulation

can be approximated as:

77



τsim =
1

L

√

E

ρ
(−4.9× 10−4 + 4.25× 10−4n+ 6.5× 10−5n2) (4.18)

With the known material properties we can determine the number of spatial points available

to get a desired real-time ratio. Soft real-time essentially gives an upper bound to the number of

spatial steps that can be used for the given material properties. At soft real-time, τsim = 1, we get

the value for n as:

n =
−4.25× 10−5 +

√

3.08× 10−9 + 2.6× 10−6L
√

ρ
E

1.3× 10−5
(4.19)

where the negative root is removed to keep time positive. If we select L = 10cm and ρ = 1000 kg
m3

then we can see the relationship between material stiffness and the number of spatial points avail-

able. We can see that n ≈ 10 around E ≈ 100kPa and n ≈ 5 around E ≈ 1MPa, which ends

up being quite restrictive on the control algorithm and simulations. So, the predictive control will

likely be leaving a lot to be desired, but it can still be performed.

However, this assumed that the scheme was the explicit Cosserat scheme. If the Kirchhoff

restriction is made the time steps become nine times larger and the result is that the soft real-time

time steps become:

nKirchhoff =
−4.25× 10−5 +

√

3.08× 10−9 + 2.34× 10−5L
√

ρ
E

1.3× 10−5
(4.20)

which is a bit less restrictive as n ≈ 34 at E ≈ 100kPa and n ≈ 18 at E ≈ 1MPa. So, the benefit

of using the Kirchhoff simplification is clear in terms of control.

For the implicit scheme the considerations of timing and stability are slightly different. Implicit

schemes are not subject to the CFL condition, so there is no upper bound on the time step; however,

implicit schemes can become unstable at smaller time steps. The point of instability is determined

empirically. Due to needing to solve the boundary condition the implicit scheme naturally takes

longer than the explicit schemes per time step. To get the approximate running time with spatial

78



discretization we use the simulation with no viscosity. The time relationship is: T (n) = −2 ×

10−4 + 9.87 × 10−5n, which is roughly 15 times slower than the explicit scheme, but we have no

upper bound on the time step making real-time simulations more easily achievable. So, for the

implicit scheme the real-time ratio is:

τsim =
−2× 10−4 + 9.87× 10−5n

∆t
(4.21)

If a particular n or ∆t is desired then the other can be determined to achieve real-time.

The explicit schemes seem to generally be fairly restricted due to the CFL condition for usage

in control, so the implicit scheme likely has the advantage. The only downside being if we want

a small time step the implicit scheme can become unstable and the explicit schemes are more

desirable, though small enough time steps to become unstable are not going to be used in our tests.

4.2.1 Nonlinear Least Squares

For MPC there are many techniques for computing the optimal trajectory, one such method

is Nonlinear Least Squares (NLSQ). NLSQ is a general algorithm for finding local optima for

nonlinear problems when they have an error that can be written as a sum of squares. Since we

can specify the cost for the manipulator tasks as a Euclidean norm this is a plausible technique for

approaching the control problem. However, one benefit is that the objective does not need to be

specified over the whole state and can instead be only specified in the task space. The task space

consists of the errors in the parts of the state trying to be controlled, so in our case the error in the

tip position. The benefit of this is that approximations to gradients and jacobians are much less

expensive because instead of trying to find the optimal input by looking at the whole change in

state it only finds the optimal inputs for the change in the task space.

The way NLSQ is used for controlling the soft manipulators it to solve for the optimal sequence

of inputs that minimize the total cost of the sequence of states in the time horizon. When given the

desired tip position the cost would be the sum of the tip position errors measured at each time step,

79



∑

‖p − pdes‖2. This form happens to be exactly the form of NLSQ problems. For NLSQ we use

lsqnonlin in Matlab using the trust-region-reflective algorithm [68].

4.2.2 LQR

Another approach is to treat the system as having linear dynamics and quadratic costs. When

the dynamics are linear and the costs are quadratic there is a known optimal solution computed by

the Linear-Quadratic Regulator (LQR). For a discrete system we can write the dynamics and costs

as:

xi+1 = Axi +Bui (4.22)

C(xi, ui) = 〈xi, Qxi〉+ 〈ui, Rui〉 (4.23)

Cend(xN) = 〈xN , QendxN〉 (4.24)

where xi is the i-th state, ui is the i-th input, N is the number of steps in the trajectory, and Q, R,

and Qend are symmetric, positive definite matrices for the costs.

Then the formulation of the controller depends on whether the time horizon is finite or infinite.

For the finite case we have:

J =
N−1
∑

i=0

C(xi, ui) + Cend(xN) (4.25)

V (xi) = min
ui

(C(xi, ui) + V (Axi +Bui)) (4.26)

where J is the total cost and V is the cost-to-go. Now the optimal control is to minimize ui for

every input so if we take the derivative with respect to ui of the value function we can find the

optimal input, u∗. Before doing that we know the V should also be represented as a quadratic form

because it is the sum of quadratic forms so we get:

V (xi) = 〈xi, Sixi〉 (4.27)

80



where Si is a symmetric, positive definite matrix. This allows for the rearrangement of the value

equation to:

0 = min
ui

(〈xi, Qxi〉+ 〈ui, Rui〉+ 〈Axi +Bui, Si+1(Axi +Bui)〉)− 〈xi, Sixi〉 (4.28)

Taking the derivative with respect to u we get:

0 = 2uTR + 2BTSi+1Axi + 2uTBTSi+1B (4.29)

solving for u will give the optimal input:

u∗ = (R +BTSi+1B)−1(BTSi+1A)xi (4.30)

So, we can determine the optimal input given the current state and the form of the next cost-to-

go matrix. This means we need to determine Si to compute the optimal input. To determine Si we

can plug the optimal input back into (4.28) and solve for Si.

SN = Qend (4.31)

Si = ATSi+1A− (ATSi+1B)(R +BTSi+1B)−1(BTSi+1A) +Q (4.32)

To determine Si we just start from the end point and compute backwards to the first step. The

the optimal inputs can be computed. To proceed the first input is taken and the solution reoptimized

again with a new approximation to the linear dynamics.

