586,154 research outputs found

    Graph Structural Residuals: A Learning Approach to Diagnosis

    Full text link
    Traditional model-based diagnosis relies on constructing explicit system models, a process that can be laborious and expertise-demanding. In this paper, we propose a novel framework that combines concepts of model-based diagnosis with deep graph structure learning. This data-driven approach leverages data to learn the system's underlying structure and provide dynamic observations, represented by two distinct graph adjacency matrices. Our work facilitates a seamless integration of graph structure learning with model-based diagnosis by making three main contributions: (i) redefining the constructs of system representation, observations, and faults (ii) introducing two distinct versions of a self-supervised graph structure learning model architecture and (iii) demonstrating the potential of our data-driven diagnostic method through experiments on a system of coupled oscillators

    Visualization for Verification Driven Learning in Database Studies

    Get PDF
    This thesis aims at developing a data visualization tool to enhance database learning based on the Verification Driven Learning (VDL) model. The goal of the VDL model is to present abstract concepts in the contexts of real-world systems to students in the early stages of computer science program. In this project, a personnel/training management system has been turned into a learning platform by adding a number of features for visualization and quizzing. We have implemented various tactics to visualize the data manipulation and data retrieval operations in database, as well as the message contents in data messaging channels. The results of our development have been utilized in eight learning cases illustrating the applications of our visualization tool. Each of these learning cases were made by systematically implanting bugs in a functioning component; the students are assigned to identify the bugs and at the same time to learn the structure of the software system activ

    Visualization for Verification Driven Learning in Database Studies

    Get PDF
    This thesis aims at developing a data visualization tool to enhance database learning based on the Verification Driven Learning (VDL) model. The goal of the VDL model is to present abstract concepts in the contexts of real-world systems to students in the early stages of computer science program. In this project, a personnel/training management system has been turned into a learning platform by adding a number of features for visualization and quizzing. We have implemented various tactics to visualize the data manipulation and data retrieval operations in database, as well as the message contents in data messaging channels. The results of our development have been utilized in eight learning cases illustrating the applications of our visualization tool. Each of these learning cases were made by systematically implanting bugs in a functioning component; the students are assigned to identify the bugs and at the same time to learn the structure of the software system activ

    From Pipe Cleaners and Pony Beads to Apps and 3D Glasses: Teaching Protein Structure

    Get PDF
    abstract: Students often self-identify as visual learners and prefer to engage with a topic in an active, hands-on way. Indeed, much research has shown that students who actively engage with the material and are engrossed in the topics retain concepts better than students who are passive receivers of information. However, much of learning life science concepts is still driven by books and static pictures. One concept students have a hard time grasping is how a linear chain of amino acids folds to becomes a 3D protein structure. Adding three dimensional activities to the topic of protein structure and function should allow for a deeper understanding of the primary, secondary, tertiary, and quaternary structure of proteins and how proteins function in a cell. Here, I review protein folding activities and describe using Apps and 3D visualization to enhance student understanding of protein structure.The final version of this article, as published in Journal of Microbiology & Biology Education, can be viewed online at: http://www.asmscience.org/content/journal/jmbe/10.1128/jmbe.v15i2.71

    Projection-Based Clustering through Self-Organization and Swarm Intelligence

    Get PDF
    It covers aspects of unsupervised machine learning used for knowledge discovery in data science and introduces a data-driven approach to cluster analysis, the Databionic swarm (DBS). DBS consists of the 3D landscape visualization and clustering of data. The 3D landscape enables 3D printing of high-dimensional data structures. The clustering and number of clusters or an absence of cluster structure are verified by the 3D landscape at a glance. DBS is the first swarm-based technique that shows emergent properties while exploiting concepts of swarm intelligence, self-organization and the Nash equilibrium concept from game theory. It results in the elimination of a global objective function and the setting of parameters. By downloading the R package DBS can be applied to data drawn from diverse research fields and used even by non-professionals in the field of data mining

    Projection-Based Clustering through Self-Organization and Swarm Intelligence: Combining Cluster Analysis with the Visualization of High-Dimensional Data

    Get PDF
    This book covers aspects of unsupervised machine learning used for knowledge discovery in data science and introduces a data-driven approach to cluster analysis, the Databionic swarm (DBS). DBS consists of the 3D landscape visualization and clustering of data. The 3D landscape enables 3D printing of high-dimensional data structures.The clustering and number of clusters or an absence of cluster structure are verified by the 3D landscape at a glance. DBS is the first swarm-based technique that shows emergent properties while exploiting concepts of swarm intelligence, self-organization and the Nash equilibrium concept from game theory. It results in the elimination of a global objective function and the setting of parameters. By downloading the R package DBS can be applied to data drawn from diverse research fields and used even by non-professionals in the field of data mining

    Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks

    Get PDF
    Neural networks are successfully used to imitate and model cognitive processes. However, to provide clues about the neurobiological mechanisms enabling human cognition, these models need to mimic the structure and function of real brains. Brain-constrained networks differ from classic neural networks by implementing brain similarities at different scales, ranging from the micro- and mesoscopic levels of neuronal function, local neuronal links and circuit interaction to large-scale anatomical structure and between-area connectivity. This review shows how brain-constrained neural networks can be applied to study in silico the formation of mechanisms for symbol and concept processing and to work towards neurobiological explanations of specifically human cognitive abilities. These include verbal working memory and learning of large vocabularies of symbols, semantic binding carried by specific areas of cortex, attention focusing and modulation driven by symbol type, and the acquisition of concrete and abstract concepts partly influenced by symbols. Neuronal assembly activity in the networks is analyzed to deliver putative mechanistic correlates of higher cognitive processes and to develop candidate explanations founded in established neurobiological principles

    Model-driven description and validation of composite learning content

    Get PDF
    Authoring of learning content for courseware systems is a complex activity requiring the combination of a range of design and validation techniques. We introduce the CAVIAr courseware models allowing for learning content description and validation. Model-based representation and analysis of different concerns such as the subject domain, learning context, resources and instructional design used are key contributors to this integrated solution. Personalised learning is particularly difficult to design as dynamic configurations cannot easily be predicted and tested. A tool-supported technique based on CAVIAr can alleviate this complexity through the validation of a set of pedagogical and non-pedagogical requirements. Courseware validation checks intra- and inter-content relationships and the compliance with requirements and educational theories

    A foundation for machine learning in design

    Get PDF
    This paper presents a formalism for considering the issues of learning in design. A foundation for machine learning in design (MLinD) is defined so as to provide answers to basic questions on learning in design, such as, "What types of knowledge can be learnt?", "How does learning occur?", and "When does learning occur?". Five main elements of MLinD are presented as the input knowledge, knowledge transformers, output knowledge, goals/reasons for learning, and learning triggers. Using this foundation, published systems in MLinD were reviewed. The systematic review presents a basis for validating the presented foundation. The paper concludes that there is considerable work to be carried out in order to fully formalize the foundation of MLinD
    • 

    corecore