21 research outputs found

    Learning Multi-Modal Word Representation Grounded in Visual Context

    Full text link
    Representing the semantics of words is a long-standing problem for the natural language processing community. Most methods compute word semantics given their textual context in large corpora. More recently, researchers attempted to integrate perceptual and visual features. Most of these works consider the visual appearance of objects to enhance word representations but they ignore the visual environment and context in which objects appear. We propose to unify text-based techniques with vision-based techniques by simultaneously leveraging textual and visual context to learn multimodal word embeddings. We explore various choices for what can serve as a visual context and present an end-to-end method to integrate visual context elements in a multimodal skip-gram model. We provide experiments and extensive analysis of the obtained results

    Multimodal Grounding for Language Processing

    Get PDF
    This survey discusses how recent developments in multimodal processing facilitate conceptual grounding of language. We categorize the information flow in multimodal processing with respect to cognitive models of human information processing and analyze different methods for combining multimodal representations. Based on this methodological inventory, we discuss the benefit of multimodal grounding for a variety of language processing tasks and the challenges that arise. We particularly focus on multimodal grounding of verbs which play a crucial role for the compositional power of language.Comment: The paper has been published in the Proceedings of the 27 Conference of Computational Linguistics. Please refer to this version for citations: https://www.aclweb.org/anthology/papers/C/C18/C18-1197

    Multimodal Variational Autoencoders for Semi-Supervised Learning: In Defense of Product-of-Experts

    Full text link
    Multimodal generative models should be able to learn a meaningful latent representation that enables a coherent joint generation of all modalities (e.g., images and text). Many applications also require the ability to accurately sample modalities conditioned on observations of a subset of the modalities. Often not all modalities may be observed for all training data points, so semi-supervised learning should be possible. In this study, we evaluate a family of product-of-experts (PoE) based variational autoencoders that have these desired properties. We include a novel PoE based architecture and training procedure. An empirical evaluation shows that the PoE based models can outperform an additive mixture-of-experts (MoE) approach. Our experiments support the intuition that PoE models are more suited for a conjunctive combination of modalities while MoEs are more suited for a disjunctive fusion

    Multimodal Grounding for Language Processing

    Get PDF
    corecore