LQR is an important and useful control scheme because it is easy to implement and compute

as long as A, B, Q, R, and Qend are known. The values associated with costs are given, but for

a dynamic system A and B may not be known or the dynamics are non-linear so they have to be

numerically approximated. For a non-linear system we can use finite differences to approximate A

andB about the starting position in the trajectory. If desired the optimization step can be iterated to

81



attempt to converge to better inputs for nonlinear systems. With xi+1 = f(xi, ui) we approximate

A and B as:

A ≈ f(xi + ǫ, ui)− xi+1

ǫ
(4.33)

B ≈ f(xi, ui + ǫ)− xi+1

ǫ
(4.34)

where ǫ is a small perturbation (e.g., 1× 10−5) and the vectors are perturbed element-wise.

Given: x0, u, f(x, u), N , Q, Qend, R ;
A, B = linearize(f , x0, u) ;
SN = Qend;
for i=N-1..1 do

Si = ATSi+1A− (ATSi+1B)(R +BTSi+1B)−1(BTSi+1A) +Q ;
end

return u = −(R +BTS1B)−1(BTS1A)x0;
Algorithm 3: LQR

4.2.3 iLQR

One weakness of LQR is that it only linearizes the dynamics about the initial point and so

the linearization isn’t necessarily accurate over the whole trajectory. To improve the accuracy we

can linearize the dynamics at every point along the trajectory. The drawback here is due to A

and B being state dependent we have to do several repetitions of LQR to converge to the optimal

solution, hence iterated-LQR. The approach goes as: start with an initial input trajectory, determine

the state trajectories and the linearized dynamics for the trajectory, compute the cost-to-go matrix

backwards over the trajectory, update the inputs using the cost-to-go similar to LQR, and if this

doesn’t satisfy the convergence condition repeat.

The approach for iLQR is essentially the same as for LQR, the main difference is during the

algorithm we need a forward and backward pass to optimize the trajectory. The forward pass

consists of what the initial considered inputs are and collects the sequence of states and linearizes

the dynamics at each step, the backward pass is then computing the cost-to-go, Si, for each state

82



in the trajectory. With Si computed the inputs can be updated so that they minimize the value

as was done in LQR. Repeating the forward and backward pass converges onto the optimal input

trajectory.

Given: x0, f(x, u), N , Q, Qend, R ;
Initialize: ui;
while not converged do

for i=0..N do

xi+1 = f(xi, ui);
Ai, Bi = linearize(f , xi, ui);

end

SN = Qend;
for i=N-1..0 do

Si = AT
i Si+1Ai − (AT

i Si+1Bi)(R +BT
i Si+1Bi)

−1(BT
i Si+1Ai) +Q ;

ui = −(R +BT
i Si+1Bi)

−1(BT
i Si+1A)xi;

end

end

return u0;
Algorithm 4: iLQR

4.3 Reinforcement Learning

For the MPC control the computation time is quite restricted by relying on the simulation and

we’d like to avoid this. Machine learning offers a way to learn efficient to compute control policies

and are much more plausible to run in real-time control applications. The difficulty in machine

learning comes from properly training the system for the tasks that you want to accomplish.

The field of machine learning that focuses on learning control tasks is known as reinforcement

learning [67]. Reinforcement learning (RL) in general works by exploring the environment and

collecting samples of the states it reaches, the actions it takes, and the rewards it measures. Then

uses the collected data to approximate the cost-to-go. Typically in RL the cost-to-go is referred to

as the value and rewards are used instead of costs. Then, with the value function learned the control

policy is able to maximize the value function at every step. There is some nuance based on the

83



problem being explored and the techniques for learning the value function, but we can generally

separate approaches into model-based and model-free techniques.

A model-based reinforcement learning algorithm will in someway learn or approximate the

dynamics of the system and use it for developing the policy. These approaches can overlap a bit

with other machine learning fields, such as supervised learning. Model-based algorithms typically

learn much quicker than model-free methods, but have a tendency to reach performance plateaus

earlier and at lower performance thresholds.

Model-free methods learn a policy directly from the rewards it measures rather than using the

dynamics of the system. These approaches have seen the best overall performance in complex

control tasks, but need much more data to train. Model-free reinforcement learning algorithms

have been the foundations for impressive feats such as playing video games [69] and learning the

game go [70].

For our control tasks we want to focus on learning effective policies and prefer the training

time to be as minimal as possible, which typically means using as few samples as possible, but we

also need to consider the accuracy of the policy. We will explore several techniques for learning

and see what the responses are.

Writing the general approach to reinforcement learning we can state the Bellman equation (4.15)

in a more standard form:

V π(xt) =
∞
∑

i=t

γt−iR(xt, π(xt)) (4.35)

where V π is the value for a policy π, γ ∈ [0, 1] is the discount factor, and R is the reward function.

Which can be rearranged as:

V π(xt) = R(xt, π(xt)) + γV π(xt+1) (4.36)

which amounts to saying the optimal policy, π, optimizes the value function at every step. So, by

collecting many samples of the state, actions, and rewards the value can be approximated and the

policy derived. However, it is more typical to use an augmented value, the Q-function [67].

84



Qπ(st, at) = R(xt, at) + γQπ(st+1, at+1) (4.37)

where the value is explicitly dependent on the action, at.

Learning the value and policy are then dependent on the algorithmic approach and the system

being studied.

4.3.1 Deep Deterministic Policy Gradient

One powerful approach to reinforcement learning the the Deep Deterministic Policy Gradient

(DDPG) [71]. This is a model-free method designed to work with dynamic systems that have

continuous state spaces and continuous action spaces. The idea behind DDPG is to approximate

both Q and π with deep neural networks and to train Q to minimize the error in the value and

the policy is trained to maximize the value. Some modifications to the base algorithm have to be

included to ensure the learning process is stable.

The error for training Q is defined as:

L =
1

N

∑

i

(R(xi, ai) + γQ(xi+1, π(xi+1|θπ)|θQ)−Q((xi, ai)|θQ))2 (4.38)

where N is the number of sampled points, i indicates a sample of states, θQ are the parameters for

Q, and θπ are the parameters for the policy. Taking the gradient with respect to θQ gives the update

rule for the Q network.

