37,283 research outputs found

    CSI: A Hybrid Deep Model for Fake News Detection

    Full text link
    The topic of fake news has drawn attention both from the public and the academic communities. Such misinformation has the potential of affecting public opinion, providing an opportunity for malicious parties to manipulate the outcomes of public events such as elections. Because such high stakes are at play, automatically detecting fake news is an important, yet challenging problem that is not yet well understood. Nevertheless, there are three generally agreed upon characteristics of fake news: the text of an article, the user response it receives, and the source users promoting it. Existing work has largely focused on tailoring solutions to one particular characteristic which has limited their success and generality. In this work, we propose a model that combines all three characteristics for a more accurate and automated prediction. Specifically, we incorporate the behavior of both parties, users and articles, and the group behavior of users who propagate fake news. Motivated by the three characteristics, we propose a model called CSI which is composed of three modules: Capture, Score, and Integrate. The first module is based on the response and text; it uses a Recurrent Neural Network to capture the temporal pattern of user activity on a given article. The second module learns the source characteristic based on the behavior of users, and the two are integrated with the third module to classify an article as fake or not. Experimental analysis on real-world data demonstrates that CSI achieves higher accuracy than existing models, and extracts meaningful latent representations of both users and articles.Comment: In Proceedings of the 26th ACM International Conference on Information and Knowledge Management (CIKM) 201

    Identifying Clickbait: A Multi-Strategy Approach Using Neural Networks

    Full text link
    Online media outlets, in a bid to expand their reach and subsequently increase revenue through ad monetisation, have begun adopting clickbait techniques to lure readers to click on articles. The article fails to fulfill the promise made by the headline. Traditional methods for clickbait detection have relied heavily on feature engineering which, in turn, is dependent on the dataset it is built for. The application of neural networks for this task has only been explored partially. We propose a novel approach considering all information found in a social media post. We train a bidirectional LSTM with an attention mechanism to learn the extent to which a word contributes to the post's clickbait score in a differential manner. We also employ a Siamese net to capture the similarity between source and target information. Information gleaned from images has not been considered in previous approaches. We learn image embeddings from large amounts of data using Convolutional Neural Networks to add another layer of complexity to our model. Finally, we concatenate the outputs from the three separate components, serving it as input to a fully connected layer. We conduct experiments over a test corpus of 19538 social media posts, attaining an F1 score of 65.37% on the dataset bettering the previous state-of-the-art, as well as other proposed approaches, feature engineering or otherwise.Comment: Accepted at SIGIR 2018 as Short Pape

    BL-MNE: Emerging Heterogeneous Social Network Embedding through Broad Learning with Aligned Autoencoder

    Full text link
    Network embedding aims at projecting the network data into a low-dimensional feature space, where the nodes are represented as a unique feature vector and network structure can be effectively preserved. In recent years, more and more online application service sites can be represented as massive and complex networks, which are extremely challenging for traditional machine learning algorithms to deal with. Effective embedding of the complex network data into low-dimension feature representation can both save data storage space and enable traditional machine learning algorithms applicable to handle the network data. Network embedding performance will degrade greatly if the networks are of a sparse structure, like the emerging networks with few connections. In this paper, we propose to learn the embedding representation for a target emerging network based on the broad learning setting, where the emerging network is aligned with other external mature networks at the same time. To solve the problem, a new embedding framework, namely "Deep alIgned autoencoder based eMbEdding" (DIME), is introduced in this paper. DIME handles the diverse link and attribute in a unified analytic based on broad learning, and introduces the multiple aligned attributed heterogeneous social network concept to model the network structure. A set of meta paths are introduced in the paper, which define various kinds of connections among users via the heterogeneous link and attribute information. The closeness among users in the networks are defined as the meta proximity scores, which will be fed into DIME to learn the embedding vectors of users in the emerging network. Extensive experiments have been done on real-world aligned social networks, which have demonstrated the effectiveness of DIME in learning the emerging network embedding vectors.Comment: 10 pages, 9 figures, 4 tables. Full paper is accepted by ICDM 2017, In: Proceedings of the 2017 IEEE International Conference on Data Mining

    Extracting News Events from Microblogs

    Full text link
    Twitter stream has become a large source of information for many people, but the magnitude of tweets and the noisy nature of its content have made harvesting the knowledge from Twitter a challenging task for researchers for a long time. Aiming at overcoming some of the main challenges of extracting the hidden information from tweet streams, this work proposes a new approach for real-time detection of news events from the Twitter stream. We divide our approach into three steps. The first step is to use a neural network or deep learning to detect news-relevant tweets from the stream. The second step is to apply a novel streaming data clustering algorithm to the detected news tweets to form news events. The third and final step is to rank the detected events based on the size of the event clusters and growth speed of the tweet frequencies. We evaluate the proposed system on a large, publicly available corpus of annotated news events from Twitter. As part of the evaluation, we compare our approach with a related state-of-the-art solution. Overall, our experiments and user-based evaluation show that our approach on detecting current (real) news events delivers a state-of-the-art performance

    Interactive Search and Exploration in Online Discussion Forums Using Multimodal Embeddings

    Get PDF
    In this paper we present a novel interactive multimodal learning system, which facilitates search and exploration in large networks of social multimedia users. It allows the analyst to identify and select users of interest, and to find similar users in an interactive learning setting. Our approach is based on novel multimodal representations of users, words and concepts, which we simultaneously learn by deploying a general-purpose neural embedding model. We show these representations to be useful not only for categorizing users, but also for automatically generating user and community profiles. Inspired by traditional summarization approaches, we create the profiles by selecting diverse and representative content from all available modalities, i.e. the text, image and user modality. The usefulness of the approach is evaluated using artificial actors, which simulate user behavior in a relevance feedback scenario. Multiple experiments were conducted in order to evaluate the quality of our multimodal representations, to compare different embedding strategies, and to determine the importance of different modalities. We demonstrate the capabilities of the proposed approach on two different multimedia collections originating from the violent online extremism forum Stormfront and the microblogging platform Twitter, which are particularly interesting due to the high semantic level of the discussions they feature
    corecore