For the policy, the policy gradient used for the updates is defined as [72]:

∇θπJ =
1

N

∑

i

∇aQ(xi, ai|θq)|ai=π(xi)∇θππ(si|θπ) (4.39)

where J is the expected return.

Using these updates enables the simultaneous training of both the Q and π networks. However,

DDPG uses two techniques to get stable learning: a replay buffer and target networks. The replay

buffer stores past observations and then samples minibatches to update the networks to keep all

85



samples relevant. Target networks are originally copies of the networks that gradually follow the

updates of the networks to smooth the learning process as minor changes to the value can result in

large policy changes. The implementation uses Keras-rl [73].

Initialize θQ and θπ for Q and π and the target networks Q′ and π′;
Initialize the replay buffer R;
for episode=1. . . M do

start in initial state x1;
for t=1. . . T do

at = π(xt) ;
xt+1 = f(xt, at);
add (xt, at, rt, xt+1) to R;
sample N minibatches from R;
update θQ by minimizing: 1

N

∑

i(ri + γQ′(xi+1, π
′(xi+1|θ′π)|θ′Q)−Q(xi, ai)|θQ)2 ;

update θπ using: ∇θπJ = 1
N

∑

i∇aQ(xi, ai|θq)|ai=π(xi)∇θππ(si|θπ) ;
update target networks: θ′Q ← τθQ + (1− τ)θ′Q, θ′π ← τθπ + (1− τ)θ′π;

end

end

Algorithm 5: DDPG algorithm

4.3.2 Guided Policy Search

A hybrid of model-based and model-free methods that accelerates the learning of policies is the

Guided Policy Search (GPS) [45]. GPS develops a local linear Gaussian models to the dynamics

rather than global dynamics models and uses a linear Gaussian controller for trajectory genera-

tion. The learned policy is then trained in a supervised fashion to match the controller generated

trajectories.

GPS uses an algorithm similar to iLQR to generate its trajectories, iterative Linear Quadratic

Gaussian Regulator (iLQG). This algorithm works similarly to iLQR except there is now Gaussian

noise included into the system. However, GPS also operates under the consideration that the

dynamics are unknown (they can be sampled, but no analytic function). So, in order to come up

with the control policies the algorithm needs to come up with a model of the dynamics, optimize

the trajectory using iLQG, and train the learned policy on the generated policies.

86



The procedure for GPS starts by initially collecting samples of the dynamics from randomly

given input trajectories. The algorithm then repeats the steps of generating new trajectories for the

linear-Gaussian controllers, fitting local Gaussian models of the dynamics to the collected sample

trajectories, training the policy, and incrementing some internal update parameters. The model of

the dynamics has two components. The local dynamics model is a linear Gaussian model while a

Gaussian mixture model (GMM) is used globally to estimate priors for the iLQG algorithm. For

training the policy the objective is to minimize the KL-Divergence between the linear-Gaussian

policies and the trained policy. The reason for minimizing the KL-Divergence is to make sure the

change in policies between steps is smoothed to get more stable policies. There are several details

for the algorithm and optimization that are discussed in [45], but the general idea is to use iLQG

to generate policies from Gaussian models of the sampled dynamics and train a neural-network

policy to mimic them in a supervised way. The implementation used the Robotic Learning Lab’s

implementation [74].

for i=1..N do

using controllers pi generate new trajectories ;
fit dynamics to collected trajectories ;
minimize KL-Divergence to update the learned policy π ;
update internal variables;

end

Algorithm 6: GPS algorithm

4.4 Comparisons

To compare the different control schemes tested we will first compare the optimization based

methods and then the reinforcement learning methods. The performance will be compared across

several different test problems. Through this we aim to find what are the utility of the different

control approaches, simulations, and what works and what does not.

It should be noted that the explicit Cosserat simulation turns out to not be particularly useful for

optimization or learning while the other schemes have their benefits and drawbacks for the different

87



control and learning tasks. The difficulty with the explicit Cosserat simulation comes primarily

from the shortness of the time steps and vibrations in the axial deformations. Due to having very

short time steps the state between time steps changes very little which makes approximating the

dynamics more difficult mostly because it acts like an identity map locally, one way to deal with

this is to run consecutive steps and call them a single step, but this leads to higher computational

demand which we are trying to avoid. The problem with axial vibrations is that they are much

more rapid than the bending or torsion vibrations. The issue with this is the primary deformations

are bending which are qualitatively what should be controlled, but the presence of axial vibrations

effectively causes lots of noise in the deformation process as well as delaying the bending response

until the vibrations have damped out. Interpreting these vibrations as noise makes it much harder

to predict the dynamics and causes the control and learning to either be expensive or inconsistent.

Effectively the relevant time scale is much larger than the time step which makes the optimization

too computationally demanding to be useful. This leads to only comparing the performance of the

implicit scheme and the explicit Kirchhoff scheme.

4.4.1 MPC Comparisons

For MPC we used three approaches: NLSQ, LQR, and iLQR. It should be noted that the

implicit scheme works well for NLSQ as the control can be defined in the task space, but is very

inefficient with LQR and iLQR as those schemes need to approximate the jacobians in the state

space which is a very expensive operation to do on the implicit scheme. This makes the Kirchhoff

scheme the only practical model for use with LQR and iLQR. It is also necessary to point out that

at short time horizons the Kirchhoff scheme aren’t very effective, so the experiments start at a 5

step horizon so the performance is decent for all trials.

Dynamic Reaching

The dynamic reaching task consisted of randomly selecting a point in the dynamic workspace

and controlling the simulation to get the tip as close to that point as possible. To be consistent

across comparisons the same 10 points were used in testing which can be seen in Figure 4.3.

88



Figure 4.3: The randomly selected points for the dynamic reaching task for the optimization control
schemes.

For the experiments on the dynamic reaching task we terminate the experiment if it has reached

an error of less than 5% or after running for 100 total steps and we record the lowest error achieved.

Since MPC can look ahead a variable number of steps and potentially improve the trajectory we

want to see how the accuracy compares with number of lookaheads. The trends are seen in Fig-

ure 4.4.

It can be seen that nearly every trial gets below the 5% threshold which means the trends are

not too interesting to look at as the solutions are considered sufficient in all cases. For the few

that did not reach the threshold, increasing the steps did not seem to have any influence on the

performance. It can be noted that due to the large time steps in the implicit scheme it is possible

that the experiment skips over the target point in discrete time when it would have passed through

it in continuous time which could influence the error a bit.

To see how efficiently the control algorithms run we want to see what the real-time ratios are

and how they are influenced by the scheme and number of lookaheads. For the dynamic reaching

task, Figure 4.5, we see that implicit schemes with larger time steps are less sensitive to the number

of lookaheads and having a larger time horizon makes the optimization slower. We note that only

89



(a) NLSQ Kirchhoff. (b) NLSQ Implicit, ∆t = 0.01.

(c) LQR Kirchhoff. (d) NLSQ Implicit, ∆t = 0.05.

(e) iLQR Kirchhoff. (f) NLSQ Implicit, ∆t = 0.1.

Figure 4.4: The error in the tip position for the dynamic reaching task with the different control and simu-
lations. The error is plotted against the number of lookaheads used in the optimization.

90



Figure 4.5: Shows the mean and standard deviation for the real-time ratios for the NLSQ algorithm using
the implicit simulation scheme on the dynamic reaching task. The other algorithms and schemes are not
displayed due to having significantly larger ratios.

91



the results for the NLSQ algorithm using the implicit simulation are shown. This is due to the other

algorithms being significantly slower and not worth showing. We see that the only setups that can

achieve a practical real-time ratio are the implicit schemes with larger time steps.

Static Reach and Hold

For the static reach and hold task, a sample of points in the static workspace are selected and

the control schemes attempt to reach the point and keep the tip near it. Again, the same 10 points

are used for each trial and can be seen in Figure 4.6. For this task the error is also the tip error,

but the termination condition is to also reach a small tip error and to have the last few time steps to

have little variation in their error as to consider it a hold. The measured error is the average over

the final few time steps.

Figure 4.6: The randomly selected points for the static reach and hold task for the optimization control
schemes.

For the static reaching we see in general the control schemes were all quite successful and

that increasing the number of lookahead points likely has little influence due to the termination

threshold always being reached.

92



(a) NLSQ Kirchhoff. (b) NLSQ Implicit, ∆t = 0.01.

(c) LQR Kirchhoff. (d) NLSQ Implicit, ∆t = 0.05.

(e) iLQR Kirchhoff. (f) NLSQ Implicit, ∆t = 0.1.

Figure 4.7: The error in the tip position for the static reaching task with the different control and simulations.
The error is plotted against the number of lookaheads used in the optimization.

93



Figure 4.8: Shows the mean and standard deviation for the real-time ratios for the NLSQ algorithm using the
implicit simulation scheme on the static reaching task. The other algorithms and schemes are not displayed
due to having significantly larger ratios.

94



For static reaching real-time ratios, Figure 4.8, we see the same trend as in the dynamic reach-

ing. Longer time horizons increase the computation time and larger time steps make it easier to

achieve low real-time ratios.

Trajectory Tracking

For the trajectory tracking we select circles similar to the quasi-static control scheme such that

the circles are within the static workspace. We record the average error in the tracking experiment

and see the influence of the time horizon on the results.

Figure 4.9: The traces of the trajectories to be tracked by the manipulators. The paths are kept within the
static workspace to gaurantee that the points are always reachable.

We can see in general it was harder to track the larger circles, likely due to requiring higher

speeds to stay with the trajectory. It is also noteworthy that the large time step implicit scheme did

slightly worse in the tracking, most likely due to the low time resolution of the command inputs.

Here we also see that more lookaheads may not necessarily be better, but there is likely an optimum

for a given situation.

The trajectory tracking shows the same trend in the real-time ratios as the reaching tasks.

95



(a) NLSQ Kirchhoff. (b) NLSQ Implicit, ∆t = 0.01.

(c) LQR Kirchhoff. (d) NLSQ Implicit, ∆t = 0.05.

(e) iLQR Kirchhoff. (f) NLSQ Implicit, ∆t = 0.1.

Figure 4.10: The average error in the tip position for the trajectory tracking task with the different control
and simulations. The error is plotted against the number of lookaheads used in the optimization. Blue is the
inner circle, red is middle circle, and yellow is outer circle.

96



Figure 4.11: Shows the mean and standard deviation for the real-time ratios for the NLSQ algorithm using
the implicit simulation scheme on the trajectory tracking task. The other algorithms and schemes are not
displayed due to having significantly larger ratios.

97



Overall

For all the experiments the only setup that was able to achieve a real-time ratio less than 1 was

the NLSQ control with the implicit scheme using a time step of ∆t = 0.1 and 1 step of lookahead.

While it is possible to improve the running times and algorithms it is unlikely that the time step will

come down significantly with more desirable parameters. So, we can say it is possible to achieve

real-time control through optimization, but it is not practical in these demonstrations. In the results

we can see, in the Kirchhoff case, that once past a certain time horizon the performance doesn’t

seem to improve.

The conclusions we can draw for the optimization based control is that it is quite difficult to

achieve real-time control for the soft manipulators especially as they get more complicated. It is

possible that the efficiency of the optimization algorithms can be improved, but it is unlikely that it

will improve the results to a practical level. It is seen that the implicit scheme is certainly beneficial

for faster control schemes as the longer time steps are a significant benefit; however, too long of a

time step decreases the resolution in the control command frequency which is undesirable. We can

also infer that the task space is a much better space to define the objective in rather than the state

space. The LQR based optimizations used state space costs which resulted in significant slow-

down due to linearizing the dynamics while NLSQ was only posed in the task space which appears

to have helped the computation time without losing accuracy and effectiveness. Unfortunately, it

appears that optimization based control is a bit out of reach for practical implementations, but the

most successful approach likely would need an implicit simulation and task space objectives.

4.4.2 Learning Comparisons

For the learning based control we have a few different objectives for the testing. In general

we know that the resulting control policies should run in real-time, so that is not an important

measure here. However, the learning algorithms require a certain number of samples of the soft

manipulators behavior to be effective and for the sake of practicality fewer necessary samples

is desired. Also, reinforcement learning algorithms tend to have a single set task whereas robots

98



typically have a more general task (e.g., reinforcement learning trains to reach a specific point while

a manipulator needs to reach arbitrary points). We want to test how well the learning generalizes

these tasks when including the goal or target into the state measurements. We also want to test

how well they generalize to more difficult or complex tasks. So, for the learning we use a slightly

different set of control tasks to measure the performance.

The first task is reaching a single point that is in the dynamic workspace and not the static

workspace. For this the policy is trained to only reach a single point so that it is more akin to

typical RL problems. Since this is reaching a point in the dynamic workspace the policy cannot

hold that position, so we need to set a terminating condition to say that reaching the point was

successful and the training can be reset. For this we consider being within 5% of the desired point

relative to the length of the body to have successfully achieved the task.

The next task generalizes the first task, be able to reach any point within the dynamic workspace.

Now, this problem allows any point in the dynamic workspace to be selected not just a dynami-

cally reachable point as before. We also want a single policy to be able to generalize to any of

these points. So for this we randomly sample points in the dynamic workspace for the policy to

try to reach and since some points are only dynamically reachable we use the same terminating

condition as before.

The final task is to track a trajectory. Since we want an arbitrary trajectory to be tracked

we train by generating random trajectories through the static workspace. To generate a random

trajectory we pick a random starting and ending point and generate small random initial and final

velocities then a fourth-order polynomial is fit to those values. In this case we want the manipulator

to track the trajectory by being both close to the desired point and the desired velocity. To test the

performance of training we have the manipulator track a circular trajectory like in the MPC control.

For all tasks the reward is defined as:

R =















−‖p(L)−pdes‖
βL

, ‖p(L)− pdes‖ ≤ βL

−1, otherwise

(4.40)

99



where β ∈ (0, 1] and pdes is the desired tip position. This reward essentially says that once the

manipulator is within a certain distance to the desired position give a better reward the closer it is

to the target, but if outside this range just give a negative reward. The reason for this range is that

it seems DDPG works better with rewards in this range [75]. We select β = 0.3 as that seems to

give good policies.

Each of these tasks will be trained on using DDPG and GPS and their performance will be

discussed in the following.

4.4.3 DDPG Performance

For DDPG we use more samples on the different tasks to account for the complexity. Also,

we use the implicit scheme for generating the sample data, the change in the states between steps

in the explicit schemes seem to make the performance worse. For the dynamic reaching task used

a total of 500000 samples for each training and out of the 10 points tested all 10 were reached.

The 500000 samples seem to generally be excessive. For the arbitrary target task 500000 samples

points were used again. To test the performance the policy was given 50 random points to reach

and the total reached and the best tip error were recorded. For 5 trials of training the policy the

average number of points successfully reached was 83.6% and have an average tip error of 5.2%.

For the trajectory tracking the policy was trained on 1000000 samples and the learned policy had

an average tracking error for the circle of 6.4%.

Overall it appears that the DDPG algorithm did reasonably well on the given control tasks.

More testing could have been done on the number of samples used, but these are generally a lot of

samples and we would prefer having to collect less data to successfully train the policies.

GPS Performance

In the GPS training the implicit scheme was used as well and more training was allowed for

the more complex tasks. For the dynamic reaching task GPS was able to consistently reach the

desired target after 5000 samples for all 10 out of the 10 points tested.

100



For the variable target task the average minimum tip error went down to roughly 2.5% and

successfully reached the desired point 94.0% of the time after 250000 samples averaged across 10

trials.

For arbitrary trajectory tracking GPS achieved a 10.3% average tracking error for the circle

after 500000 samples.

Overall

Both algorithms could be said to have achieved desirable control performance for the given

tasks. However, GPS appeared to be a bit better in performance on the simpler tasks, DDPG

better on the trajectory tracking, and GPS significantly better in the number of training samples.

This makes it seem that GPS is the better option in these particular cases. It is possible that for

more complex tasks or robots a model-free approach has the advantage as it generally gets better

long-term performance.

There are several extensions to the methods that can be used to potentially get better results. We

have attempted to use the Temporal Difference Models [47] and Hindsight Experience Replay [48]

which claim to improve model-free techniques; however, we found the performance and number

of samples to be nearly the same as DDPG and didn’t have any benefit.

4.4.4 Control Comparisons

Both the optimization and learning based control can derive acceptable controllers for the sim-

ulated soft manipulator; however, given the computation time the learning based approaches seem

to have the advantage. The only optimization control schemes that could achieve real-time per-

formance only had one-step of lookahead and fairly low sampling rates. The performance of the

algorithms could improve, but it seems unlikely that efficiency would improve enough to get the

desired real-time performance. Since machine learning seems to be the better approach it is desired

to make that as effective as possible, which typically means having the training be as efficient as

possible to be able to prototype and control the robots as efficiently as possible. Given the millions

of samples it takes for model-free algorithms to work model-based approaches become more at-

101



tractive even if the performance is possibly lower. Though in our testing the performance seemed

to be similar between the methods. The primary downside to learning is the need to retrain for

every prototype, but lower samples mitigates that issue somewhat.

Table 4.1: The measured performance of the different control schemes. The two important factors included
are the real-time ratio and the accuracy. Here the real-time ratio is only reported for the cases that could
achieve a value less than 1. For the reaching tasks the successful out of the attempted are reported for the
MPC algorithms and the percentage for the RL algorithms (success is less than 5% error). For the trajectory
tracking the average middle circle value is reported.

NLSQ Implicit NLSQ Kirchhoff LQR iLQR DDPG GPS
∆t = 0.01 0.05 0.1 0.05 0.05

Real-time No No 0.95 No No No 0.01 0.01
Dynamic Reach

(single point) NA NA NA NA NA NA 100% 100%
Dynamic Reach

(any point) 10/10 10/10 10/10 9/10 9/10 9/10 83.6% 94.0%
Static Reach 10/10 10/10 10/10 10/10 10/10 10/10 NA NA
Trajectory 3.45% 4.36% 6.90% 1.64% 2.03% 3.38% 6.40% 10.3%

4.5 Summary

In this chapter we discussed the control of the soft manipulators and how effective the schemes

were as well as the real-time capabilities. We began with a quasi-static controller that works, but

is unlikely to be useful in a real control situation. Then, we moved on to Model Predictive Control

and Reinforcement Learning. Here we saw that it is difficult to achieve real-time control using

Model Predictive Control techniques with only the Nonlinear Least-Squares optimization with

the implicit scheme using one fairly long lookahead being able to achieve real-time control. For

Reinforcement Learning it was much more successful at achieving real-time control at the expense

of training time. For the algorithms compared DDPG did better on the more complex task while

GPS took significantly fewer samples, both performed well on the simpler tasks.

102



Chapter 5

Conclusions and Future Work

In this thesis we demonstrate the development of a Cosserat rod based modeling framework,

the implementations of the simulations, and possible approaches to control for these soft robots. In

the modeling we are able to capture the significant modes of deformations for the slender manip-

ulators, which can be extended to higher dimensions later, and developed models for the common

types of actuators: cables, fluidic, and artificial muscles. For the simulations we are able to imple-

ment both explicit and implicit integrators that preserve the group structure of the kinematics and

eliminate numerical damping, often neglected aspects of the simulations, that can run in real-time,

in practice we see that the CFL condition is quite restrictive for the explicit scheme and it appears

the implicit scheme seems to be the preferred simulation scheme. For the control, we demonstrate

the difficulty of getting real-time control with optimization based approaches and as a comparison

show that Reinforcement Learning is an excellent technique for getting real-time control policies at

the expense of training time. In the end, we see that real-time simulations and control are possible

to develop for soft manipulators.

The work shown here is intended to be used as a basis for continuing to develop understanding

of soft robots as well as analyzing more complex structures the combine both rigid and soft com-

ponents. There are still many potential avenues to explore. For the modeling we can generalize to

higher dimensional bodies than rods and can mix rigid and soft components. For the simulations,

we have room to generalize the integration schemes to higher-order to get better accuracy, more

minor optimizations, and generalizing to more complex material properties and geometric struc-

tures. Then the control, we can explore how to improve machine learning techniques to be more

sample efficient and have better performance. There is also the avenue of exploring Lyanpunov

stability derived controllers so that analytic real-time controllers can be developed.

103



Bibliography

[1] Deepak Trivedi, Christopher D Rahn, William M Kier, and Ian D Walker. Soft robotics: Bi-

ological inspiration, state of the art, and future research. Applied Bionics and Biomechanics,

5(3):99–117, 2008.

[2] Daniela Rus and Michael T Tolley. Design, fabrication and control of soft robots. Nature,

521(7553):467–475, 2015.

[3] Sangbae Kim, Cecilia Laschi, and Barry Trimmer. Soft robotics: a bioinspired evolution in

robotics. Trends in biotechnology, 31(5):287–294, 2013.

[4] Cecilia Laschi and Matteo Cianchetti. Soft robotics: new perspectives for robot bodyware

and control. Frontiers in bioengineering and biotechnology, 2, 2014.

[5] G Dogangil, BL Davies, and F Rodriguez y Baena. A review of medical robotics for min-

imally invasive soft tissue surgery. Proceedings of the Institution of Mechanical Engineers,

Part H: Journal of Engineering in Medicine, 224(5):653–679, 2010.

[6] Paxton Maeder-York, Tyler Clites, Emily Boggs, Ryan Neff, Panagiotis Polygerinos, Dónal

Holland, Leia Stirling, Kevin Galloway, Catherine Wee, and Conor Walsh. Biologically

inspired soft robot for thumb rehabilitation. Journal of Medical Devices, 8(2):020933, 2014.

[7] Yahya Elsayed, Augusto Vincensi, Constantina Lekakou, Tao Geng, CM Saaj, Tommaso

Ranzani, Matteo Cianchetti, and Arianna Menciassi. Finite element analysis and design opti-

mization of a pneumatically actuating silicone module for robotic surgery applications. Soft

Robotics, 1(4):255–262, 2014.

[8] Panagiotis Polygerinos, Zheng Wang, Kevin C Galloway, Robert J Wood, and Conor J Walsh.

Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Au-

tonomous Systems, 73:135–143, 2015.

104



[9] J. Burgner-Kahrs, D. C. Rucker, and H. Choset. Continuum robots for medical applications:

A survey. IEEE Transactions on Robotics, 31(6):1261–1280, Dec 2015.

[10] Andrew D Marchese, Cagdas D Onal, and Daniela Rus. Autonomous soft robotic fish capable

of escape maneuvers using fluidic elastomer actuators. Soft Robotics, 1(1):75–87, 2014.

[11] M. Giorelli, F. Renda, G. Ferri, and C. Laschi. A feed-forward neural network learning the

inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space. In

2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5033–

5039, Nov 2013.

[12] D. Trivedi, A. Lotfi, and C. D. Rahn. Geometrically exact models for soft robotic manipula-

tors. IEEE Transactions on Robotics, 24(4):773–780, Aug 2008.

[13] M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi. A two dimensional

inverse kinetics model of a cable driven manipulator inspired by the octopus arm. In 2012

IEEE International Conference on Robotics and Automation, pages 3819–3824, May 2012.

[14] B. A. Jones and I. D. Walker. Kinematics for multisection continuum robots. IEEE Transac-

tions on Robotics, 22(1):43–55, Feb 2006.

[15] Srinivas Neppalli, Matthew A. Csencsits, Bryan A. Jones, and Ian D. Walker. Closed-form in-

verse kinematics for continuum manipulators. Advanced Robotics, 23(15):2077–2091, 2009.

[16] Manuel Schaffner, Jakob A Faber, Lucas Pianegonda, Patrick A Rühs, Fergal Coulter, and

André R Studart. 3d printing of robotic soft actuators with programmable bioinspired archi-

tectures. Nature communications, 9(1):878, 2018.

[17] Ming Luo, Mahdi Agheli, and Cagdas D Onal. Theoretical modeling and experimental anal-

ysis of a pressure-operated soft robotic snake. Soft Robotics, 1(2):136–146, 2014.

105



[18] Norihiro Kamamichi, Masaki Yamakita, Kinji Asaka, and Zhi-Wei Luo. A snake-like swim-

ming robot using ipmc actuator/sensor. In Robotics and Automation, 2006. ICRA 2006. Pro-

ceedings 2006 IEEE International Conference on, pages 1812–1817. IEEE, 2006.

[19] Huai-Ti Lin, Gary G Leisk, and Barry Trimmer. Goqbot: a caterpillar-inspired soft-bodied

rolling robot. Bioinspiration & biomimetics, 6(2):026007, 2011.

[20] Takuya Umedachi, Vishesh Vikas, and Barry A Trimmer. Highly deformable 3-d printed soft

robot generating inching and crawling locomotions with variable friction legs. In Intelligent

Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages 4590–4595.

IEEE, 2013.

[21] S. Seok, C. D. Onal, K. J. Cho, R. J. Wood, D. Rus, and S. Kim. Meshworm: A peri-

staltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Transactions

on Mechatronics, 18(5):1485–1497, Oct 2013.

[22] Sung-Weon Yeom and Il-Kwon Oh. A biomimetic jellyfish robot based on ionic polymer

metal composite actuators. Smart materials and structures, 18(8):085002, 2009.

[23] Kwangmok Jung, Ja Choon Koo, Young Kwan Lee, Hyouk Ryeol Choi, et al. Artificial

annelid robot driven by soft actuators. Bioinspiration & biomimetics, 2(2):S42, 2007.

[24] Michael T Tolley, Robert F Shepherd, Bobak Mosadegh, Kevin C Galloway, Michael Wehner,

Michael Karpelson, Robert J Wood, and George M Whitesides. A resilient, untethered soft

robot. Soft robotics, 1(3):213–223, 2014.

[25] Federico Renda, Michele Giorelli, Marcello Calisti, Matteo Cianchetti, and Cecilia Laschi.

Dynamic model of a multibending soft robot arm driven by cables. IEEE Transactions on

Robotics, 30(5):1109–1122, 2014.

[26] E. Acome, S. K. Mitchell, T. G. Morrissey, M. B. Emmett, C. Benjamin, M. King,

M. Radakovitz, and C. Keplinger. Hydraulically amplified self-healing electrostatic actua-

tors with muscle-like performance. Science, 359(6371):61–65, 2018.

106



[27] Bianca S Homberg, Robert K Katzschmann, Mehmet R Dogar, and Daniela Rus. Haptic

identification of objects using a modular soft robotic gripper. In 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 1698–1705. IEEE, 2015.

[28] Jiefeng Sun, Benjamin Pawlowski, and Jianguo Zhao. Embedded and controllable shape

morphing with twisted-and-coiled actuators. In IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), 2018.

[29] Oliver M O’Reilly. Modeling nonlinear problems in the mechanics of strings and rods.

Springer, 2017.

[30] Thomas George Thuruthel, Yasmin Ansari, Egidio Falotico, and Cecilia Laschi. Control

strategies for soft robotic manipulators: A survey. Soft robotics, 5(2):149–163, 2018.

[31] D. C. Rucker and R. J. Webster III. Statics and dynamics of continuum robots with general

tendon routing and external loading. IEEE Transactions on Robotics, 27(6):1033–1044, Dec

2011.

[32] J. Shintake, S. Rosset, B. E. Schubert, D. Floreano, and H. R. Shea. A foldable antagonistic

actuator. IEEE/ASME Transactions on Mechatronics, 20(5):1997–2008, Oct 2015.

[33] Mohsen Shahinpoor, Yoseph Bar-Cohen, JO Simpson, and J Smith. Ionic polymer-metal

composites (ipmcs) as biomimetic sensors, actuators and artificial muscles-a review. Smart

materials and structures, 7(6):R15, 1998.

[34] Carter S Haines, Márcio D Lima, Na Li, Geoffrey M Spinks, Javad Foroughi, John DW

Madden, Shi Hyeong Kim, Shaoli Fang, Mônica Jung de Andrade, Fatma Göktepe, et al.

Artificial muscles from fishing line and sewing thread. science, 343(6173):868–872, 2014.

[35] III Robert J. Webster and Bryan A. Jones. Design and kinematic modeling of constant

curvature continuum robots: A review. The International Journal of Robotics Research,

29(13):1661–1683, 2010.

107



[36] Federico Renda, Frédéric Boyer, Jorge Dias, and Lakmal Seneviratne. Discrete cosserat

approach for multisection soft manipulator dynamics. IEEE Transactions on Robotics,

34(6):1518–1533, 2018.

[37] Raymond H Plaut. Mathematical model of inchworm locomotion. International Journal of

Non-Linear Mechanics, 76:56–63, 2015.

[38] Yoel Shapiro, Kosa Gabor, and Alon Wolf. Modeling a hyperflexible planar bending actuator

as an inextensible euler–bernoulli beam for use in flexible robots. Soft Robotics, 2(2):71–79,

2015.

[39] Javad Fattahi and Davide Spinello. A timoshenko beam reduced order model for shape track-

ing with a slender mechanism. Journal of Sound and Vibration, 333(20):5165–5180, 2014.

[40] John Till, Vincent Aloi, and Caleb Rucker. Real-time dynamics of soft and continuum robots

based on cosserat rod models. The International Journal of Robotics Research, 38(6):723–

746, 2019.

[41] Albert Edward Green, PM Naghdi, and ML Wenner. On the theory of rods. i. derivations

from the three-dimensional equations. Proceedings of the Royal Society of London. A. Math-

ematical and Physical Sciences, 337(1611):451–483, 1974.

[42] C. Duriez. Control of elastic soft robots based on real-time finite element method. In 2013

IEEE International Conference on Robotics and Automation, pages 3982–3987, May 2013.

[43] D. C. Rucker and R. J. Webster. Computing jacobians and compliance matrices for exter-

nally loaded continuum robots. In 2011 IEEE International Conference on Robotics and

Automation, pages 945–950, May 2011.

[44] Thomas George Thuruthel, Egidio Falotico, Federico Renda, and Cecilia Laschi. Learning

dynamic models for open loop predictive control of soft robotic manipulators. Bioinspiration

& biomimetics, 12(6):066003, 2017.

108



[45] Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search

under unknown dynamics. In Advances in Neural Information Processing Systems, pages

1071–1079, 2014.

[46] Charles W Anderson, Minwoo Lee, and Daniel L Elliott. Faster reinforcement learning after

pretraining deep networks to predict state dynamics. In Neural Networks (IJCNN), 2015

International Joint Conference on, pages 1–7. IEEE, 2015.

[47] Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models:

Model-free deep rl for model-based control. arXiv preprint arXiv:1802.09081, 2018.

[48] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welin-

der, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight

experience replay. In Advances in Neural Information Processing Systems, pages 5048–5058,

2017.

[49] Russ Tedrake. Underactuated robotics: Algorithms for walking, running, swimming, fly-

ing, and manipulation (course notes for mit 6.832). Available athttp://underactuated.mit.

edu/(2019/06/23).

[50] Brian Hall. Lie groups, Lie algebras, and representations: an elementary introduction, vol-

ume 222. Springer, 2015.

[51] Kevin M Lynch and Frank C Park. Modern Robotics. Cambridge University Press, 2017.

[52] Izrail Moiseevitch Gelfand, Richard A Silverman, et al. Calculus of variations. Courier

Corporation, 2000.

[53] Vladimir Igorevich Arnol’d. Mathematical methods of classical mechanics, volume 60.

Springer Science & Business Media, 2013.

109



[54] Valentin Sonneville, Alberto Cardona, and O Brüls. Geometrically exact beam finite element

formulated on the special euclidean group se (3). Computer Methods in Applied Mechanics

and Engineering, 268:451–474, 2014.

[55] Ed. H. MÃijhlhaus, J. Wiley, N. Y. Ch, and Roderic Lakes. Continuum models for materials

with microstructure, 1995.

[56] Juan Carlos Simo and Loc Vu-Quoc. On the dynamics in space of rods undergoing large

motionsâĂŤa geometrically exact approach. Computer methods in applied mechanics and

engineering, 66(2):125–161, 1988.

[57] Carter S Haines, Na Li, Geoffrey M Spinks, Ali E Aliev, Jiangtao Di, and Ray H Baughman.

New twist on artificial muscles. Proceedings of the National Academy of Sciences, page

201605273, 2016.

[58] Jonghoon Park and Wan-Kyun Chung. Geometric integration on euclidean group with ap-

plication to articulated multibody systems. IEEE Transactions on Robotics, 21(5):850–863,

2005.

[59] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integration:

structure-preserving algorithms for ordinary differential equations, volume 31. Springer

Science & Business Media, 2006.

[60] Hans Munthe-Kaas. Runge-kutta methods on lie groups. BIT Numerical Mathematics,

38(1):92–111, 1998.

[61] Hans Munthe-Kaas. High order runge-kutta methods on manifolds. Applied Numerical Math-

ematics, 29(1):115–127, 1999.

[62] John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

110



[63] François Demoures, François Gay-Balmaz, Marin Kobilarov, and Tudor S Ratiu. Multisym-

plectic lie group variational integrator for a geometrically exact beam in r3. Communications

in Nonlinear Science and Numerical Simulation, 19(10):3492–3512, 2014.

[64] Joachim Linn, Holger Lang, and Andrey Tuganov. Geometrically exact cosserat rods with

kelvin–voigt type viscous damping. Mechanical Sciences, 4(1):79–96, 2013.

[65] Harvard Lomax, Thomas H Pulliam, and David W Zingg. Fundamentals of computational

fluid dynamics. Springer Science & Business Media, 2013.

[66] Richard Courant, Kurt Friedrichs, and Hans Lewy. On the partial difference equations of

mathematical physics. IBM journal of Research and Development, 11(2):215–234, 1967.

[67] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,

2018.

[68] Thomas F Coleman and Yuying Li. An interior trust region approach for nonlinear minimiza-

tion subject to bounds. SIAM Journal on optimization, 6(2):418–445, 1996.

[69] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv

preprint arXiv:1312.5602, 2013.

[70] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur

Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering

chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint

arXiv:1712.01815, 2017.

[71] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval

Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learn-

ing. arXiv preprint arXiv:1509.02971, 2015.

111



[72] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Ried-

miller. Deterministic policy gradient algorithms. In ICML, 2014.

[73] Matthias Plappert. keras-rl. https://github.com/keras-rl/keras-rl, 2016.

[74] C. Finn, M. Zhang, J. Fu, X. Tan, Z. McCarthy, E. Scharff, and S. Levine. Guided policy

search code implementation, 2016. Software available from rll.berkeley.edu/gps.

[75] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David

Meger. Deep reinforcement learning that matters. arXiv preprint arXiv:1709.06560, 2017.

112



Appendix A

Derivation of t′a,i

Start with

ta,i‖p′a,i‖ = p′a,i (A.1)

Take the derivative

t′a,i‖p′a,i‖+ ta,i‖p′a,i‖′ = p′′a,i (A.2)

Now take the cross product between the two equations

p̂′a,ip
′′
a,i = ‖p′a,i‖2t̂a,it′a,i (A.3)

Take the cross product again with ta,i

t̂a,ip̂
′
a,ip

′′
a,i = ‖p′a,i‖2t̂2a,it′a,i (A.4)

Using âb̂c = b(a · c)− c(a · b), ta,i · ta,i = 1, and t′a,i · ta,i = 0 we get:

t̂2a,it
′
a,i = −t′a,i (A.5)

Substituting and rearranging thus gives:

t′a,i = −
p̂′2a,i
‖p′a,i‖3

p′′a,i (A.6)

113


